
   

 

 

1. Introduction  

The manner in which a group or social ranking from a set of individual preferences is achieved is an 

important aspect of the Decision-Making (DM) context. This class of procedures contains either those 

in which each DM, selects a subset of the alternatives and places them in a ranked order. Let A =

{A1, … , An} be a set of n (n>3) alternatives that have been evaluated by a group of DMs. Each DM gives 

preferences by selecting a subset of (k) alternatives (or the complete set A) and ranking them from most 

to least preferred. Weighting scoring rules operate by computing, for each alternative, a score that 

depends on the rank position of the alternative in the individual’s order of preferences. Subsequently, 

the alternatives are ranked by the sum of scores received. The value obtained by the ith alternative is 

computed as Vi = ∑ wj vij . (i = 1, … , n)k
j=1 . Where wj is the weighting applied to the rank- position 
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A B S T R A C T P A P E R    I N F O 

In aggregation of preferences system, each decision maker (DM) selects a subset of the 

alternative and places them in a ranked order. The key issue of the aggregation 

preference is how to determine the weights associated with different ranking places. To 

avoid the subjectivity in determining the weights, data envelopment analysis (DEA) is 

used in Cook and Kress to determine the most favorable weights for each alternative. 

With respect to DEA-based models, two main criticisms appear in the literature: 

multiple top-ties and overly diverse weights. DEA models use assignments of the same 

aggregate value (equal to unity) to evaluate multiple alternatives as efficient. There is 

no criterion to discriminate among these alternatives in order to construct a ranking of 

alternatives. furthermore, overly diverse weights can appear, given that each alternative 

can have its own vector of weights (i.e., the one that maximizes its aggregate value). 

Thus, the efficiencies of different alternatives obtained by different sets of weights may 

be unable to be compared and ranked on the same basis In order to solve these two 

problems above, In order to rank all the alternatives on the same scale, In this paper we 

proposed an improvement to Kornbluth’s approach by introducing an multiple objective 

linear programming (MOLP) approach for generating a common set of weights in the 

DEA framework. In order to solve the MOLP model we use a goal programming (GP) 

model. solving the GP model gives us a common set of weights and then the efficiency 

scores of candidate can be obtained by using these common weights and finally we can 

rank all alternative. 
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votes and vij represents the number of the jth-rank positions votes obtained by alternative ith. In Borda 

rule, the winner alternative is the one who receives more votes in the first place. The Borda–Kendall 

rule is considered the origin of this class of preference-aggregation procedures. In Borda rule, the weight 

assigned to the first place equals to number of alternatives and to the second place is one less than the 

first place and so on. In spite of the Borda rule has interesting properties in relation to other scoring 

rules, but the utilization of a fixed scoring vector has weak point such that an alternative that is not the 

winner with the scoring vector imposed initially could be so if another scoring is used. Thus, the key 

issue is how to obtain the weighted associated with different places. Cook and Kress [5] state that 

models involving an imposed set of weights fail to provide a fair overall assessment. Each evaluation 

that implies the use of an externally imposed scoring vector is somewhat arbitrary. By using Data 

Envelopment Analysis (DEA) (Charnes et al. [4]), Cook and Kress [5] have proposed a method for 

estimating preference scores without imposing any fixed weights from outset. This method determines 

the most favorable weights for each alternative. The principal drawback of this method is very often 

leads to more than one alternative to be efficient alternative. To avoid this shortcoming and to choose a 

real winner among the efficient alternative, Cook and Kress [5], proposed to maximize the gap between 

consecutive weights of the scoring vector so that only one alternative is left efficient alternative .Green 

et al. [7] applied the cross-efficiency evaluation technique in DEA to get the best efficient alternative. 

Noguchi et al. [16] also use the cross-efficiency evaluation to get the best alternative and give a strong 

ordering constraint condition on weights. In order to discriminate among efficient alternatives, 

Hashimoto [9] addresses an AR/exclusion model based on the concept of super-efficiency proposed in 

Andersen and Petersen [1]. Obata and Ishii [17] proved that these methods have a weak point that the 

order of efficient alternatives may be changed by existence of an inefficient alternative. So, they 

proposed a new method without to need of any information about inefficient candidates to discriminate 

efficient alternatives. Their method is subsequently extended to rank non-DEA-efficient alternatives by 

Foroughi and Tamiz [6]. Wang et al. [19] proposed three new models for preference voting and 

aggregation. Zerafat Angiz, et al. [23] introduces a mathematical method, inspired by DEA 

methodology, which determines the importance of rank positions according to decision makers in order 

to reach a more realistic solution. DEA model, it allows each Decision Making Unite (DMU) to measure 

its efficiency with the weights that are only most favorable for itself. In other words, each DMU chooses 

the most favorable weighting schemes in order to pursuit its own maximum efficiency. Thus, the 

efficiencies of different DMUs obtained by different sets of weights may be unable to be compared and 

ranked on the same basis [20]. Another problem is that there are always more than one DMU to be 

evaluated as efficient because of the flexibility in the selection of weights, which would cause the 

problem that all DMUs cannot be fully discriminated. To derive a common set of weights for DMUs, a 

number of approaches have been proposed in the DEA literature. For example, Ganley and Cubbin [8] 

determined the common weights by maximizing the sum of the efficiencies of DMUs. Liu and Peng 

[15] proposed a Common Weights Analysis (CWA) methodology to search for a common set of weights 

for DMUs. Kao and Hung [11] based on multiple objective nonlinear programming and by using 

compromise solution approach, proposed a method to generate a common set of weights. Wang, Luo, 

and Liang [21] suggested ranking DMUs by imposing a minimum weight restriction, which also 

produces a common set of weights for the DMUs to be compared.  

In this paper we proposed an improvement to Kornbluth’s [12] approach by introducing a Multiple 

Objective Linear Programming (MOLP) for finding common weights in DEA. The proposed model 

which provides the same results as the Cook and Krees [5] model. We use a Goal Programing (GP) 

(developed by Charnes and Cooper [3]) method for solving the MOLP model. This model has some 

advantages compared to foregoing models that will be discussed later. The structure of this paper is 

organized as follows. In the next section we will review tow voting system model. Multiple Objective 
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Linear Programming and goal programming will be presented in Section 3. we represent our proposed 

method in Section 4. In Section 4 By tow numerical example we illustrate our proposed method and 

finally Conclusions will be presented in Section 6. 

2. Review of Voting System Model  

In this subsection we are going to review Cook & Kress [5] and Obata & Ishii's [17] models in 

preferential voting system. 

2.1. Cook and Krees's Model 

In the preferential voting framework each alternative i(i = 1, … , n) receives some number 𝑣𝑖1of first 

place votes, vi2of second place votes ,…, vikof 𝑘th place votes we consider ranked voting data which 

is obtained when voters select and rank more than one alternative. Here, it is assumed that a voter selects 

k(>0) alternatives from a set of n(≥ k) alternatives and ranks them from top to 𝑘th place. Let  vijdenotes 

the number of jth-place ranks that candidate i occupies (i = 1, … , n , j = 1, … , k) preference score VI of 

the alternative i should be calculated as a weighted sum of votes with certain weights, 𝑤𝑗 i.e. Vi =

∑ wj vij
k
j=1  . (i = 1, … , n). 

By using data envelopment analysis (DEA) (develope by charnes et al. [4]), Cook and Kress [5] have 

proposed a method for estimating preference scores without imposing any fixed weights from outset. 

Each alternative's score is calculated with their most favorable weights. Their formulation when 

alternative p is under evaluation as the following: 

V∗
p = Max ∑ wj

k

j=1

vpj 

subject  to 

∑ wj vpj ≤ 1     , i = 1, . . , n

n

j=1

 

wj − wj+1 ≥ d(j, ε)   ,         j = 1, … , k − 1 , 

wk ≥ d(k, ε)  

 

(1) 

where d(. , ε) called the discrimination intensity function, monotonic increasing in 𝜀 and the parameter 

ε is called the discriminating factor. and satisfies d(. ,0) = 0. Parameter 𝜀 is nonnegative. This is solved 

for each alternative 𝐩, p = 1, . . , n. The resulting score 𝑉𝑝
∗ is the preference score of the alternative 𝒑. 

Here, the alternatives in ranked voting systems are regarded as DMUs (Decision Making Units) in DEA, 

and each DMU is considered to have 𝑘 outputs (ranked votes) and only one input with amount unity. 

This is equivalent to the well-known DEA-AR model (See Thompson et al. [18]) The constraints wj −

wj+1 ≥ d(j, ε) represent the assurance region (AR) and those constraints are introduced in order that 

the vote of the higher place may have a greater importance than that of the lower place. By compute 

dual of model (1) we have following model: 
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β∗
p

= Min ∑ xi − ∑ d(j, ε)yj

k

j=1

n

i=1

 

subject to 

∑ xivi1 − y1 

n

i=1

              ≥ vp1 

∑ xivij + yj−1 − yj

n

i=1

 ≥ vpj    ,   j = 2, … , k 

 xi  ≥ o  , i = 1, … , n 

yj  ≥ o  , j = 1, … , k 

(2) 

After the problems are solved for all alternatives, several (not only one) alternatives often achieve the 

maximum attainable score 1. We call these alternatives efficient alternatives. We can judge that the set 

of efficient alternatives is the top group of alternatives, but cannot single out only one winner among 

them. Cook and Kress [5] have proposed to maximize the gap between the weights. In model (1), the 

choice of form for d(. , ε) and the value of  𝜀 are two existing issues. For the discrimination intensity 

function 𝑑(. , 𝜀) Cook and Kress [5] investigate three special cases of d(. , ε): d(. , ε) = ε , d(. , ε) = ε
j⁄  

and d(. , ε) = ε
j!⁄ . Each of them leads to a different winner.  

2.2. Obata and Ishii's Model 

Obata and Ishii [17] consider that, in order to compare the maximum score obtained by each alternative, 

it is fair to use weight vectors of the same size. So, they suggest to normalize the most favorable weight 

vectors for each candidate. The model proposed by these authors for evaluate alternative p is as the 

following: 

1

V̂p
∗

= Min  ‖w‖ 

subject to 

  ∑ wjvpj

k

j=1

= 1   

∑ wjvij

k

j=1

≤ 1    , i = 1, … , n  ,   i ≠ p,                    (a)        

wj − wj+1 ≥ d(j, ε) , j = 1, … , k − 1 ,   

wk ≥ d(k, ε) 

(3) 

The normalized preference score V̂p
∗ is obtained as a reciprocal of the optimal value and ‖. ‖ is a certain 

norm. We note tow statements. First, from the context of DEA, all of constraints (a) need not be 

considered, or we may use only the constraints about efficient alternatives, i.e., (a) can be changed with 

(∑ wjvij
k
j=1 ≤ 1 for all efficient (i ≠p). Therefore, our method does not use any information about 

inefficient alternatives and the problem of changing the order of efficient alternatives does not occur. 

Second, if p is inefficient, this problem has no feasible solution. Furthermore, in this model it is 

necessary to determine the norm and the discrimination intensity functions to use. because types of 

norm and discrimination intensity functions change the optimal solution.    
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3. Multiple Objective Linear Programming and Goal Programming 

Within the multi-criteria decision aid paradigm, several criteria, objectives or attributes are considered 

simultaneously. These dimensions are usually conflicting and the Decision-Maker (DM) will look for 

the solution of the best compromise. Finally, the multi-objective programming problem can be 

formulated as follows:  

Max   {f1(x), … , fk(x)} 

subject to 

x ∈ X ⊂ ℝn 

(4) 

Where fi(x) represents the ith objective function and X designates the set of feasible solutions. X =

{x|gj(x) ≥ 0   , j = 1, … , m   }. 

Definition. 1 x∗ ∈ X is called an efficient solution (or non-dominated solution) iff there does not Exist 

another x ∈ X such that  f(x∗) ≥ f(x). 

The Goal Programming (GP) model is one of the well-known multi-objective mathematical 

programming (MOP) models. This model allows to take into account simultaneously several objectives 

in a problem for choosing the most satisfactory solution within a set of feasible solutions. More 

precisely, the GP designed to find a solution that minimizes the deviations between the achievement 

level of the objectives and the goals set for them. In the case where the goal is surpassed, the deviation 

will be positive and in the case of the under achievement of the goal, the deviation will be negative. The 

first GP formulation was developed by Charnes and Cooper [3] and then used by Lee [13] and Lee and 

Clayton [14]. The popularity of the GP is due to the fact that is a single model and easy to understand 

and to apply. The standard mathematical formulation of the GP model (see [2]) is as follows: 

𝑀in ∑ hi(di
− , di

+)

k

i=1

 

subject to 

gj(x) ≥ 0              ,                  j = 1, … , m 

fi(x) + di
− − di

+ = bi      ,    i = 1, … , k       
di

− , di
+ ≥ 0                 ,           i = 1, … , k 

di
−. di

+ = 0              ,          i = 1, … , k  

(5) 

Where hi (i=1,..,k) are functions of (di
− , di

+) , fi(x) are objectives, bi are the goals set by the DM for 

the objectives and di
− , di

+ are the under-achievement and over-achievement of the jth goal respectively. 

4. Our Proposed Method 

Kornbluth [12] noticed that the DEA model could be expressed as a multi-objective linear Fractional 

programming problem. In this section, we present an improvement to Kornbluth’s approach [12] by 

introducing an MOLP. Firstly, the following model is introduced to find efficiency value of alternative 

p.  
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V∗
p = Max ∑ wj

k

j=1

vpj − βp
∗  

subject  to 

 βi
∗ − ∑ wj vij ≥ 0   ,   i = 1, . . , n

k

j=1

 

wj − wj+1 ≥ d(j, ε)   ,    j = 1, … , k − 1    , 

wk ≥ d(k, ε) 

(6) 

Where  βi
∗ , i = 1, … , n is the optimum value obtained from model (2) when candidate i is under 

evaluation?  

Theorem 1. The optimum value of the model in (6) is zero and for its optimal solution, say w∗ =

(w1
∗, … , wk

∗), we have. ∑ w∗
j

k
j=1 vpj = βp

∗ . 

Proof.  According to the models (1) and (2) proof is clear. □ 

Theorem 2. A alternative p which is shown to be efficient by model (6), also is efficient in the model 

(2). 

Proof.  According to the first inequalities of model (6) we have: ∑ w∗
j

k
j=1 vpj ≤ βp

∗ ≤ 1. Therefore, if 

∑ w∗
j

k
j=1 vpj = 1 then βp

∗ = 1 and alternative p with model (2) is efficient. 

According to the model (6) and the proposed approach by Kornbluth [12], The idea behind the 

identification of the common weights is formulated as the simultaneously maximizing the ratio of 

outputs to inputs for all projected DMUs. So, we present the following MOLP problem. (See model 

(8)). 

𝑀ax (∑ wj

k

j=1

v1j − β1
∗ , … , ∑ wj

k

j=1

vnj − βn
∗ ) 

subject  to 

βi
∗ − ∑ wj vij ≥ 0   ,   i = 1, . . , n

n

j=1

 

wj − wj+1 ≥ d(j, ε) , j = 1, … , k − 1    , 

wk ≥ d(k, ε). 

(7) 

In order to solve the above MOLP model we use a goal programming with goals equal to 

βi
∗(i = 1, … , n). Then the following model to be obtained. 

Min ∑ di
− + di

+

n

i=1

 

subject  to 

βi
∗ − ∑ wjvij

n

i=1

≥ 0    ,    j = 1, … , k 

(8) 
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∑ wjvij

n

i=1

+ di
− − di

+ = βi
∗   , j = 1, … , n 

wj − wj+1 ≥ d(j, ε) , j = 1, … , k − 1    , 

wk ≥ d(k, ε) 
di

−, di
+ ≥ 0       i = 1, … , n 

wj ≥ 0       j = 1, … , k 

The last set of constraints in model (5) does not appear in the above model. Moreover, the first and the 

second set of constraints in model (8) force di
+ to take value zero. However, solving the above GP 

model gives us a common set of weights and then the efficiency scores of candidate i , i=1,…,n can be 

obtained by using these common weights as. ∑ w∗
j

k
j=1 vij. if for w∗ = (w1

∗, … , wk
∗) we have 

∑ w∗
j

k
j=1 vpj = 1 then candidate p called efficient. we can be sure that there exists at least one candidate 

that has a preference score of 1.0  

Theorem 2. There is at last one candidate such as DMUi( i = 1, … , n) whit Vi
∗ = ∑ w∗

j
k
j=1 vij = βi

∗. 

Proof. There is a candidate p (p=1,..,n) for which the first inequality in (8)is binding. Becausethat is not 

the case, there exists a sufficiently small value ε > 0 for which w̅ = (w∗ + [ε, 0, … ,0]1×k
T )  satisfies the 

set of restrictions in (8). On the other hand, the value of d̅i
− which is associated with w̅ and the second 

restriction will tend to decrease which runs contrary to the optimality of d̅i
− Therefore, there is a 

candidate p (p=1,..,n) for which we have: ∑ wj
k
j=1 vpj − βp

∗ = 0. We know that,(β∗, vp) is efficient. 

Therefore,(1, w) is associated with the gradient vector of a supporting hyperplane. Furthermore, this 

supporting hyperplane must support the PPS at some extreme efficient candidates. Therefore, such a 

candidates is indicated to be efficient by the model (8). 

We need dual of model (8) for a better analysis. Here, we use {xi|i = 1, … , n} , {zi|i = 1, … , n} and 

{yj|j = 1, … , k − 1} as the standard dual variable associated with the constraints of the model (8). With 

compute the dual of model (9) we obtained model (10). 

𝑀in ∑ βi
∗xi + ∑ βi

∗zi

n

i=1

− ∑ d(j, ε)yj

k

j=1

n

i=1

 

subject to ∑ xivi1 + ∑ zivi1

n

i=1

− y1 

n

i=1

              ≤ 0 

∑ xivij + ∑ zivi1

n

i=1

+ yj−1 − yj

n

i=1

 ≤ 0    ,   j = 2, … , k    

z1                          ≤ 1 
           ⋱ 
                         zn ≤ 1 

−z1                          ≤ 1 

           ⋱ 

                        −zn ≤ 1 

(9) 
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xi  ≤ o  , i = 1, … , n 

yj  ≥ o  , j = 1, … , k 

zi      free 

Now first we solve model (9) and (10) the results w∗ = (w1
∗, … , wk

∗) , di
∗− = (d1

∗−, … , dn
∗−) and xi

∗ =

(x1
∗ , … , xn

∗ ) are obtained. which are the optimal solutions. Then, we calculate the preference score of the 

candidate under evaluation (candidate p). That is, we have                 Vp
∗ = ∑ w∗

j
k
j=1 vpj. By the value 

of V∗
i(i = 1, … , n) we can rank the voting data.   

Definition 2. The preference score of candidate p is better than that of candidate q  if Vp
∗ > Vq

∗. 

Definition 3. If  Vp
∗ = Vq

∗ < 1 then the preference score of candidate p is better than that of candidate 

q, if dp
∗− < dq

∗− 

Definition 4. If  Vp
∗ = Vq

∗ = 1 then the preference score of candidate p is better than that of candidate 

q, if xp
∗− < xq

∗−. 

`4.1. Numerical Example 1  

Consider the following example, taken from Jahanshahloo et al. [10] that the case of 10 voters, each of 

whom is asked to rank 3 out of 10 candidates on a ballot. Let the outcome from the vote be as shown in 

Table 1. 

 

 

 

 

 

 

 

 

 

 

As was mention in this paper, vij denotes the number of the jth place votes of candidate (i=1,...,m, 

j=1,...,k). Also we define DMUi = (1, vi1, … , vik) Therefore, we have 6 DMUs with 4 outputs and a 

single input with one value. We consider d(j, ε) = 0  as Cook and Kress [5] did After solving models 

(8), w∗ = (w1
∗, w2

∗ , w3
∗ , ) = (0.2858,0.1430,0.1426). According to the definitions presented and the 

result obtain of solve model (8) and (9) we can rank candidate. Result Summarized in Table 2. 

 

Candidate 𝐯𝐢𝟏 𝐯𝐢𝟐 𝐯𝐢𝟑 

1 3 0 1 

2 1 3 2 

3 1 1 2 

4 0 1 0 

5 2 1 1 

6 1 1 0 

7 0 1 2 

8 0 0 0 

9 1 1 0 

10 1 1 1 

Table 1. Votes received in each position. 
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4.2. Numerical Example 2 (comparison whit other model) 

In this section, we intend to compare proposed model to the mentioned ones. Therefore we apply given 

data in Obata et al. [17] in Table 3. 

 

 

 

 

 

 

We consider d(j, ε) = 0 as Cook and Kress [5]. Table 3 contains the results obtained from solving 

models (8) and (9). Furthermore, did after solving models (8), w∗ = (w1
∗, w2

∗ , ) = (0.0214,0.0201). In 

Table 4, results of comparison to other models are summarized. 

 

 

 

 

 

 

 

 

 

 

Candidate 𝐕𝐢
∗ 𝐝𝐢

−∗ 𝒙𝒊
∗ Rank 

1 1 0 -1 2 

2 1 0 -2 1 

3 0.714 0.0003 0 4 

4 0.1430 0.1070 0 8 

5 0.8572 0.0317 0 3 

6 0.4288 0.1268 0 6 

7 0.4282 0.0718 0 7 

8 0.0000 0.0000 0 9 

9 0.4288 0.1268 0 6 

10 0.5714 0 0 5 

Candidate First Second 

a 32 10 

b 28 20 

c 13 36 

d 20 27 

e 27 19 

f 30 8 

g 0 30 

Candidate 𝐕𝐢
∗ 𝐝𝐢

−∗ 𝐱𝐢
∗ Rank 

1 0.8858 0.1150 0 5 

2 1 0 -3.6123 1 

3 1 0 -0.6043 2 

4 0.9707 0 0 3 

5 0.9597 0.0025 0 4 

6 0.8028 0.1354 0 6 

7 0.603 0.0106 1 7 

Table 3. Votes received in each position. 

Table 2.  Result obtained. 
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Table 4. Results of comparison whit other models. 

Candidate 

𝑽∗ 

 

DEA/AR 

Exclusion 

Ishii & Obata 

model 

 

 

Proposed 

method 

𝐝(. , 𝛆) = 𝟎 

 

𝐝(. , 𝛆) = 𝛆 

 

Score Order Score Order Score Order Score Order Order 

a 1 1 0.9740 2 1.0745 1 32 1 5 

b 1 1 1 1 1.0428 2 25.714 2 1 

c 1 1 0.8151 6 1.0208 3 24.5 3 2 

d 0.9693 2 0.8813 5 0.9693 4 Infeasible - 3 

e 0.9611 3 0.9605 3 0.9611 5 Infeasible - 4 

f 0.9375 4 0.8951 4 0.9375 6 Infeasible - 6 

g 0.6122 5 0.3940 7 0.6122 7 Infeasible - 7 

 

5. Conclusion 

Aggregation of preference orders has wide applications in social choice and voting systems. Some of 

the most widely used methods are based on the determination of an aggregated value for each 

alternative. How to determine the weights associated with rank positions is an important issue since it 

will determine the group’s solution. Researchers have developed certain procedures in which the 

weights associated with the votes become variables in the model. Data Envelopment Analysis (DEA) 

represents one class of such models. The DEA models, allows to each DMU to measure its efficiency 

with the weights that are only most favorable for itself. In other words, each DMU chooses the most 

favorable weighting schemes in order to pursuit its own maximum efficiency. Thus, the efficiencies of 

different DMUs obtained by different sets of weights may be unable to be compared and ranked on the 

same basis. Another problem is that there are always more than one DMU to be evaluated as efficient 

because of the flexibility in the selection of weights, which would cause the problem that all DMUs 

cannot be fully discriminated.  In order to solve these two problems this paper proposes the application 

of goal programming approach for generating common set of weights. Solving linear problems is an 

advantage of the proposed approach against general approaches in the literature which are based on 

solving nonlinear problems. Compared to the original DEA model, this approach discriminates in a 

better way among DMU’s in order to yield the less efficient ones. As in the conventional DEA model, 

it does not require the formulation of n models. In fact, the efficiencies of all DMU’s can be calculated 

by solving a single model, enabling one to evaluate the relative efficiency of every DMU on a common 

weight basis. Considering that the place of each candidate is of great importance from an economic and 

managerial point of view, various organizations use voting systems and their main objective is to rank 

candidates. The ranking approach in this paper can be applied in various real-world settings, especially 

in the business and managerial section. 
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