
  

 

 

1. Introduction  

Sexually Transmitted Diseases (STDs) can be transmitted through genital-genital, orogenital, or 

anogenital contacts and remain to be a public health concern worldwide. In the world, around one 

million people are believed to be newly infected with each day. Numerous causative agents including 

bacteria, viruses, protozoa, yeast, and fungi are responsible for sexually transmitted infections.  

However, viruses exhibit more serious risks, probabilities and outcomes of STDs than other organisms. 

The most lethal viral STIs are Human Immunodeficiency Virus-1 (HIV), Herpes Simplex viruses 1 and 

2 (HSV-1 and HSV-2), and Human Papillomavirus (HPV), which are responsible for major sexually 

transmitted viral infections including AIDS, herpes simplex, and genital warts, respectively. Despite 

the fact that several prevention strategies such as vaccination, abstinence from sex, limiting sex partners, 
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A B S T R A C T    P A P E R    I N F O 

The aim of study is to formulate and analyze a mathematical model for 

coinfection of sexually transmitted diseases HPV, HIV, and HSV-II. The well 

possedness of the developed model equations was proved and the equilibrium 

points of the model have been identified. Qualitative analysis of the formulated 

model equations was proved and the equilibrium points of the model have been 

identified. Qualitative analysis of the formulated model was established using 

basic reproduction number. The results show that the disease free equilibrium 

is locally asymptotically stable if the basic reproduction is less than one. The 

endemic states are considered to exist when the basic reproduction number for 

each disease is greater than one. Finally, numerical simulations of the model 

equations are carried out using the software MATLAB R2015b with ODE45 

solver. Numerical simulations illustrated that all infection solutions converge to 

zero when the basic reproduction number is less than unity. 
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the use of condoms and a range of therapeutic drugs have drastically reduced the risk of contracting 

STIs, these three infections continue to spread at an alarming rate [1].  

Human Papillomaviruses (HPVs) named for warts (papillomas) are the most common sexually 

transmitted infectious agents both in men and women across the world. HPV is a small, nonenveloped, 

and double-stranded DNA virus [1]. Most of the HPV infections are asymptomatic and can feed away 

without treatment over the course of a few years. About 70% of HPV infections fed away with in a year 

and 90% within two years. However, in some people infection can persist for many years and can cause 

warts or low risk genotype of HPV, while other types lead to different kinds of cancers or high risk 

genotype of HPV, including cervical cancer [2-3]. Statistics show that there are 18.1 million new cases, 

9.6 million cancer related deaths, and 43.8 million people living with cancer in 2018. The number of 

new cases is expected to rise from 18 million to 22 million by 2030 and the number of global cancer 

deaths is projected to increase by 45% by 2030 [4].  

Human Immunodeficiency Viruses (HIV) are an RNA retrovirus. That is, to enter a cell, HIV translates 

its RNA to DNA with a viral enzyme called reverse transcriptase [5]. The target cell of HIV is CD4 T 

cells. A healthy human body has about 1000/mm3 of CD4 T cells. When the CD4 T cells of a patient 

decline to 200/mm3 or below, then that person is classified as having AIDS [6]. In the world, new HIV 

infections among young women aged 15–24 years were reduced by 25% between 2010 and 2018. The 

annual number of deaths from AIDS-related illness among people living with HIV globally has fallen 

from a peak of 1.7 million in 2004 to 770 000 in 2018. The global decline in deaths has largely been 

driven by progress in eastern and southern Africa, which is home to 54% of the world’s people living 

with HIV. AIDS-related mortality in the region declined by 44% from 2010 to 2018.The annual number 

of new infections since 2010 has declined from 2.1 million to 1.7 million in 2018 [7]. 

Herpes Simplex Virus Type II (HSV-II) infections are the primary cause of genital herpes. Genital 

herpes is a chronic, life-long viral infection caused by Herpes Simplex Virus-I (HSV-I) and Herpes 

Simplex Virus-II (HSV-II). HSV-II can be transmitted during sexual contact with someone who has a 

genital HSV-II infection [8]. Worldwide, an estimated 19.2 million new HSV-II infections occurred 

among adults and adolescents aged 15-49 years in 2012 with the highest rates among younger age 

groups. HSV-II is a lifelong infection and the estimated global HSV-II prevalence of 11.3% translates 

into an estimated 417 million people with the infection in 2012. The prevalence of HSV-II is highest in 

the WHO African Region (31.5%), followed by the Region of the Americas (14.4%) [9]. 

Co-infection is more than one disease co-existing within a single host. HPV, HIV and HSV-II are among 

the diseases that contaminate a large number of individuals worldwide. People with a weakened immune 

system such as those with HIV/AIDS are susceptible to diseases such as HPV, HSV-II. HPV-HIV-

HSV-II is the co-infection of three of diseases responsible for loss of many lives. When an individual 

is co-infected with HPV-HIV, HPV-HSV-II, HIV-HSV-II and HPV-HIV-HSV-II at acute and clinical 

latency stages is called the initial stage. The final stage of the co-infection of HPV-HIV, HPV-HSV-II, 

HIV-HSV-II and HPV-HIV-HSV-II involves AIDS with Cervical cancer, cervical cancer with Herpes 

Simplex Virus-II, AIDS with HSV-II and Cervical Cancer-AIDS-HSV-II. This paper develops and 

analyses the mathematical model of HPV-HIV-HSV-II co-infection. 

Mathematical modelling plays an important role in increasing our understanding of the dynamics of co-

infectious diseases and also to investigate the optimal use of intervention strategies to control the spread 

of infectious diseases. Old and recent studies such as [10-12] developed a mathematical model of 

Human Papillomavirus to understand the transmission dynamics of the disease. A lot of scholars [13, 
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15] developed a mathematical model of HIV to describe the dynamics of the disease that helped them 

to propose disease control mechanism and also described the transmission dynamics of the diseases. 

Some of them are [16, 24] developed and analyzed a deterministic model for the transmission dynamics 

of Herpes Simplex Virus-II. Mhlanga et al. [17] proposed and analyzed a mathematical model for the 

spread of HSV-2 by incorporating all the relevant biological details and poor treatment adherence. 

Furthermore, a lot of scholars developed a mathematical model to illustrate the dynamics of the co-

infection with other infectious diseases and to suggest disease control mechanism. Some of them are 

[18, 19] the co-dynamics of HPV and HIV Disease. In their study, it was found that if the basic 

reproduction number of HPV becomes very small approaching zero, there is no new HPV infection 

which reduces the rate of AIDS progression. There are also some findings on coinfection of HPV and 

HSV-II by authors [20, 21]. The analysis of their study showed that HPV infection increases the risk of 

HSV-II similarly; HSV-II infection increases the risk for HPV. Moreover, Mhlanga [22] proposed a 

deterministic mathematical model for the co-interaction of HIV and HSV-II in a community, with all 

the relevant biological detail and poor HSV-II treatment adherence. In this study threshold parameters 

of the model are determined and stabilities are analyzed. Results from their simulation suggests that 

more effort should be devoted to monitoring and counseling of individuals dually infected with HIV 

and HSV-II as compared to those infected with HSV-II only. 

So far, several mathematical studies have been undertaken to understand the transmission dynamics 

HPV, HIV, HSV-II, but they did not considered the coinfection of three disease i.e. coinfection of HPV-

HIV-HSV-II in their studies.  

2. Model Description and Formulation 

The total human population 𝑁 is subdivided into 22 subclasses, namely susceptible individuals, which 

are capable of becoming infected  𝑆(𝑡), individuals who are exposed to HPV𝐸𝑝(𝑡), individuals who are 

exposed to HIV 𝐸ℎ(𝑡), individuals who are exposed to HSV-II 𝐸𝑠(𝑡), individuals who are exposed to 

both HPV and HIV 𝐸𝑝ℎ(𝑡), individuals who are exposed to both HPV and HSV-II 𝐸𝑝𝑠(𝑡), individuals 

who are exposed to both HIV and HSV-II 𝐸ℎ𝑠(𝑡), individuals who are infected with HPV𝐼𝑝(𝑡), 

individuals who are infected with HIV 𝐼ℎ(𝑡), individuals who are infected with HSV-II 𝐸𝑠(𝑡), individuals 

who are coinfected with both HPV and HIV 𝐼𝑝ℎ(𝑡), individuals who are coinfected with both HPV and 

HSV-II 𝐼𝑝𝑠(𝑡), individuals who are coinfected with both HIV and HSV-II 𝐼ℎ𝑠(𝑡), individuals having 

cervical cancer  𝐶(𝑡), individuals having AIDS  𝐴(𝑡), individuals having HSV-II  𝐻(𝑡), individuals 

having both cervical cancer and AIDS  𝐶𝐴(𝑡), individuals having both cervical cancer and HSV-

II  𝐶𝐻(𝑡), individuals having both AIDS and HSV-II  𝐴𝐻(𝑡), individuals having  cervical cancer AIDS 

and HSV-II  𝐶𝐴𝐻(𝑡), individuals recovered from HPV infection 𝑅𝑝, and individuals recovered from 

HSV infection 𝑅𝑠 are considered.  

The whole population is susceptible to human papillomavirus, HIV and HSV-II. It is assumed that 

individuals enter to the susceptible subclass through birth at a rate Π and the number of susceptible 

increases by those individuals that lost their temporary immunity from subclass of recovered 𝑅𝑝 and 𝑅𝑠 

with rate 𝜒𝑝 and 𝜒𝑠 respectively. Susceptible individuals may acquire HPV infection, HIV infection, 

HSV-II infection, HPV-HIV coinfection, HPV-HSV-II coinfection and HIV-HSV-II coinfection with 

force of infection 𝜆𝑝 =
𝛽𝑝𝐼𝑝

𝑁𝑝
, 𝜆ℎ =

𝛽ℎ𝐼ℎ

𝑁ℎ
,   𝜆𝑠 =

𝛽𝑠𝐼𝑠

𝑁𝑠
,   𝜆𝑝ℎ =

𝛽𝑝ℎ𝐼𝑝ℎ

𝑁𝑝ℎ
, 𝜆𝑝𝑠 =

𝛽𝑝𝑠𝐼𝑝𝑠

𝑁𝑝𝑠
 and 𝜆ℎ𝑠 =

𝛽ℎ𝑠𝐼ℎ𝑠

𝑁ℎ𝑠
 

respectively. Here 𝛽𝑝, 𝛽ℎ, 𝛽𝑠, 𝛽𝑝ℎ, 𝛽𝑝𝑠  and 𝛽ℎ𝑠 are transmission coefficient of HPV, HIV, HSV-II, HPV-
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HIV coinfection, HPV-HSV-II coinfection and HIV-HSV-II coinfection. Individuals in 𝐸𝑝 and 𝐸ℎ 

subclass move to 𝐸𝑝ℎ with rate 𝜈1 and 𝜈2. Individuals in 𝐸𝑝 and 𝐸𝑠 subclass are also move to 𝐸𝑝𝑠 with 

rate 𝜈19 and 𝜈20. Similarly, individuals in 𝐸ℎ and 𝐸𝑠 subclass move to 𝐸ℎ𝑠 with rate 𝜈3 and 𝜈4. 

Furthermore, individuals in 𝐸𝑝, 𝐸𝑝ℎ , 𝐸𝑝𝑠, 𝐸ℎ , 𝐸ℎ𝑠 and 𝐸𝑠 sub-class progress to 𝐼𝑝 , 𝐼𝑝ℎ , 𝐼𝑝𝑠, 𝐼ℎ , 𝐼ℎ𝑠 and 𝐼𝑠 sub-

class with per capita rate of 𝜂𝑝, 𝜂𝑝ℎ, 𝜂𝑝𝑠, 𝜂ℎ, 𝜂ℎ𝑠 and 𝜂𝑠 respectively.  Addition to this, individuals in 𝐼𝑝 

and 𝐼ℎ subclass move to 𝐼𝑝ℎ with rate 𝜈6 and 𝜈7. Also, Individuals in 𝐼𝑝 and 𝐼𝑠 subclass are move to 𝐼𝑝𝑠 

with rate 𝜈15 and 𝜈16. Similarly, individuals in 𝐼ℎ and 𝐼𝑠 subclass move to 𝐼ℎ𝑠 with rate 𝜈8 and 𝜈9. 

Moreover, individuals in subclass 𝐼𝑝 , 𝐼𝑝ℎ, 𝐼𝑝𝑠 , 𝐼ℎ , 𝐼ℎ𝑠 and 𝐼𝑠 may develop cervical cancer, cervical cancer-

AIDS coinfection, cervical cancer-HSV-II coinfection, AIDS, AIDS-HSV-II coinfection and HSV-II 

with progression rates𝛼𝑝, 𝛼𝑝ℎ, 𝛼𝑝𝑠, 𝛼ℎ, 𝛼ℎ𝑠 and 𝛼𝑠 respectively. Finally, individuals in 𝐶, 𝐶𝐴, 𝐶𝐻, 𝐴,

𝐴𝐻 and 𝐻 may developed coinfection of HPV-HIV-HSV-II with rate 𝜑, 𝜃, 𝜋, 𝜓, 𝛿 and 𝛾, respectively. 

All individuals suffer natural mortality at a rate 𝜇 and sick, die of cervical cancer, AIDS, HSV-II, 

cervical cancer-AIDS coinfection, AIDS-HSV-II coinfection, cervical cancer-HSV-II infection and 

cervical cancer-AIDS-HSV-II coinfection at rate 𝜉. The schematic diagram that describes the flow of 

the model is given below in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Schematic diagram for HPV-HIV-HSV-II coinfection model. 

Based on model assumption and Fig. 1 we obtain the following system of linear differential equation  
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dS

dt
= Π + χpRp + χsRs − (λp + λph + λh + λps + λhs + λs + μ)S,  

dEp

dt
= λpS − (ηp + ν19 + ν1 + μ)Ep,  

dEph

dt
= λphS + ν1Ep + ν2Eh − (ηph + μ)Eph,  

dEps

dt
= λpsS + ν19Ep + ν20Es − (ηps + μ)Eps,  

dEh

dt
= λhS − (ηh + ν2 + ν3 + μ)Eh,  

dEhs

dt
= λhsS + ν3Eh + ν4Es − (ηhs + μ)Ehs,  

dEs

dt
= λsS − (ηs + ν4 + ν20 + μ)Es,  

dIp

dt
= ηpEp − (αp + ν15 + ν6 + ωp + μ)Ip,  

dIph

dt
= ηphEph + ν6Ip + ν7Ih − (αph + μ)Iph,  

dIps

dt
= ηpsEps + ν15Ip + ν16Is − (αps + μ)Ips,  

dIh

dt
= ηhEh − (αh + ν7 + ν8 + μ)Ih,  

dIhs

dt
= ηhsEhs + ν8Ih + ν9Is − (αhs + μ)Ihs,  

dIs

dt
= ηsEs − (ωs + ν9 + ν16 + μ)Is,  

dC

dt
= αpIp − (ν10 + ν17 + φ + μ + ξ)C,  

dCA

dt
= αphIph + ν10C + ν11A − (θ + μ + ξ)CA,  

dCH

dt
= αpsIps + ν17C + ν18H − (π + μ + ξ)CH,  

dA

dt
= αhIh − (ν11 + ν12 + ψ + μ + ξ)A,  

dAH

dt
= αhsIhs + ν12A + ν13H − (δ + μ + ξ)AH,  

dH

dt
= αsIs − (ν13 + ν18 + γ + μ + ξ)H,  

dACH

dt
= φC + θCA + πCH + ψA + δAH + γH − (μ + ξ)ACH,  

dRp

dt
= ωpIp − (χp + μ)Rp,  

dRs

dt
= ωsIs − (χs + μ)Rs.  
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With initial condition 

S(0) = S0, Ep(0) = Ep0, Eph(0) = Eph0, Eps(0) = Eps0, Eh(0) = Eh0, Ehs(0) = Ehs0, Es(0) = Es0,

Ip(0) = Ip0, Iph(0) = Iph0, Ips(0) = Ips0, Ih(0) = Ih0, Ihs(0) = Ihs0, Is(0) = Is0, A(0) = A0, C(0) =

C0, CA(0) = CA0,   AH(0) = AH0, CH(0) = CH0, H(0) = H0 , ACH(0) = ACH0, Rp = Rp0, Rs = Rs0. 

3. Analysis HPV only Model 

Here analysis of HVP only model is considered and model equation obtained from Eq. (1). This is 

 

 

 

                                                                      

 

 

3.1. Invariant Region 

In this section, we get a region in which the solution of Eq. (2) is bounded. To obtain this, first we 

considered the total population  (𝑁𝑝), where (𝑁𝑝) = 𝑆 + 𝐸𝑝 + 𝐼𝑝 + 𝐶 + 𝑅𝑝. Then, differentiating (𝑁𝑝) 

both sides with respect to 𝑡 leads 

                            

Substituting Eq. (2) into Eq. (3), we can get 

dNp

dt
= Π − μNp − ξC, 

⇒
dNp

dt
≤ Π − μNp,       

  where (𝜉 = 0) i.e., in the absence of mortality 

∫
dNp

Π − μNp
≤ ∫ dt, 

⇔
−1

μ
ln(Π − μNp) ≤ t + c1,  

where 𝑐1 is integration constant 

⇒ (Π − μNp) ≥ ce−μt,       

dS

dt
= Π + χpRp − (λp + μ)S, 

dEp

dt
= λpS − (ηp + μ)Ep,  

dIp

dt
= ηpEp − (αp + ωp + μ)Ip,  

dC

dt
= αpIp − (μ + ξ)C,  

dRp

dt
= ωpIp − (χp + μ)Rp.  

dNp

dt
=

dS

dt
+

dEp

dt
+

dIp

dt
+

dC

dt
+

dRp

dt
 . 
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where 𝑐 = 𝑒−𝑐1. 

Then, applying initial condition 𝑁𝑝(0) = 𝑁𝑝0, we obtain 

                        

 

 

Further, it can be observed that 𝑁𝑝(𝑡) → (Π μ⁄ ) as 𝑡 → ∞. That is, the total population size 𝑁𝑝(𝑡) takes 

off from the value 𝑁𝑝(0) at the initial time 𝑡 = 0 and ends up with the bounded value (𝛱 𝜇⁄ ) as the time 

𝑡 grows to infinity. Thus, it can be concluded that 𝑁𝑝(𝑡) is bounded as  0 ≤ 𝑁𝑝(𝑡) ≤ (Π μ⁄ ). Thus, the 

feasible solution set of the system equation of the model enters and remains in the region: 

Ωp = {(S, Ep, Ip, C,     Rp) ∈ ℜ+
5  ∶   Np ≤ Π μ⁄ } . 

Therefore, the Eq. (2) is well posed epidemiologically and mathematically. Hence, it is sufficient to 

study the dynamics of the basic model in the region 𝛺𝑝. 

3.2. Existence of Solution 

Lemma 1. Solutions of the model Eq. (2) together with the initial conditions 𝑆(0) > 0, 𝑆, 𝐸𝑝(0) > 0,

𝐼𝑝(0) >), 𝐶(0) > 0,     𝑅𝑝(0) > 0  exist in ℝ+
5  i.e., the model variables 𝑆(𝑡), 𝐸𝑝(𝑡), 𝐼𝑝(𝑡), 𝐶(𝑡) and  𝑅𝑝(𝑡)   

exist for all 𝑡 and will remain in ℝ+
5 . 

Proof. The right hand sides of the system of Eq. (2) can be expressed as follows: 

 

 

 

 

 

 

According to Derrick and Groosman theorem, let 𝛺𝑝 denote the region 𝛺𝑝 = {(𝑆, 𝐸𝑝 , 𝐼𝑝 , 𝐶,     𝑅𝑝) ∈

ℜ+
5  ∶ 𝑁𝑝 ≤ 𝛱 𝜇⁄ }. Then Eq. (1) have a unique solution if (𝜕𝑓𝑖) (𝜕𝑥𝑗)⁄ , 𝑖, 𝑗 = 1, 2, 3, 4, 5 are continuous and 

bounded in Ω𝑝. Here,𝑥1 = 𝑆,   𝑥2 = 𝐸𝑝, 𝑥3 = 𝐼𝑝 ,   𝑥4 = 𝐶 and𝑥6 = 𝑅𝑝. The continuity and the boundedness 

are verified as here under in Table 1. 

 

 

 

⇒ Np ≤
Π

μ
− [

Π−μNp

μ
]e−μt.  

f1(S, Ep, Ip, C,     Rp) = Π + χpRp − (λp + μ)S, 

f2(S, Ep, Ip, C,     Rp) = λpS − (ηp + μ)Ep,  

f3(S, Ep, Ip, C,     Rp) = ηpEp − (αp + ωp + μ)Ip,  

f4(S, Ep, Ip, C,     Rp) = αpIp − (μ + ξ)C,  

f5(S, Ep, Ip, C,     Rp) = ωpIp − (χp + μ)Rp.  
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Table 1. Continuity and boundedness of the model solution. 

Thus, all the partial derivatives (𝜕𝑓𝑖) (𝜕𝑥𝑗),⁄ 𝑖, 𝑗 = 1, 2, 3, 4, 5  exist, continuous and bounded in Ω𝑝. 

Hence, by Derrick and Groosman theorem, a solution for the Model (2) exists and is unique. 

3.3. Positivity of Solution 

The solution of the system remains positive at any point in time t, if the initial values of all the variables 

are positive. 

Lemma 2. Let Ωp =  {(𝑆, 𝐸𝑝 , 𝐼𝑝 , 𝐶,     𝑅𝑝) ∈ ℝ+
5 ;  𝑆0(0) > 0, 𝐸𝑝0(0) > 0, 𝐼𝑝0(0) >), 𝐶0(0) >

0,     𝑅𝑝0(0) > 0}; then the solutions of {𝑆, 𝐸𝑝 , 𝐼𝑝 , 𝐶, 𝑅𝑝} are positive for all  𝑡 ≥ 0. 

Proof: Positivity is verified separately for each of the model 𝑆(𝑡), 𝐸𝑝(𝑡), 𝐼𝑝(𝑡), 𝐶(𝑡) and 𝑅𝑝(𝑡). 

Positivity of𝑆(𝑡): From Eq. (2) we have: 

𝑑𝑆

𝑑𝑡
= Π + 𝜒𝑝𝑅𝑝 − (𝜆𝑝 + 𝜇)𝑆, eliminating the positive terms (Π + 𝜒𝑝𝑅𝑝) we get, 

⇔
𝑑𝑆

𝑑𝑡
≥ −(𝜆𝑝 + 𝜇)𝑆, using variables separable method we get, 

⇒ ∫
dS

S
≥ − ∫(λp + μ) dt , 

⇒ ln S ≥ −(λp + μ)t + c3, 

where 𝑐3 is integration constant. 

⇒ 𝑆(𝑡) ≥ 𝑆0e−(𝜆𝑝+𝜇)𝑡,𝑆0 = ec3  and e−(𝜆𝑝+𝜇)𝑡 ≥ 0, for all 𝑡 ≥ 0. 

Hence, it can be concluded that 𝑆(𝑡) ≥ 0.    

Positivity of 𝐸𝑝(𝑡): From Eq. (2) we have: 

𝑑𝐸𝑝

𝑑𝑡
= 𝜆𝑝𝑆 − (𝜂𝑝 + 𝜇)𝐸𝑝, eliminating the positive terms (𝜆𝑝𝑆) we get, 

⇔
𝑑𝐸𝑝

𝑑𝑡
≥ −(𝜂𝑝 + 𝜇)𝐸𝑝, using variables separable method we get, 

|(𝜕𝑓1) (𝜕𝑆)⁄ | = |−(𝜆𝑝 + 𝜇)| < ∞ 

|(𝜕𝑓1) (𝜕𝐼𝑝)⁄ | =  |−(𝛽1𝑆 𝑁𝑝⁄ )| <

∞. 

|(𝜕𝑓1) (𝜕𝑅𝑝)⁄ | = |𝜂| < ∞. 

|(𝜕𝑓1) (𝜕𝐸𝑝)⁄ | = |(𝜕𝑓1) (𝜕𝐶)⁄ |

=  0 < ∞. 

|(𝜕𝑓2) (𝜕𝑆)⁄ | = |𝜆𝑝| < ∞. 

|(𝜕𝑓2) (𝜕𝐸𝑝)⁄ | = |−(𝜂𝑝 + 𝜇)|

< ∞. 

|(𝜕𝑓2) (𝜕𝐼𝑝)⁄ | = |𝛽1𝑆 𝑁𝑝⁄ | < ∞. 

|(𝜕𝑓2) (𝜕𝐶)⁄ | = |(𝜕𝑓2) (𝜕𝑅𝑝)⁄ |

= 0 < ∞. 

|(𝜕𝑓3) (𝜕𝑆)⁄ | = 0 < ∞. 

|(𝜕𝑓3) (𝜕𝐸𝑝)⁄ | = |𝜂𝑝| < ∞. 

|(𝜕𝑓3) (𝜕𝐼𝑝)⁄ | = |−(𝛼𝑝 + 𝜔𝑝

+ 𝜇)| < ∞. 

|(𝜕𝑓3) (𝜕𝐶)⁄ | = |(𝜕𝑓2) (𝜕𝑅𝑝)⁄ |

= 0 < ∞. 

|(𝜕𝑓4) (𝜕𝑆)⁄ | = |(𝜕𝑓4) (𝜕𝐸𝑝)⁄ |

= 0 < ∞. 

|(𝜕𝑓4) (𝜕𝐼𝑝)⁄ | = |𝛼𝑝| < ∞. 

|(𝜕𝑓4) (𝜕𝐶)⁄ | =  |−(𝜇 + 𝜉)| < ∞. 

|(𝜕𝑓4) (𝜕𝑅𝑝)⁄ | =  0 < ∞. 

|(𝜕𝑓5) (𝜕𝑆)⁄ | = |(𝜕𝑓5) (𝜕𝐸𝑝)⁄ |

= 0 < ∞. 

|(𝜕𝑓5) (𝜕𝐼𝑝)⁄ | = |𝜔𝑝| < ∞. 

|(𝜕𝑓5) (𝜕𝐶)⁄ | =  0 < ∞. 

|(𝜕𝑓5) (𝜕𝑅𝑝)⁄ | = |−(𝜒𝑝 + 𝜇)|

< ∞. 
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⇒
𝑑𝐸𝑝

𝐸𝑝
≥ −(𝜂𝑝 + 𝜇)𝑑𝑡, integrating both side we can get,       

⇒ ∫
dEp

Ep
≥ − ∫(ηp + μ) dt , 

⇒ ln Ep ≥ −(ηp + μ)t + c4,  

where 𝑐4 is integration constant 

⇒ 𝐸𝑝(𝑡) ≥ 𝐸𝑝0
e−(𝜂𝑝+𝜇)𝑡, 𝑆0 = ec4and e−(𝜂𝑝+𝜇)𝑡 ≥ 0, for all 𝑡 ≥ 0. 

Hence, it can be concluded that 𝐸𝑝(𝑡) ≥ 0.    

Positivity of 𝐼𝑝(𝑡): From Eq. (2) we have: 

𝑑𝐼𝑝

𝑑𝑡
= 𝜂𝑝𝐸𝑝 − (𝛼𝑝 + 𝜔𝑝 + 𝜇)𝐼𝑝, eliminating the positive terms (𝜂𝑝𝐸𝑝)we get,           

⇔
𝑑𝐼𝑝

𝑑𝑡
≥ −(𝛼𝑝 + 𝜔𝑝 + 𝜇)𝐼𝑝, using variables separable method we get, 

⇒
𝑑𝐼𝑝

𝐼𝑝
≥ −(𝛼𝑝 + 𝜔𝑝 + 𝜇)𝑑𝑡, integrating both side we can get,       

⇒ ∫
dIp

Ip
≥ − ∫(αp + ωp + μ) dt , 

⇒ ln Ip ≥ −(αp + ωp + μ)t + c5, 

 where 𝑐5 is integration constant 

⇒ 𝐼𝑝(𝑡) ≥ 𝐼𝑝0e−(𝛼𝑝+𝜔𝑝+𝜇)𝑡, 𝐼𝑝0 = ec5and e−(𝛼𝑝+𝜔𝑝+𝜇)𝑡 ≥ 0,for all 𝑡 ≥ 0. 

Hence, it can be concluded that 𝐼𝑝(𝑡) ≥ 0.    

Positivity of  𝐶(𝑡): From Eq. (2) we have: 

𝑑𝐶

𝑑𝑡
= 𝛼𝑝𝐼𝑝 − (𝜇 + 𝜉)𝐶, eliminating the positive terms (𝛼𝑝𝐼𝑝)we get, 

⇔
𝑑𝐶

𝑑𝑡
≥ −(𝜇 + 𝜉)𝐶, using variables separable method we get, 

⇒
𝑑𝐶

𝐶
≥ −(𝜇 + 𝜉)𝑑𝑡, integrating both side we can get,       

⇒ ∫
dC

C
≥ − ∫(μ + ξ) dt , 

⇒ ln C ≥ −(μ + ξ)t + c6, 
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 where 𝑐6 is integration constant 

⇒ 𝐶(𝑡) ≥ 𝐶0e−(𝜇+𝜉)𝑡, 𝐶0 = ec6and e−(𝜇+𝜉)𝑡 ≥ 0, for all 𝑡 ≥ 0. 

Hence, it can be concluded that 𝐶(𝑡) ≥ 0.    

Positivity of 𝑅𝑝(𝑡): From Eq. (2) we have: 

𝑑𝑅𝑝

𝑑𝑡
= 𝜔𝑝𝐼𝑝 − (𝜒𝑝 + 𝜇)𝑅𝑝, eliminating the positive terms (𝜔𝑝𝐼𝑝) we get, 

⇔
𝑑𝑅𝑝

𝑑𝑡
≥ −(𝜒𝑝 + 𝜇)𝑅𝑝, using variables separable method we get, 

⇒ 𝑐7
𝑑𝑅𝑝

𝑅𝑝
≥ −(𝜒𝑝 + 𝜇)𝑑𝑡, integrating both side we can get,       

⇒ ∫
dRp

Rp
≥ − ∫(χp + μ) dt , 

⇒ ln Rp ≥ −(χp + μ)t + c7,  

where  is integration constant 

⇒ 𝑅𝑝(𝑡) ≥ 𝑅𝑝0e−(𝜒𝑝+𝜇)𝑡, 𝑅𝑝0 = ec7and e−(𝜒𝑝+𝜇)𝑡 ≥ 0, for all 𝑡 ≥ 0. 

Hence, it can be concluded that 𝑅𝑝(𝑡) ≥ 0.    

Therefore, the model variables 𝑆(𝑡), 𝐸𝑝(𝑡), 𝐼𝑝(𝑡), 𝐶(𝑡) and 𝑅𝑝(𝑡)representing population sizes of 

various types of cells are positive quantities and will remain in ℝ+
5  for all  𝑡. 

3.4. Local Stability of the Disease-Free Equilibrium (DFE) 

The disease free equilibrium of Eq. (2) is obtained by equating all equations of the model equation to 

zero and then letting 𝐸𝑝 = 𝐼𝑝 = 𝐶 = 𝑅𝑝 = 0. Then we obtain 

E1 = {(
Π

μ
) , 0, 0, 0, 0}. 

The linear stability of the DFE, 𝐸1, can be established using the next generation operator method in Van 

den Driessche and Watmouth [23] on the System (2). The matrice  𝐹 s (for the new infection terms) and 

  𝑉 (of the transition terms) are given, respectively by, 

F = [
0 βp 0

0 0 0
0 0 0

]  and V = [

ηp 0 0

−ηp (αp + ωp + μ) 0

0 −αp μ + ξ

]. 

The associated reproduction number, denoted by ℜ𝑝 is then given by, 
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ℜp =
(βpηp)

(αp + ωp + μ)(μ + ξ)
. 

Further using theorem in Van den Driessche and Watmouth [23], the following result is established. 

The DFE is locally asymptotically stable if ℜ𝑝 < 1 and unstable is ℜ𝑝 > 1. 

3.5. Stability Analysis of Endemic Equilibrium 

Lemma 3. The HPV only model has a unique endemic equilibrium if and only if ℜp > 1. 

Proof.  Let the endemic equilibrium point of the Eq. (2) be denoted by, 

E1
∗ = (S∗, Ep

∗ , Ip
∗ , C∗, Rp

∗   ), 

and consider the force of infection 

                                                              

 

Solving the equations in System (5) by setting the right hand sides of equations equal to zero, gives, 

                

 

 

 

Substituting Eq. (6) in Eq. (5) gives 

               

 

This shows that the non-zero (positive endemic) equilibrium point of the model equation satisfy 

                                                             

 

Where 𝐷1 = (𝜂𝑝 + 𝜇)and 𝐷2 = 𝜇 [1 − ℜ𝑝 (
Π+𝜒𝑝+𝑅𝑝

∗

Π
)]. 

λp
∗ = [βpI∗] [N]⁄ .  

S∗ = [Π + χpRp
∗ ] [λp

∗ + μ]⁄ , 

 
 

Ep
∗ = [λp

∗ (Π + χpRp
∗ )] [(λp

∗ + μ)(ηp + μ)],⁄  

 

Ip
∗ = [λp

∗ ηp(Π + χpRp
∗ )] [(λp

∗ + μ)(ηp + μ)(αp + ωp + μ)]⁄ , 

C∗ = [λp
∗ ηpαp(Π + χpRp

∗ )] [(λp
∗ + μ)(ηp + μ)(αp + ωp + μ)(μ + ξ)]⁄ Rp

∗

= [ωpηpΠλp
∗ ] [(λp

∗ + μ)(ηp
∗ + μ)(αp + ωp + μ)(χp + μ) − ωpηpλp

∗ χp].⁄  

(ηp + μ)(λp
∗ )

2
+ λp

∗ μ [1 − ℜp (
Π+χp+Rp

∗

Π
)] = 0.  

D1λp
∗ + D2 = 0.  
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It is clear that 𝐷1 > 0 and 𝐷2 < 0 when ℜ𝑝 (
Π+𝜒𝑝+𝑅𝑝

∗

Π
) > 1. Thus the Linear System (8) has a unique 

positive solution, given by 𝜆𝑝
∗ =

−𝐷2

𝐷1
  whenever ℜ𝑝 > 1. 

Now, to show its local stability analysis, Eq. (7) gives a fixed point problem of the form 

    

 

Then, derivatives of 𝑓(𝜆𝑝
∗ ) become 

f ′(λp
∗ ) = [2(ηp + μ)λp

∗ ] + μ [1 − ℜp (
Π + χp + Rp

∗

Π
)]]. 

Evaluating 𝑓′(𝜆𝑝
∗ ) at 𝜆𝑝

∗ = −𝐷2 𝐷1⁄  gives 

f ′(−D2 D1⁄ ) = 3μ [1 − ℜp (
Π + χp + Rp

∗

Π
)]], 

⇒ |𝑓′(𝜆𝑝
∗ )| < 1 at 𝜆𝑝

∗ = −𝐷2 𝐷1⁄ , whenever ℜ𝑝 (
Π+𝜒𝑝+𝑅𝑝

∗

Π
) > 1. 

Therefore, the unique endemic equilibrium is locally asymptotically stable if ℜ𝑝 > 1.  

4. Analysis HIV only Model 

Here analysis of HIV only model is considered and model equation obtained from Eq. (1). This is 

 

 

                                                                                                 

 

 

 

The invariant region, existence of solution and uniqueness of solution is can be determined similar to 

Section 3.1, 3.2, and 3.3. 

4.1. Local Stability of the Disease-Free Equilibrium (DFE) 

The disease free equilibrium of Eq. (9) is obtained by setting the system of equations in Model (9) to 

zero. At disease free equilibrium there are no infection and recovery. Then we obtain 

f(λp
∗ ) = (ηp + μ)(λp

∗ )
2

+ λp
∗ μ [1 − ℜp (

Π+χp+Rp
∗

Π
)] = 0.  

dS

dt
= Π − (λh + μ)S,  

dEh

dt
= λhS − (ηh + μ)Eh ,  

dIh

dt
= ηhEh − (αh + μ)Ih,  

dA

dt
= αhIh − (μ + ξ)A.  
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E2 = {(
Π

μ
) , 0, 0, 0}. 

The stability analysis of the DFE, 𝐸2, can be established using basic reproduction number. The concept 

of the next generation matrix would be employed in computing the basic reproduction number.  Using 

theorem 2 in Van den Driessche and Watmouth [23] on the HIV model in Eq. (9), the basic reproduction 

number of the HIV only model, denoted by ℜℎ is then given by 

ℜh =
(βhηh)

(αh + μ)(μ + ξ)
 . 

Further using theorem 2 in Van den Driessche and Watmouth [23], the following result is established. 

The DFE is locally asymptotically stable if ℜℎ < 1 and unstable is ℜℎ > 1. 

4.2. Stability Analysis of Endemic Equilibrium 

The endemic equilibrium points are computed by setting the system of differential equations in the HIV 

only Model (9) to zero. The endemic equilibrium points are as follows:  

                

 

 

 

 

 

Lemma 4. The HIV only model has a unique endemic equilibrium if and only if ℜℎ > 1. 

Proof.  Substituting Eq. (10) into force of infection, we can get 

 

                                    

This shows that the non-zero (positive endemic) equilibrium point of the model equation satisfy 

                                                      

 

Where 𝐷1 = (𝜂ℎ + 𝜇) and 𝐷2 = 𝜇[1 − ℜℎ]. 

S∗ = [Π] [λh
∗ + μ]⁄ , 

 
 

Eh
∗ = [λh

∗ Π] [(λh
∗ + μ)(ηh + μ)]⁄ , 

 
 

Ih
∗ = [λh

∗ ηhΠ] [(λh
∗ + μ)(ηh + μ)(αh + μ)]⁄ ,  

A∗ = [λh
∗ ηhαhΠ] [(λh

∗ + μ)(ηh + μ)(αh + μ)(μ + ξ)].⁄   

(ηh + μ)(λh
∗ )2 + λh

∗ μ[1 − ℜh] = 0.  

D1λh
∗ + D2 = 0.  
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It is clear that 𝐷1 > 0 and 𝐷2 < 0 when ℜℎ > 1. Thus the Linear System (12) has a unique positive 

solution, given by 𝜆ℎ
∗ =

−𝐷2

𝐷1
  whenever ℜℎ > 1. 

Now, to show its local stability analysis, Eq. (11) gives a fixed point problem of the form 

f(λh
∗ ) = (ηh + μ)(λh

∗ )2 + λh
∗ μ[1 − ℜh] = 0. 

Then, derivatives of 𝑓(𝜆ℎ
∗ ) become 

f ′(λh
∗ ) = [2(ηh + μ)λh

∗ ] + μ[1 − ℜh]]. 

Evaluating 𝑓′(𝜆ℎ
∗ ) at 𝜆ℎ

∗ = −𝐷2 𝐷1⁄  gives 

f ′(−D2 D1⁄ ) = 3μ[1 − ℜh]], 

⇒ |𝑓′(𝜆ℎ
∗ )| < 1 at  𝜆ℎ

∗ = −𝐷2 𝐷1⁄  , whenever ℜℎ > 1. 

Therefore, the unique endemic equilibrium is locally asymptotically stable if ℜℎ > 1.  

5. Analysis HSV-II only Model 

Here analysis of HSV-II only model is considered and model equation obtained from Eq. (1). This is 

 

 

 

                                                                                                  

 

 

 

The invariant region, existence of solution and uniqueness of solution is can be determined similar to 

Section 3.1, 3.2, and 3.3. 

5.1. Local Stability of the Disease-Free Equilibrium (DFE) 

The disease free equilibrium of Eq. (13) is obtained by setting the system of equations in Model (13) to 

zero. At disease free equilibrium there are no infection and recovery. Then we obtain; 

E3 = {(
Π

μ
) , 0, 0, 0, 0} . 

dS

dt
= Π + χsRs − (λs + μ)S,  

dEs

dt
= λsS − (ηs + μ)Es, 

dIs

dt
= ηsEh − (αs + ωs + μ)Is, 

dH

dt
= αsIs − (μ + ξ)H, 

dRs

dt
= ωsIs − (χs + μ)Rs. 
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The stability analysis of the DFE, 𝐸3, can be established using basic reproduction number. The concept 

of the next generation matrix would be employed in computing the basic reproduction number. Using 

theorem 2 in Van den Driessche and Watmouth [23] on the HSV-II model in Eq. (13), the basic 

reproduction number of the HSV-II only model, denoted by ℜ𝑠 is then given by 

ℜs =
(βsηs)

(αs + ωs + μ)(μ + ξ)
 . 

Further using theorem 2 in Van den Driessche and Watmouth [23], the following result is established. 

The DFE is locally asymptotically stable if ℜ𝑠 < 1 and unstable is ℜ𝑠 > 1. 

5.2. Stability Analysis of Endemic Equilibrium 

The endemic equilibrium points are computed by setting the system of differential equations in the 

HSV-II only Model (13) to zero. The endemic equilibrium points are as follows 

                

 

 

 

 

 

Lemma 5. The HSV-II only model has a unique endemic equilibrium if and only if ℜ𝑠 > 1. 

Proof.  Substituting Eq. (10) into force of infection, we can get  

                                    

 

This shows that the non-zero (positive endemic) equilibrium point of the model equation satisfy 

                                                      

 

Where 𝐷1 = (𝜂𝑠 + 𝜇)and 𝐷2 = 𝜇 [1 − ℜ𝑠 (
Π+𝜒𝑠+𝑅𝑠

∗

Π
)]. 

It is clear that 𝐷1 > 0 and 𝐷2 < 0 when ℜ𝑠 (
Π+𝜒𝑠+𝑅𝑠

∗

Π
) > 1. Thus the Linear System (16) has a unique 

positive solution, given by 𝜆𝑠
∗ =

−𝐷2

𝐷1
  whenever ℜ𝑠 > 1. 

S∗ = [Π + χsRs
∗] [λs

∗ + μ]⁄ , 

 
 

Es
∗ = [λs

∗(Π + χsRs
∗)] [(λs

∗ + μ)(ηs + μ)],⁄  

 

Is
∗ = [λs

∗ηs(Π + χsRs
∗)] [(λs

∗ + μ)(ηs + μ)(αs + ωs + μ)],⁄  

H∗ = [λs
∗ηsαs(Π + χsRs

∗)] [(λs
∗ + μ)(ηs + μ)(αs + ωs + μ)(μ + ξ)]⁄ Rs

∗

= [ωsηsΠλs
∗] [(λs

∗ + μ)(ηs
∗ + μ)(αs + ωs + μ)(χs + μ) − ωsηsλs

∗χs]⁄ . 

(ηs + μ)(λs
∗)2 + λs

∗μ [1 − ℜs (
Π+χs+Rs

∗

Π
)] = 0.  

D1λs
∗ + D2 = 0.  
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Now, to show its local stability analysis, Eq. (15) gives a fixed point problem of the form                   

f(λs
∗) = (ηs + μ)(λs

∗)2 + λs
∗μ [1 − ℜs (

Π + χs + Rs
∗

Π
)] = 0. 

Then, derivatives of 𝑓(𝜆𝑠
∗) become 

f ′(λs
∗) = [2(ηs + μ)λs

∗] + μ [1 − ℜs (
Π + χs + Rs

∗

Π
)]] . 

Evaluating 𝑓′(𝜆𝑠
∗) at 𝜆𝑠

∗ = −𝐷2 𝐷1⁄  gives 

f ′(−D2 D1⁄ ) = 3μ [1 − ℜs (
Π + χs + Rs

∗

Π
)]]. 

⇒ |𝑓′(𝜆𝑠
∗)| < 1 at 𝜆𝑠

∗ = −𝐷2 𝐷1⁄  , whenever ℜ𝑠 (
Π+𝜒𝑠+𝑅𝑠

∗

Π
) > 1. 

Therefore, the unique endemic equilibrium is locally asymptotically stable if ℜ𝑠 > 1.  

6. Analysis HPV-HIV only Coinfection Model 

Here analysis of HPV-HIV only coinfection model is considered and model equation obtained from Eq. 

(1). This is 

 

 

 

                                                                                              

 

 

The invariant region, existence of solution and uniqueness of solution is can be determined similar to 

section 3.1, 3.2, and 3.3. 

6.1. Local Stability of the Disease-Free Equilibrium (DFE) 

The disease free equilibrium of Eq. (17) is obtained by setting the system of equations in Model (17) to 

zero. At disease free equilibrium there are no infection and recovery. Then we obtain 

E4 = {(
Π

μ
) , 0, 0, 0}. 

The stability analysis of the DFE, 𝐸4, can be established using basic reproduction number. The concept 

of the next generation matrix would be employed in computing the basic reproduction number.  Using 

theorem 2 in Van den Driessche and Watmouth [23] on the HPV-HIV coinfection model in Eq. (17), 

dS

dt
= Π − (λph + μ)S ,  

dEph

dt
= λphS − (ηph + μ)Eph , 

dIph

dt
= ηphEph − (αph + μ)Iph, 

dCA

dt
= αphIph − (μ + ξ)CA. 
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the basic reproduction number of the HPV-HIV only coinfection model, denoted by ℜ𝑝ℎ is then given 

by 

ℜph =
(βphηph)

(αph + μ)(μ + ξ)
 . 

Further using theorem 2 in Van den Driessche and Watmouth [23], the following result is established. 

The DFE is locally asymptotically stable if ℜ𝑝ℎ < 1 and unstable is ℜ𝑝ℎ > 1. 

6.2. Stability Analysis of Endemic Equilibrium 

The endemic equilibrium points are computed by setting the system of differential equations in the 

HPV-HIV only Coinfection Model (17) to zero. The endemic equilibrium points are as follows; 

 

  

                

 

 

 

Lemma 6. The HPV-HIV only coinfection model has a unique endemic equilibrium if and only if ℜ𝑝ℎ >

1. 

Proof.  Substituting Eq. (18) into force of infection, we can get  

                                    

 

This shows that the non-zero (positive endemic) equilibrium point of the model equation satisfy 

 

                                                      

Where 𝐷1 = (𝜂𝑝ℎ + 𝜇) eand 𝐷2 = 𝜇[1 − ℜ𝑝ℎ]. 

It is clear that 𝐷1 > 0 and 𝐷2 < 0 when ℜ𝑝ℎ > 1. Thus the Linear System (20) has a unique positive 

solution, given by 𝜆𝑝ℎ
∗ =

−𝐷2

𝐷1
  whenever ℜ𝑝ℎ > 1. 

Now, to show its local stability analysis, Eq. (19) gives a fixed point problem of the form                    

𝑆∗ = [Π] [𝜆𝑝ℎ
∗ + 𝜇]⁄ ,  

𝐸𝑝ℎ
∗ = [𝜆𝑝ℎ

∗ Π] [(𝜆𝑝ℎ
∗ + 𝜇)(𝜂𝑝ℎ + 𝜇)]⁄ , 

𝐼𝑝ℎ
∗ = [𝜆𝑝ℎ

∗ 𝜂𝑝ℎΠ] [(𝜆𝑝ℎ
∗ + 𝜇)(𝜂𝑝ℎ + 𝜇)(𝛼𝑝ℎ + 𝜇)]⁄ , 

𝐶𝐴∗ = [𝜆𝑝ℎ
∗ 𝜂𝑝ℎ𝛼𝑝ℎΠ] [(𝜆𝑝ℎ

∗ + 𝜇)(𝜂𝑝ℎ + 𝜇)(𝛼𝑝ℎ + 𝜇)(𝜇 + 𝜉)]⁄ . 

(ηph + μ)(λph
∗ )

2
+ λph

∗ μ[1 − ℜph] = 0.  

D1λph
∗ + D2 = 0.  
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f(λph
∗ ) = (ηph + μ)(λph

∗ )
2

+ λph
∗ μ[1 − ℜph] = 0. 

Then, derivatives of 𝑓(𝜆𝑝ℎ
∗ ) become 

f ′(λph
∗ ) = [2(ηph + μ)λph

∗ ] + μ[1 − ℜph]]. 

Evaluating 𝑓′(𝜆𝑝ℎ
∗ ) at 𝜆𝑝ℎ

∗ = −𝐷2 𝐷1⁄  gives 

𝑓 ′(−𝐷2 𝐷1⁄ ) = 3 𝜇[1 − ℜ𝑝ℎ]] ⇒ |𝑓′(𝜆𝑝ℎ
∗ )| < 1 at 𝜆𝑝ℎ

∗ = −𝐷2 𝐷1⁄  , whenever ℜ𝑝ℎ > 1. 

Therefore, the unique endemic equilibrium is locally asymptotically stable if ℜ𝑝ℎ > 1.  

7. Analysis HPV-HSV-II only Coinfection Model 

Here analysis of HPV-HSV-II only coinfection model is considered and model equation obtained from 

Eq. (1). This is 

 

 

 

 

 

 

The invariant region, existence of solution and uniqueness of solution is can be determined similar to 

Section 3.1, 3.2, and 3.3. 

7.1. Local Stability of the Disease-Free Equilibrium (DFE) 

The disease free equilibrium of Eq. (21) is obtained by setting the system of equations in Model (21) to 

zero. At disease free equilibrium there are no infection and recovery. Then we obtain; 

E5 = {(
Π

μ
) , 0, 0, 0} . 

The stability analysis of the DFE, 𝐸5, can be established using basic reproduction number. The concept 

of the next generation matrix would be employed in computing the basic reproduction number.  Using 

theorem 2 in Van den Driessche and Watmouth [23] on the HPV-HSV-II coinfection model in Eq. (21), 

the basic reproduction number of the HPV-HSV-II only coinfection model, denoted by ℜ𝑝𝑠 is then given 

by 

ℜps =
(βpsηps)

(αps + μ)(μ + ξ)
 . 

dS

dt
= Π − (λps + μ)S,  

dEps

dt
= λpsS − (ηps + μ)Eps, 

dIps

dt
= ηpsEps − (αps + μ)Ips, 

dCH

dt
= αpsIps − (μ + ξ)CH. 



383                      The transmission dynamics of HPV, HIV/ADS and HSV-II co-infection model   

Further using theorem 2 in Van den Driessche and Watmouth [23], the following result is established. 

The DFE is locally asymptotically stable if ℜ𝑝𝑠 < 1 and unstable is ℜ𝑝𝑠 > 1. 

7.2. Stability Analysis of Endemic Equilibrium 

The endemic equilibrium points are computed by setting the system of differential equations in the 

HPV-HSV-II only Coinfection Model (21) to zero. The endemic equilibrium points are as follows; 

                

 

 

 

 

 

 

 

 

Lemma 7. The HPV-HSV-II only coinfection model has a unique endemic equilibrium if and only if 

ℜ𝑝𝑠 > 1. 

Proof.  Substituting Eq. (22) into force of infection, we can get  

                                    

 

This shows that the non-zero (positive endemic) equilibrium point of the model equation satisfy 

 

                                                      

Where𝐷1 = (𝜂𝑝𝑠 + 𝜇)and  𝐷2 = 𝜇[1 − ℜ𝑝𝑠]. 

It is clear that 𝐷1 > 0 and 𝐷2 < 0 when ℜ𝑝𝑠 > 1. Thus the Linear System (24) has a unique positive 

solution, given by 𝜆𝑝𝑠
∗ =

−𝐷2

𝐷1
  whenever ℜ𝑝𝑠 > 1. 

Now, to show its local stability analysis, Eq. (23) gives a fixed point problem of the form                    

f(λps
∗ ) = (ηps + μ)(λps

∗ )
2

+ λps
∗ μ[1 − ℜps] = 0. 

Then, derivatives of 𝑓(𝜆𝑝𝑠
∗ ) become 

f ′(λps
∗ ) = [2(ηps + μ)λps

∗ ] + μ[1 − ℜps]]. 

S∗ = [Π] [λps
∗ + μ]⁄ ,  

Eps
∗ = [λps

∗ Π] [(λps
∗ + μ)(ηps + μ)]⁄ , 

 

Ips
∗ = [λps

∗ ηpsΠ] [(λps
∗ + μ)(ηps + μ)(αps + μ)]⁄ , 

CH∗ = [λps
∗ ηpsαpsΠ] [(λps

∗ + μ)(ηps + μ)(αps + μ)(μ + ξ)].⁄  

(ηps + μ)(λps
∗ )

2
+ λps

∗ μ[1 − ℜps] = 0.  

D1λps
∗ + D2 = 0.  
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Evaluating 𝑓′(𝜆𝑝𝑠
∗ ) at 𝜆𝑝𝑠

∗ = −𝐷2 𝐷1⁄  gives 

f ′(−D2 D1⁄ ) = 3μ[1 − ℜps]], 

⇒ |𝑓′(𝜆𝑝𝑠
∗ )| < 1 at 𝜆𝑝𝑠

∗ = −𝐷2 𝐷1⁄  , whenever ℜ𝑝𝑠 > 1. 

Therefore, the unique endemic equilibrium is locally asymptotically stable if ℜ𝑝𝑠 > 1.  

8. Analysis HIV-HSV-II only Coinfection Model 

Here analysis of HIV-HSV-II only coinfection model is considered and model equation obtained from 

Eq. (1). This is 

 

 

                                                                                              

 

 

 

The invariant region, existence of solution and uniqueness of solution is can be determined similar to 

Section 3.1, 3.2, and 3.3. 

8.1. Local Stability of the Disease-Free Equilibrium (DFE) 

The disease free equilibrium of Eq. (25) is obtained by setting the system of equations in Model (25) to 

zero. At disease free equilibrium there are no infection and recovery. Then we obtain 

E6 = {(
Π

μ
) , 0, 0, 0}. 

The stability analysis of the DFE, 𝐸6, can be established using basic reproduction number. The concept 

of the next generation matrix would be employed in computing the basic reproduction number.  Using 

theorem 2 in Van den Driessche and Watmouth [23] on the HIV-HSV-II coinfection model in Eq. (25), 

the basic reproduction number of the HIV-HSV-II only coinfection model, denoted by ℜℎ𝑠 is then given 

by 

ℜhs =
(βhsηhs)

(αhs + μ)(μ + ξ)
. 

Further using theorem 2 in Van den Driessche and Watmouth [23], the following result is established. 

The DFE is locally asymptotically stable if ℜℎ𝑠 < 1 and unstable is ℜℎ𝑠 > 1. 

dS

dt
= Π − (λhs + μ)S,  

dEhs

dt
= λhsS − (ηhs + μ)Ehs, 

dIhs

dt
= ηhsEhs − (αhs + μ)Ihs, 

dAH

dt
= αhsIhs − (μ + ξ)AH. 
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8.2. Stability Analysis of Endemic Equilibrium 

The endemic equilibrium points are computed by setting the system of differential equations in the HIV-

HSV-II only Coinfection Model (25) to zero. The endemic equilibrium points are as follows 

                

 

 

 

 

 

 

 

 

Lemma 7. The HIV-HSV-II only coinfection model has a unique endemic equilibrium if and only if 

ℜℎ𝑠 > 1. 

Proof.  Substituting Eq. (26) into force of infection, we can get  

                                    

 

This shows that the non-zero (positive endemic) equilibrium point of the model equation satisfy 

                                                      

 

Where𝐷1 = (𝜂ℎ𝑠 + 𝜇) and 𝐷2 = 𝜇[1 − ℜℎ𝑠]. 

It is clear that 𝐷1 > 0 and 𝐷2 < 0 when ℜℎ𝑠 > 1. Thus the Linear System (28) has a unique positive 

solution, given by 𝜆ℎ𝑠
∗ =

−𝐷2

𝐷1
  whenever ℜℎ𝑠 > 1. 

Now, to show its local stability analysis, Eq. (27) gives a fixed point problem of the form                    

f(λhs
∗ ) = (ηhs + μ)(λhs

∗ )2 + λhs
∗ μ[1 − ℜhs] = 0. 

Then, derivatives of 𝑓(𝜆ℎ𝑠
∗ ) become 

f ′(λhs
∗ ) = [2(ηhs + μ)λhs

∗ ] + μ[1 − ℜhs]]. 

Evaluating 𝑓′(𝜆ℎ𝑠
∗ ) at 𝜆ℎ𝑠

∗ = −𝐷2 𝐷1⁄  gives 

f ′(−D2 D1⁄ ) = 3μ[1 − ℜhs]], 

S∗ = [Π] [λhs
∗ + μ]⁄ ,  

Ehs
∗ = [λhs

∗ Π] [(λhs
∗ + μ)(ηhs + μ)]⁄ , 

 

Ihs
∗ = [λhs

∗ ηhsΠ] [(λhs
∗ + μ)(ηhs + μ)(αhs + μ)],⁄  

AH∗ = [λhs
∗ ηhsαhsΠ] [(λhs

∗ + μ)(ηhs + μ)(αhs + μ)(μ + ξ)].⁄  

(ηhs + μ)(λhs
∗ )2 + λhs

∗ μ[1 − ℜhs] = 0.  

D1λhs
∗ + D2 = 0.  
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⇒ |𝑓′(𝜆ℎ𝑠
∗ )| < 1    at 𝜆ℎ𝑠

∗ = −𝐷2 𝐷1⁄  , whenever ℜℎ𝑠 > 1. 

Therefore, the unique endemic equilibrium is locally asymptotically stable if ℜℎ𝑠 > 1.  

9. Analysis HPV-HIV-HSV-II only Coinfection Model 

Here analysis of HPV-HIV-HSV-II Coinfection Model (1) is considered. The invariant region, existence 

of solution and uniqueness of solution is can be determined similar to Section 3.1, 3.2, and 3.3. 

9.1. Local Stability of the Disease-Free Equilibrium (DFE) 

The disease free equilibrium of Eq. (1) is obtained by setting the system of equations in Model (1) to 

zero. At disease free equilibrium there are no infection and recovery. Then we obtain; 

E7 = {(
Π

μ
) , 0, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}. 

The stability analysis of the DFE, 𝐸7, can be established using basic reproduction number. The concept 

of the next generation matrix would be employed in computing the basic reproduction number. Using 

theorem 2 in Van den Driessche and Watmouth [23] on the HPV-HIV-HSV-II coinfection model in Eq. 

(1), the basic reproduction number of the HPV-HIV-HSV-II only coinfection model, denoted by ℜ𝑝ℎ𝑠 

is then given by 

ℜphs = max{ℜp, ℜh, ℜs, ℜph, ℜps, ℜhs}. 

Where 

ℜp =
(βpηp)

(αp+ωp+μ)(μ+ξ)
’           ℜph =

(βphηph)

(αph+μ)(μ+ξ)
 ,    

ℜh =
(βhηh)

(αh+μ)(μ+ξ)
  ,                ℜps =

(βpsηps)

(αps+μ)(μ+ξ)
, 

ℜs =
(βsηs)

(αs+ωs+μ)(μ+ξ)
,             ℜhs =

(βhsηhs)

(αhs+μ)(μ+ξ)
. 

Further using theorem 2 in Van den Driessche and Watmouth [23], the following result is established. 

The DFE is locally asymptotically stable if ℜ𝑝ℎ𝑠 < 1 and unstable is ℜ𝑝ℎ𝑠 > 1. 

10. Numerical Simulation 

In this section, numerical simulation study of model Eqs. (1), (2), (9), (13), (17), (21) and (25) are carried 

out using the software MATLAB R 2015b with ODE45 solver. To conduct the study, a set of physically 

meaningful values are assigned to the model parameters. These values are either taken from literature 

or assumed on the basis of reality. Using the parameter values given in Table 2 and the initial conditions 

   𝑆(0) = 600, 𝐸𝑝(0) = 170, 𝐸𝑝ℎ(0) = 250, 𝐸𝑝𝑠(0) = 200, 𝐸ℎ(0) = 200, 𝐸ℎ𝑠(0) = 240, 𝐸𝑠(0) = 250,

𝐼𝑝(0) = 140, 𝐼𝑝ℎ(0) = 140, 𝐼𝑝𝑠(0) = 140, 𝐼ℎ(0) = 160, 𝐼ℎ𝑠(0) = 180, 𝐼𝑠(0) = 160, 𝐴(0) = 40, 𝐶(0) =

60, 𝐶𝐴(0) = 40,   𝐴𝐻(0) = 50, 𝐶𝐻(0) = 50, 𝐻(0) = 50 , 𝐴𝐶𝐻(0) = 30, 𝑅𝑝 = 120, 𝑅𝑠 = 130 in the model 
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Eqs. (1), (2), (9), (13), (17), (21) and (25) a simulation study is conducted and the results are given in the 

following Figures. 

Table 2. Parameter values used in simulations. 

 

 

 

 

 

 

 

 

 

 

 

In Fig. 2 we observe that all the solutions converge towards the equilibrium point. This was obtained 

when ℜ𝑝 < 1. At disease free equilibrium point, all infection solutions converge to zero while the 

susceptible individuals decreases and then remains constant. Cervical cancer cannot be cured that is 

why susceptible individuals remain constant. This indicates that the disease free equilibrium point is 

locally asymptotically stable. 

Fig. 3 illustrate that all the solutions converge towards the equilibrium point. This was obtained 

when ℜℎ < 1. At disease free equilibrium point, all infection solutions converge to zero while the 

susceptible individuals decreases and then remains constant. AID cannot be cured that is why 

susceptible individuals remain constant. This indicates that the disease free equilibrium point is locally 

asymptotically stable. Fig. 4 show that all the solutions converge towards the equilibrium point. This 

was obtained when ℜ𝑠 < 1. At disease free equilibrium point, all infection solutions converge to zero 

while the susceptible individuals decreases and then remains constant. This indicates that the disease 

free equilibrium point is locally asymptotically stable. 

 

Parameter Value Source Parameter Value Source 

𝛱 0.004 [18] 𝜋 0.01 assumed 

𝛽𝑠 0.0018 assumed 𝜓 0.3 assumed 

𝛽ℎ 0.042 assumed 𝛿 0.12 assumed 

𝛽𝑝 0.042 assumed 𝛾 0.14 assumed 

𝛽𝑝ℎ 0.019 assumed 𝜈19 0.02 assumed 

𝛽𝑝𝑠 0.03 assumed 𝜈1 0.04 assumed 

𝛽ℎ𝑠 0.02 assumed 𝜈2 0.02 assumed 

𝜒𝑝 0.045 assumed 𝜈20 0.03 assumed 

𝜒𝑠 0.045 assumed 𝜈3 0.04 assumed 

𝜂𝑠 0.02 assumed 𝜈4 0.05 assumed 

𝜂ℎ 0.02 assumed 𝜈15 0.02 assumed 

𝜂𝑝 0.02 assumed 𝜈6 0.03 assumed 

𝜂𝑝ℎ 0.02 assumed 𝜈7 0.04 assumed 

𝜂𝑝𝑠 0.02 assumed 𝜈16 0.03 assumed 

𝜂ℎ𝑠 0.02 assumed 𝜈8 0.02 assumed 

𝛼𝑠 0.03 assumed 𝜈9 0.02 assumed 

𝛼ℎ 0.03 assumed 𝜈10 0.03 assumed 

𝛼𝑝 0.03 assumed 𝜈17 0.04 assumed 

𝛼𝑝ℎ 0.03 assumed 𝜈11 0.05 assumed 

𝛼𝑝𝑠 0.03 assumed 𝜈18 0.02 assumed 

𝛼ℎ𝑠 0.03 assumed 𝜈12 0.03 assumed 

𝜔𝑝 0.035 assumed 𝜈13 0.04 assumed 

𝜔𝑠 0.045 assumed 𝜑 0.1 assumed 

𝜉 0.0001 [18] 𝜃 0.2 assumed 
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Fig. 2. Dynamics of HPV model. 

 

Fig. 3. Dynamics of HIV model.
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Fig. 4. Dynamics of HSV-II. 

 

 

Fig. 5. Dynamics of HPV-HIV coinfection.
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Fig. 6. Dynamics of HPV-HSV-II coinfection. 

 

 

Fig. 7. Dynamics of HIV-HSV-II coinfection.
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Fig. 8. Dynamics of cervical cancer, AIDS and HSV-II. 

 

Fig. 9. Dynamics of co-infectious. 
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Fig. 10. Dynamics of total population. 

Furthermore, Fig. 5 describe that all the solutions converge towards the equilibrium point. At disease 

free equilibrium point, all infection solutions converge to zero while the susceptible individuals 

decreases and then remains constant. AIDS with Cervical cancer cannot be cured that is why susceptible 

individuals remain constant. This indicates that the disease free equilibrium point is locally 

asymptotically stable. Also, in Fig. 6 we observe that all the solutions converge towards the equilibrium 

point. At disease free equilibrium point, all infection solutions converge to zero while the susceptible 

individuals decreases and then remains constant. Cervical cancer with HSV-II cannot be cured that is 

why susceptible individuals remain constant. This indicates that the disease free equilibrium point is 

locally asymptotically stable. Similarly Fig. 7 show that all solution converges to disease free 

equilibrium. 

Moreover, Fig. 8  illustrate that cervical cancer affects people more than AIDS and HSV-II, but AIDS 

affects people more than HSV-II. Also, Fig. 9 describe that the coinfection of three diseases (i.e. 

Cervical cancer, AIDS and HSV-II) affects people more than coinfection of two diseases (i.e. Cervical 

cancer-AIDS, Cervical cancer-HSV-II, AIDS-HSV-II coinfection). Finally, Fig. 10 show that at disease 

free equilibrium all solution converges to zero. This indicates that the disease free equilibrium point is 

locally asymptotically stable. 

11. Discussions and Conclusions 

In this paper, we developed a deterministic model for the transmission dynamics of HPV, HIV and 

HSV-II coinfection. The qualitative analysis of the model shows that there exists a domain where the 

model is epidemiologically and mathematically well-posed. The stability analysis of the model was 

investigated using the basic reproduction number that governs the disease transmission. The HPV only 

model, HIV only model, HSV-II only model, HPV-HIV only coinfection model, HPV-HSV-II only 

coinfection model, HIV-HSV-II only coinfection model, and HPV-HIV-HSV-II only coinfection 

model, has a locally stable disease free equilibrium whenever the associated reproduction number is 
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less than unity. Also, the model has a unique endemic equilibrium whenever the basic reproduction 

number is less great unity. Furthermore, numerical simulation shows that at disease free equilibrium 

point, all infection solutions converge to zero. This was obtained when the associated reproduction 

number is less than unity. This indicates that the disease free equilibrium point is locally asymptotically 

stable. 
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