Document Type : Research Paper

Authors

1 Department of Applied Mathematics, Faculty of Mathematical Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran.

2 Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran.

Abstract

In this article, we investigated the robust control approach for variable-order fractional time fractional butterfly- shaped chaotic attractor system that the fractional derivative is considered in Atangana-Baleanu-Caputo sense. We show the computational algorithm with high accuracy for solving the proposed systems. For the suggested system, Adams-Bashforth-Moulton approach applied for converting the system of the equations into a system of linear or nonlinear algebraic equations. The existence and uniqueness of the solution are shown and also asymptotically stable is investigated in this article. At the end, a number of statistical indicators were presented in order efficiency, accuracy and simple applicability of the proposed method.

Keywords

Main Subjects

[1]        Uysal, F., İşleyen, S. K., & Çetinkaya, C. (2018). Resource constrained project scheduling with stochastic resources. Journal of applied research on industrial engineering5(1), 39-49.

[2]        Bougeret, M., Pessoa, A. A., & Poss, M. (2019). Robust scheduling with budgeted uncertainty. Discrete applied mathematics261, 93-107. https://doi.org/10.1016/j.dam.2018.07.001

[3]        Rafiei, A., Homayouni, S. M., & Shafiei Alavijeh, A. (2015). A Mathematical Model for the Single Machine Scheduling Considering Sequence Dependent Setup Costs and Idle Times. Journal of applied research on industrial engineering2(2), 77-85.

[4]        Ebrahimi, M., Ghomi, S. F., & Karimi, B. (2014). Hybrid flow shop scheduling with sequence dependent family setup time and uncertain due dates. Applied mathematical modelling38(9-10), 2490-2504. https://doi.org/10.1016/j.apm.2013.10.061

[5]        Ribas, I., Leisten, R., & Framiñan, J. M. (2010). Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective. Computers and operations research37(8), 1439-1454. https://doi.org/10.1016/j.cor.2009.11.001

[6]        Linn, R., & Zhang, W. (1999). Hybrid flow shop scheduling: a survey. Computers and industrial engineering37(1-2), 57-61. https://doi.org/10.1016/S0360-8352(99)00023-6

[7]        Shiau, D. F., Cheng, S. C., & Huang, Y. M. (2008). Proportionate flexible flow shop scheduling via a hybrid constructive genetic algorithm. Expert systems with applications34(2), 1133-1143. https://doi.org/10.1016/j.eswa.2006.12.002

[8]        Wang, H., Jacob, V., & Rolland, E. (2003). Design of efficient hybrid neural networks for flexible flow shop scheduling. Expert systems20(4), 208-231. https://doi.org/10.1111/1468-0394.00245

[9]        Choi, S. W., Kim*, Y. D., & Lee, G. C. (2005). Minimizing total tardiness of orders with reentrant lots in a hybrid flowshop. International journal of production research43(11), 2149-2167.

[10]    Choi, S. H., & Wang, K. (2012). Flexible flow shop scheduling with stochastic processing times: a decomposition-based approach. Computers and industrial engineering63(2), 362-373. https://doi.org/10.1016/j.cie.2012.04.001

[11]    Luo, H., Du, B., Huang, G. Q., Chen, H., & Li, X. (2013). Hybrid flow shop scheduling considering machine electricity consumption cost. International journal of production economics146(2), 423-439. https://doi.org/10.1016/j.ijpe.2013.01.028

[12]    Naderi, B., Gohari, S., & Yazdani, M. (2014). Hybrid flexible flowshop problems: Models and solution methods. Applied mathematical modelling38(24), 5767-5780.

[13]    Tang, D., Dai, M., Salido, M. A., & Giret, A. (2016). Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization. Computers in industry81, 82-95. https://doi.org/10.1016/j.compind.2015.10.001

[14]    Rahmani, D., & Heydari, M. (2014). Robust and stable flow shop scheduling with unexpected arrivals of new jobs and uncertain processing times. Journal of manufacturing systems33(1), 84-92.

[15]    Lin, J. T., & Chen, C. M. (2015). Simulation optimization approach for hybrid flow shop scheduling problem in semiconductor back-end manufacturing. Simulation modelling practice and theory51, 100-114. https://doi.org/10.1016/j.simpat.2014.10.008

[16]    Wagner, H. M. (1959). An integer linear‐programming model for machine scheduling. Naval research logistics quarterly6(2), 131-140.

[17]    Manne, A. S. (1960). On the job-shop scheduling problem. Operations research8(2), 219-223.

[18]    Guinet, A., Solomon, M. M., Kedia, P. K., & Dussauchoy, A. (1996). A computational study of heuristics for two-stage flexible flowshops. International journal of production research34(5), 1399-1415.

[19]    Bowman, E. H. (1959). The schedule-sequencing problem. Operations research7(5), 621-624.

[20]    Meng, L., Zhang, C., Shao, X., Zhang, B., Ren, Y., & Lin, W. (2020). More MILP models for hybrid flow shop scheduling problem and its extended problems. International journal of production research58(13), 3905-3930.

[21]    Elyasi, A., & Salmasi, N. (2013). Stochastic flow-shop scheduling with minimizing the expected number of tardy jobs. The international journal of advanced manufacturing technology66(1-4), 337-346.

[22]    Wang, Y., & Li, L. (2014). Time-of-use based electricity cost of manufacturing systems: Modeling and monotonicity analysis. International journal of production economics156, 246-259.

[23]    Mirmohseni, S. M., Nasseri, S. H., & Khaviari, M. H. (2017). A New Fuzzy Hybrid Dynamic Programming for Scheduling Weighted Jobs on Single Machine. Journal of applied research on industrial engineering4(2), 97-115.

[24]    Li, Z., & Ierapetritou, M. G. (2008). Robust optimization for process scheduling under uncertainty. Industrial and engineering chemistry research47(12), 4148-4157.

[25]    Nagasawa, K., Ikeda, Y., & Irohara, T. (2015). Robust flow shop scheduling with random processing times for reduction of peak power consumption. Simulation modelling practice and theory59, 102-113. https://doi.org/10.1016/j.simpat.2015.08.001

[26]    Shahnaghi, K., Shahmoradi-Moghadam, H., Noroozi, A., & Mokhtari, H. (2016). A robust modelling and optimisation framework for a batch processing flow shop production system in the presence of uncertainties. International journal of computer integrated manufacturing29(1), 92-106.

[27]    Emami, S., Moslehi, G., & Sabbagh, M. (2017). A Benders decomposition approach for order acceptance and scheduling problem: a robust optimization approach. Computational and applied mathematics36(4), 1471-1515.

[28]    Hamaz, I., Houssin, L., & Cafieri, S. (2018). A robust basic cyclic scheduling problem. EURO journal on computational optimization6(3), 291-313.

[29]    Ding, H., Fan, Y., & Zhong, W. (2018). Robust optimization of performance scheduling problem under accepting strategy. Open journal of optimization7(4), 65-78.

[30]    Jamili, A. (2019). Job shop scheduling with consideration of floating breaking times under uncertainty. Engineering applications of artificial intelligence78, 28-36.

[31]    Goli, A., Babaee Tirkolaee, E., & Soltani, M. (2019). A robust just-in-time flow shop scheduling problem with outsourcing option on subcontractors. Production and manufacturing research7(1), 294-315.

[32]    Sangaiah, A. K., Tirkolaee, E. B., Goli, A., & Dehnavi-Arani, S. (2020). Robust optimization and mixed-integer linear programming model for LNG supply chain planning problem. Soft computing24(11), 7885-7905.

[33]    Babaee Tirkolaee, E., Goli, A., Pahlevan, M., & Malekalipour Kordestanizadeh, R. (2019). A robust bi-objective multi-trip periodic capacitated arc routing problem for urban waste collection using a multi-objective invasive weed optimization. Waste management and research37(11), 1089-1101.

[34]    Sadjadi, S. J., & Omrani, H. (2008). Data envelopment analysis with uncertain data: An application for Iranian electricity distribution companies. Energy policy36(11), 4247-4254.

[35]    Soyster, A. L. (1973). Convex programming with set-inclusive constraints and applications to inexact linear programming. Operations research21(5), 1154-1157.

[36]    Ben-Tal, A., & Nemirovski, A. (1999). Robust solutions of uncertain linear programs. Operations research letters25(1), 1-13.

[37]    Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations research52(1), 35-53.

[38]    Narasimhan, R. (1980). Goal programming in a fuzzy environment. Decision sciences11(2), 325-336.

[39]    Hu, C. F., Teng, C. J., & Li, S. Y. (2007). A fuzzy goal programming approach to multi-objective optimization problem with priorities. European journal of operational research176(3), 1319-1333.

[40]    Baky, I. A. (2009). Fuzzy goal programming algorithm for solving decentralized bi-level multi-objective programming problems. Fuzzy sets and systems160(18), 2701-2713.

[41]    Hossain, M. S., & Hossain, M. M. (2018). Application of interactive fuzzy goal programming for multi-objective integrated production and distribution planning. International journal of process management and benchmarking8(1), 35-58.

[42]    Gupta, S., Ali, I., & Ahmed, A. (2018). Efficient fuzzy goal programming model for multi-objective production distribution problem. International journal of applied and computational mathematics4(2), 76.

[43]    Masoud, M., Khalifa, H. A., Liu, S. Q., Elhenawy, M., & Wu, P. (2019, September). A fuzzy goal programming approach for solving fuzzy multi-objective stochastic linear programming problem. 2019 international conference on industrial engineering and systems management (IESM) (pp. 1-6). IEEE.