
 

   

 

 

1. Introduction   

By means of Fractional Calculus (FC), the integration operators and differentiation operators achieve 

fractional order. In recent decades, the study of FC has absorbed growing attention as hot research topic 

on a global scale [1-14]. Samko extended the constant order FC in an outstanding manner [15].  

In this research work, fractional operators in which order is considered to be a function of time, space 

or a few other variables are proposed. Noticeable applications of such fractional variable-order 

operators are introduced in [16-18]. Due to the fact that finding the exact solutions of variable-order 

fractional differential equations is impossible, devising numerical schemes in order to solve these 

equations is an important research topic. Adams-Bashforth’s method is known to, from a conventional 
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point of view, as powerful and excellent numerical method that can  present a numerical solution of 

fractional differential equations [19-22].  

Recently the authors have developed a constant-order numerical scheme- in [23]– that is able to 

combine the fundamental theorem of fractional calculus and the two-step Lagrange polynomial. 

Drawing on this method, the present paper generalizes the numerical schemes that were introduced in 

[23] to simulate variable-order fractional differential operators with power-law, exponential-law and 

Mittag-Leffler kernel. Stability analysis, dynamical properties and simulation of some fractional 

differential equations are dealt with in [24-27]. 

Nonlinear systems, form a holistic point of view, are not in line with the superposition principle. 

Mathematically speaking, a nonlinear system is a problem, in which the variables that are supposed to 

be solved are not writable as an independent component linear combination. In case the equation 

involves a nonlinear function (power or cross product), the system is also considered nonlinear. 

Moreover, if the system is characterized with a nonlinear transfer, for instance a diode current-voltage 

characteristic,   it is then regarded as nonlinear. Most importantly, we must refer to typical nonlinearity.  

Moreover, the system is nonlinear provided that a typical amount of nonlinearity like saturation, 

hysteresis, etc exists. Characteristics like this are the fundamental attributes of a nonlinear system. As 

the majority of real physical systems are, in essence, nonlinear, nonlinear systems have fascinated 

engineers, physicists and mathematicians. Solving non-linear equations by means of analytical methods 

would prove difficult and arise remarkable phenomena such as chaos and bifurcation. Even simple 

nonlinear (or piecewise linear) dynamical systems may behave entirely unpredictably, referred to as 

deterministic chaos. Owing to the fact that trivial systems can also involve chaos, chaos theory has 

become highly important. It is noteworthy, at this point, no unique definition is given for chaos. Chaotic 

dynamics are most commonly the ones originating from regular dynamical equations that do not include 

stochastic coefficients, yet simultaneously have trajectories the same as or indistinguishable from a 

number of  stochastic processes. Some definitions are given for chaotic dynamics, e.g., (i) system 

characterized with minimum one positive Lyapunov exponent is called chaotic, (ii) a system 

characterized with positive entropy is called chaotic, and (iii) a system that is equivalent to hyperbolic 

or Anosov system is called chaotic, and so on. What all these definitions have in common is that local 

instability and divergence of initially close trajectories exist there. Nonetheless, the definitions are not 

entirely similar in their sense. 

This paper mainly handles robust control. This issue is then briefly discussed here. Sectors like car 

production industry, mining, and other hardware make widespread use of feedback control systems. To 

meet the ever-growing demands for higher reliability and better efficiency levels, such control systems 

are constantly obliged to accomplish more accurate and desirable general performance in response to 

the ever-changing and challenging operating circumstances. For designing control systems to achieve 

more desirable  robustness and efficiency while monitoring complex procedures, control engineers need 

novel designing apparatus and a more effective control theory. A standard technique of enhancing a 

control system performance is adding more sensors and actuators. As a result, a Multi-Input Multi-

Output (MIMO) control system will necessarily be obtained. Therefore, each methodology related to 

designing modern feedback control systems must be capable of managing the issue of multiple actuators 

and sensors. A control system is also robust when: (1) its sensitivity level is low, (2) over a range of 

parameter variations, it remains stable, and (3) the performance invariably meets the specifications in 

the presence of a set of system parameter variations [28-32].  
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The present paper is outlined as follows: Some required preliminaries in the sequel are presented in 

Section 2. Section 3 deals with the existence and uniqueness of solutions. Section 4 deals with the 

numerical approach procedure. Robust control for variable order time fractional butterfly- shaped 

chaotic attractor system is discussed in Section 5. Section 6 presents simulation results. Finally, the 

method and the generated results are briefly discussed in Section 7. 

2. Preliminaries 

Some basic tools that will be needed in future are given in this section. The Atangana-Baleanu fractional 

derivative with variable-                  order  in Liouville-Caputo sense (ABC) is defined [33] as 

 

 

Where  is a normalization function. Related integral Atangana-Baleanu 

can be formulated as  
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The Adams method can be extended for this equation as follows: 
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where 

 

                                                     

and 

 

 

                       

 

3. Existence and Uniqueness of Solutions under Atangana Baleanu Fractional Derivative 

with Variable-Order (t)  

In this section, we use well-known fixed point technique for the existence of solutions of Eq. (3). Thus, 

by taking AB-fractional integral operator of variable-order ( t )  which is given in Eq. (2), we obtain 
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following hold true 
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Take the norm of Eq. (11), then we have 

 

 

 

 

 

 

 

Applying Eq. (12) and we prove the existence of solution for Eq. (3). For this aim, we define the function

n n 1( t ) ( f f )( t ) f (0 )    .  Then, using Eq. (12), we obtain 
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For analysis of the uniqueness of solutions of the model Eq. (3), we consider the contrary path for the 
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For the model Eq. (3), we consider
1f (0 ) 0 , then we have 
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Using Eq. (16), we obtain 1( f f )( t ) 0  . Consequently, the solution of ABC-fractional order which 

is given by Eq. (3), is unique. 

4. Numerical Approach 

This paper discusses a recently presented butterfly-shaped chaotic attractor system with six terms such 

as three multipliers for presenting the necessary nonlinearity for the folding trajectories [34, 35]. The 

numerical simulation and theoretical analysis demonstrate vividly that the new system is similar to 

Lorenz and other chaotic attractors. However, its topological structure differs from any chaotic 

attractors that exist. Adams method for the butterfly-shaped chaotic attractor system is developed here 
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that is an iterative technique to obtain a solution for this fractional problem. 

 

5. Robust Control for Variable Order Time Fractional Butterfly- Shaped Chaotic 

Attractor System 

If two exactly similar copies of a chaotic system start in similar initial conditions, they will not have the 

same motions for a long period of time. The exponential divergence of orbits will amplify all of the 

initial minor errors. Apparently, it will firstly prove very difficult to keep the two chaotic system copies 

synchronized. Since then, chaotic dynamical system synchronization has been under extensive scientific 

examination. Identical synchronization is, in principle, to take two copies of a fixed chaotic system and 

to make one of them take control of the other. The master or drive system creates a signal to feed the 

slave or response system subsequently.  

The signal is normally one of the applied coordinates in explaining the chaotic system. Synchronization 

can be considered as a form of chaos control and the simplicity of the coupling mechanism would make 

multiple applications possible. 

Let us consider the system [36-42] 
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Robust control is aimed at suppressing the chaotic behavior in the systems. x , y  and z   are defined as 

the auxiliary system equilibrium points. 

 

 

 

Now, the control errors are defined as  
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Theorem 1. On condition that the control is defined as Eq. (26), the system (20) is asymptotically stable. 

Proof. The controller stability (26) will be provable through the following Lyapanov function 

 

Then the derivative of the Lyapanov function is given by 

 

 

From Eqs. (25) and (26), the dynamic of each control error can be defined as 
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6. Simulation Results 

This section is to generalize the numerical scheme for the fractional butterfly- shaped chaotic attractor 
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1)t(α 

The numerical results are here obtained assuming x0 = 1, y0 = 2 and z0 = 10. The problem parameters 

are a = 30, b =15, c = 11. In Fig. 1, the phase diagram is drawn for the fixed differential order  

and robust controller with similar derivative order is drawn in Fig. 2 Ky 5 . The system simulation 

was performed over 200 seconds. 

The phase diagram and robust controller with Ky 5  are drawn assuming                                   in Figs. 

3 and 4, respectively. From the figure, it is obvious that the Adams-Bashforth-Moulton method is 

capable of solving the variable-order fractional differential equation simply and effectively. 

Furthermore, compared to Figs. 1 and 2, it is observed that the derivative order has profound effects on 

the system results. 

The analysis given above implies that designers could reach the suitable dynamic behavior of turbofan 

and expenses  through determining the proper fractional control.  

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 1. The system's phase diagram for the order                . 
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Fig. 2. The proposed system's  robust controller for the order              . 
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Fig. 3. The system's phase diagram for the order                                .  
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Fig. 4. Proposed robust controller of the system for the order                                .   

 

7. Conclusion 

A variable order butterfly- shaped chaotic attractor fractional chaotic system is considered by a 

numerical solution based on the Adams method. Numerical solutions are successfully obtained and the 

method is demonstrated to operate accurately and powerfully. Numerical examples with different 

Atangana-Baleanu-Caputo variable- order were given to prove that the method is effective. The robust 

control of this system is investigated and it is stated that the control has a more flexible and general 

structure which was one of the motivations of work presented here. 
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