Optimization of parameter settings to achieve improved tensile and impact strength of bamboo fibre composites

Document Type : Research Paper

Authors

1 Department of Mechanical Engineering, Faculty of Engineering, Federal University Wukari, Taraba State, Nigeria.

2 Department of Production Engineering, Faculty of Engineering, University of Benin, Nigeria.

3 School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong.

10.22105/jarie.2020.257974.1207

Abstract

There is great interest in application of natural fibres, such as bamboo fibre, as reinforcement in composite production. Herein, to achieve high performance under optimum process conditions, experimental design and optimization techniques are used to investigate the best parameter settings for processing bamboo fibre polyester composites. Single response optimization of the properties of bamboo fibre polyester composites using Taguchi orthogonal array, analysis of variance and Post hoc test was carried out. The test samples comprised of untreated, mercerized, acetylated and mercerized-acetylated bamboo fibre composites at fibre contents of 10, 20, 30, 40, and 50 wt %. All composite samples were fabricated using conventional hand lay-up process on randomly oriented long bamboo fibres. It was found that optimum parameter setting for impact strength was achieved at mercerization treatment and 30wt% fibre content with impact strength of 158.23 J/cm. For flexural strength, optimum parameter setting was found to be mercerization treatment at 50 wt % level of fibre content which resulted to flexural strength of 62.7 MPa. The optimum parameter setting for tensile strength is observed at mercerized-acetylation treatment at 50 wt% fibre content with tensile strength of 72.96 MPa. However, no significant difference, (P <.005) was observed in flexural strength, tensile strength and impact strength of mercerized and mercerized-acetylated fibre composites. This study established a research approach to improve bamboo fibre composite properties for more extended applications and to obtain optimal operating conditions by using optimization techniques. It will also serve as a guide for composite manufacturers on parameter settings selection.

Keywords

Main Subjects


[1]        Han-Seung, Y., Hyun-Joong, K., Jungil, S., Hee-Jum, P., Bum-Jae, L. & Tack-Sung, H. (2004). Rice-husk flour filled polypropylene composites: mechanical and morphological study. Composite structures, 63, 305-312.
[2]        Composite World. (2010). Natural fibres for automotive applications.Retrieved April 21, 2016, from http://www.compositeworld.com
[3]        Stewart, R. (2010). Reinforced plastics. Retrieved March 10, 2016, from http://www.Rplastics.com
[4]        Akova, I. E. (2013). Development of natural fibre reinforced polymer composites. Transfer Inovacii, 25, 3-5.
[5]        Grand View Research. (2016). Natural fibre composite market analysis. Retrieved 28 July, 2016, from www.grandviewresearch/industry-analysis/natural-fibre-composites
[6]        Zheng, W., & Wenjing, G. (2007). Current status and prospects of new architectural materials from bamboo. Retrieved from https://www.inbar.int/wp-content/uploads/2020/05/1489543696.pdf
[7]        Oyewole, A., Aliyu, A. A., Oladeji, A. O., & Sadiq, I. (2013). Investigation of some mechanical properties of ‘Agaraba’ – a native Nigerian bamboo. AU J.T., 16(3), 181-186.
[8]        Ogunwusi, A. A., & Onwualu, A. P. (2011). Indicative inventory of bamboo availability and utilization in Nigeria. Jornid, 9 (2), 1-9.
[9]        Tran, L. Q., Fuentes, C., Verpoest, I. & Vuure, A. W. (2019). Tensile behavior of unidirectional bamboo/coir fiber hybrid composites. Fibres, 7 (62), 1-9.
[10]    Sharma, P., Dhanwantri, K., & Mehta, S. (2014). Bamboo as a building material. International journal of civil engineering research, 3, 249-254.
[11]    Viel, Q., Esposito, A., Saiter, J. M. and Santulli, C. (2018). Interfacial characterization by pull-out test of bamboo fibres embedded in poly (Lactic Acid). Fibres, 6(1), 1-15.
[12]    Jafari, H., & Hajikhani, A. (2016). Multi objective decision making for impregnability of needle mat using design of experiment technique and respond surface methodology. Applied research on industrial engineering, 3 (1), 30-38.
[13]    Prastyo, Y., Yatma, W. A., & Hernadewita, H. (2018). Reduction bottle cost of Milkuat LAB 70 ml using optimal parameter setting with Taguchi method. Journal of applied research on industrial engineering, 5 (3), 223-238.
[14]    John, B., & Areshankar, A. (2018). Reduction of rework in bearing end plate using six sigma methodology: a case study. Journal of applied research on industrial engineering, 5 (1), 10-26.
[15]    Phadke, M. (1989). Quality engineering using robust design. Englewood Cliffs: Prentice Hall.
[16]    Wysk, R. A., Niebel, B. W., Cohen, P. H., & Simpson, T. W. (2000). Manufacturing processes: integrated product and process design. New York: McGraw Hill.
[17]    Khoie, A. R., Maters, I. & Gethin, D. T. (2002). Design optimization of aluminium recycling processes using Taguchi technique. Journal of material process technology, 127(1), 96-106.
[18]    Onyekwere, O. S., & Igboanugo, A. C. (2019). Optimal parameter setting for mercerization of bamboo fibres. Journal of science and technology research, 1 (1), 12-22.
[19]    Onyekwere, O. S., Igboanugo, A. C., & Adeleke, T. B. (2019). Optimisation of acetylation parameters for reduced moisture absorption of bamboo fibre using Taguchi experimental design and genetic algorithm optimisation tools. Nigerian journal of technology, 38 (1), 104 – 111.
[20]    Shehu, U., Isa, M. T., Aderemi, B. O. & Bello, T. K. (2017). Effects of NaOH modification on the mechanical properties of baobab pod fibre reinforced LDPE composites. Nigerian journal of technology, 36 (1), 87 - 95.
[21]     Hassan, M. A., Onyekwere, O. S., Yami, A., & Raji, A. (2014). Effects of Chemical modification on physical and mechanical properties of rice husk - stripped oil palm fruit bunch fibre polypropylene hybrid composite. IOSR journal of mechanical and civil engineering (IOSR-JMCE), 11 (4), 1-5.
[22]    Edeerozey, A. M., Akil, H. M., Azhar, A. B., & Ariffin, M. Z. (2007).  Chemical modification of kenaf fibres. Materials letters, 61(10), 2023-2025.
[23]    Hassan, M. Z., Roslan, S. A., Sapuan, S. M., Rasid, Z. A., Nor, A. F., Daud, M. Y., et al. (2020). Mercerisation optimization of bamboo (Bambusa vulgaris) fibre reinforced epoxy composite structures using Box-Behnken design. Polymers, 12 (1367), 1-19.
[24]    Wang, H., Memon, H., Hassan, E. A., Miah, M. S. & Ali, M. A. (2019). Effect of jute fibre modification on mechanical properties of jute fibre composites. Materials, 12 (1226), 1-11
[25]    Herrera-Estrada, L., Pillay, S., & Vaidya, U. (2008). Banana fiber composites for automotive and transportation applications. 8th annual automotive composites conference and exhibition (ACCE) (pp. 16-18). United States
[26]    Pradeep, K., Kushwaha, & Rakesh, K. (2010). Effect of silanes on mechanical properties of bamboo fibre-epoxy composites. Journal of reinforced plastics and composites, 29 (5), 718 - 724.
[27]    Krishnaraj, C., Balamurugan, M., Samuel, P. S., & Ayyasamy, C. (2013). Analysing the characterisation of alkali treated coir fibre composites. International journal of innovative research in science engineering and technology, 2 (10), 5403-5412.
[28]    Salisu, A. A., Musa, H., Yakasai, M. Y., & Aujara, K. M. (2015). Effects of chemical surface treatment on mechanical properties of sisal fiber unsaturated polyester reinforced composites. ChemSearch journal6(2), 8-13.
[29]    Rashed, H. M. M. A., Islam, M. A., & Rizvi, F. B. (2006). Effects of process parameters on tensile strength of jute fiber reinforced thermoplastic composites. Journal of naval architecture and marine engineering3(1), 1-6.
[30]    Girisha, C., Sanjeevamurthy, Gunti, & Rangasrinivas. (2012). Tensile properties of natural fibre-reinforced epoxy-hybrid composites. International journal of modern engineering research (IJMER), 2 (2), 471-474.
[31]    Wambua, P., Ivens, J., & Verpoest, I. (2003). Natural fibres: can they replace glass in fibre reinforced plastics? Composites science and technology, 63 (9), 1259-1264.
[32]    Jayaraman, K. (2003). Manufacturing sisal-polypropylene composites with minimum fibre degradation. Composites science and technology, 63 (3), 367-374.
[33]    Khoathane, M. C., Vorster, O. C. & Sadiku, E. R. (2008). Hemp fibre-reinforced 1-pentene/polypropylene copolymer: the effect of fibre loading on the mechanical and thermal characteristics of the composites. Journal of reinforced plastics and composites, 27 (14), 1533 - 1544.
[34]    Prasanna, V. R., Ramanathan, K. & Srinivasa, R. V. (2016). Tensile, flexual, impact and water absorption properties of natural fibre reinforced polyester hybrid composites. Fibres & textiles in Eastern Europe, 24 (3), 90-94.
[35]    Hussain, S. A., Pandurangadu, V. & Palanikuamar, K. (2012). Mechanical properties of short bamboo fibre polyester composite filled with alumina particles. IRACST - engineering science and technology: an international journal, 2 (3), 449 - 453.
[36]    Neslihan, O., Murat, O. and Abdullah, M. (2014). Comparison of mechanical characteristics of chopped bamboo and chopped coconut shell reinforced epoxy matrix composite. European international journal of science and technology, 3(8), 15-20.
[37]     Shito, T., Okubo, K., & Fujii, T. (2002). Development of eco-composites using natural bamboo fibers and their mechanical properties. WIT transactions on the built environment59.
[38]     Chukwudi, A. D., Uzoma, O. T., Azuka, U. A. A., & Sunday, E. C. (2015). Comparison of acetylation and alkali treatments on the physical and morphological properties of raffia palm fibre reinforced composite. Science3(4), 72-77.
[39]    Shah, H., Srinivasulu, B., & Shit, S. C. (2013). Influence of banana fibre chemical modification on the mechanical and morphological properties of woven banana fabric/unsaturated polyester resin composites. Polymers from renewable resources4(2), 61-84.
[40]    Aziz, S. H. & Ansell, M. P. (2004). The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites. Composite science technology, 64 (9), 1219–1230.
[41]    Kallakas, H., Shamim, M., Olutubo, T., Poltimäe, T., Süld, T. & Krumme, A. (2015). Effect of chemical modification of wood flour on the mechanical properties of wood-plastic composites. Agronomy research, 13 (3), 639–653.
[42]    Jayabal, S., Sathiyamurthy, S., Loganathan, K. T. & Kalyanasundaram, S. (2012). Effect of soaking time and concentration of NaOH solution on mechanical properties of coir–polyester composites. Bulletin of material science, 35 (4), 567-574.
[43]    Yousif, B. F., Shalwan, A., Chin, C. W., & Ming, K. C. (2012). Flexural properties of treated and untreated kenaf/epoxy composites. Materials and design, 40, 378-385.
[44]    Krishnan, M. R., Santhoskumar, A., & Srinivasulu, B. (2015). Effect of Isora fibres and Nanoclay reinforced with polypropylene. International journal of latest research in science and technology, 4 (1), 2278-5299.
[45]    Singha, A. S., & Thakur, V. K. (2009). Fabrication and characterization of H. sabdariffa fiber-reinforced green polymer composites. Polymer-plastics technology and engineering48(4), 482-487.
[46]    Singha, A. S., & Vijay, K. T. (2009b). Mechanical, Thermal and morphological properties of Grewia Optiva Fibre/Polymer matrix composite. Plastic technology and engineering, 48 (2), 201- 208.
[47]    Obasi, H. C., Nwanonenyi, S. C., Chiemenem, L. I., & Nwosu-Obieogu, K. (2018). Effects of fibre acetylation and fibre content on the properties of piassava fibre reinforced polystyrene. Futo journal series, 4 (1), 475-491.
[48]    Sabinesh, S., Thomas, R. C., & Sathish, S. (2014). Investigation on tensile and flexural properties of cotton fibre reinforced Isophthallic polyester composites. International journal of current engineering and technology, 482-487. https://doi.org/10.1080/03602550902725498
[49]    Zhaoqian, L., Xiaodong, Z., & Chonghua, P. (2011). Effect of sisal fiber surface treatment on properties of sisal fiber reinforced polylactide composites. International journal of polymer science, 1-7. https://doi.org/10.1155/2011/803428
[50]    Wiphawee, N., Putinun, U., Weraporn, P. A. & Hiroyuki, H. (2013). Impact property of flexible epoxy treated natural fiber reinforced PLA composite. Energy procedia, 34, 839-847. https://doi.org/10.1016/j.egypro.2013.06.820
Volume 7, Issue 4
Autumn 2020
Pages 344-364
  • Receive Date: 11 August 2020
  • Revise Date: 16 November 2020
  • Accept Date: 03 December 2020