
   

 

 

1. Introduction 

The problem of scheduling is one of the issues that is considered in various areas such as education, 

transportation, business, and organizational plans. In each of these areas, the proper schedule can 

improve the performance of each component in a workgroup and ultimately achieve the desired goal. 

On the other hand, lacking an appropriate timetable leads to problems and disadvantages such as lack 

of optimal use of resources, dissatisfaction in individuals, etc., which ultimately reduces productivity.   

The key to an appropriate timetable is the degree of satisfaction of the constraints defined for the 

scheduling problem in each training center, in which it is desirable to achieve the most benefit with the 

least time and facilities [1]. There are many contradictory and heterogeneous constraints in choosing 

course units in modeling, combined with variables such as class, day, time period, teacher and course, 

at the same time [2]. The aim of course scheduling, therefore, is to design a timetable in such an 

approach so as to convey the complexity of such problems in two simple ways: (a) reducing the number 

of interactions between the courses with college students or joint teachers and (b) eliminating the 

synchronization of courses that require a standard class to provide the views of the education system, 

                                                   

Rashidi, H., & Hassanpour, M. (2020). A deep-belief network approach for course scheduling. Journal of applied research on 
industrial engineering, 7(3), 221-237.  

 

         Corresponding author 

          E-mail address: s.khalili1367@yahoo.com 

  
          10.22105/jarie.2020.243184.1185 

 

 

A Deep-Belief Network Approach for Course Scheduling  
 

Hassan Rashidi1,1 , Maryam Hassanpour2  
1Department of Computer Science, Faculty of Statistics, Mathematics and Computer Science, Allameh Tabataba’i 
University, Tehran, Iran. 
2Department of Computer Engineering, Islamic Qazvin Azad University, Qazvin, Iran. 

A B S T R A C T P A P E R    I N F O 

The scheduling of academic courses is a problem in which a weekly schedule is 
produced for educational purposes. Many different types of scheduling problems exist 

at various universities in accordance with their laws, needs, and constraints. These 
problems fall into the category of NP-hard problems and are incredibly complex. In this 

paper, an intelligent system for scheduling courses using the Deep-Belief Network 
(DBN) is proposed. The reason why the proposed system is intelligent is that it can learn 

the constraints, inputs, and other necessary parameters in one step by receiving the 
inputs as well as the training needed by the deep-belief network. The deep-belief 

network used has one output layer, four hidden layers, and four input layers. The 
experimental results of this research show that the deep-belief network proposed for the 

scheduling of academic courses provides a better score, less error, and execution time 
compared with Sequence-Based Selection Hyper-Heuristic (SSHH) approach. 
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teachers, and students as much as possible [3]. Increasing the number of students and disciplines on the 

one hand and the limited capacity and educational facilities on the other, as well as increasing the time 

constraints defined by teachers to attend classes, make it more difficult to create an appropriate and 

acceptable timetable, in which all restrictions should not be violated [4]. Therefore, the variety of 

constraints and flexibility of the educational centers make it possible to achieve more efficient and 

efficient solutions. But at the same time, the variety of constraints will increase the size of the problem 

so that solving the problems take more time. 

This research is motivated to obtain a suitable solution for university course timetabling subject to the 

constraints defined for the problem. This suitability is concerned with getting a better score, less error, 

and execution time. We propose the Deep-Belief Network (DBN) to solve the problem and compare 

the results with the Sequence-Based Selection Hyper-Heuristic (SSHH) approach. The remaining 

sections of this paper are structured as follows. In the Second 2, we will review the literature. The 

proposed approach is presented in Section 3. In Section 4, we evaluate the proposed approach. The 

conclusions and future work are given in Section 5. 

2. Literature Review  

The problem of course scheduling, due to the consideration of variables corresponding to faculty 

members, classes, days of the week, and other constraints, creates an integer timing problem. To solve 

the problem, early approaches include techniques such as Graph Coloring and Constraint Programming 

(See [7], [8], [9]), which could be used. Solving the problem in a large-scale in any educational center 

generates several issues. Usually, these issues cannot be solved in a reasonable and acceptable time. 

Hence, different approaches have been devised to solve these issues. Many of these approaches depend 

on the specific educational constraints of the implementation environment. The methods that have been 

proposed in recent decades as innovative new and super-structural methods have also largely 

contributed to solving these issues. In the following, the most important methods used to solve this 

problem are discussed. 

2.1. Heuristics Algorithms 

Heuristics algorithms are looking for relatively good solutions at very low rates in huge problem. There 

is no specific guarantee for finding the optimal solution or close solutions. These algorithms can find a 

solution near to optimal in a limited time. They usually provide a higher convergence rate and escape 

from a poor local solution. The heuristics algorithms are divided into three categories [14]: 

 Constructive algorithms. In these algorithms, a solution to the problem is gradually, and step-by-step 

will be generated, according to the problem data. For example, the nearest neighbor's algorithm for 

solving a traveling salesman problem is a constructive algorithm in which the first city is randomly 

selected and then, according to the distance matrix in each replication, the nearest city is selected and 

the tour added. The most important features of the constructive algorithms are that they are very fast and 

most of them use greedy ideas, but in some cases, the distance of the generated solution to the optimal 

solution is too far. 

 Improvement algorithms. Improvement algorithms, also referred to as local search algorithms, are 

another type of innovative algorithm in which searches usually start from an initial solution. This initial 

solution may be derived from a constructive algorithm or generated randomly. Then, by a local search 

in the neighbors of this solution, they try to improve the solution. They do this in a recursive manner in 

each repetition of the algorithm. For example, in hill-climbing algorithms (for maximization problems) 
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and the gradient decent method (for minimization problems), we use the idea of local search to find 

better solutions in the neighborhood of the current solution. But the main problem with this type of 

algorithm is that they are often trapped in an optimal local trap that is much worse than the global 

optimization. 

 Meta-Algorithms. The first transcendental term was introduced by Glawer [11] by introducing the Tabu 

search algorithm. In fact, the superconductivity algorithms are the general search strategies that can be 

used as a solution method to a wide range of issues (See [1], [16], [19]). According to Glawer, an 

algorithm of complexity is the system or framework used to implement it using a number of innovative 

or precise methods. In other words, meta-algorithms are algorithms that search for the space of 

algorithms (low-level algorithms) and obtain the best combination for solving the problem. On the other 

hand, the meta-physical methods take steps that can effectively flee the trap of local optimization. A 

meta-burgh method has more general objectives designed to achieve in the complete problem-solving 

space. To use any meta-method for solving a particular problem, the existing rules and method 

parameters must be designed in such a way that the best possible use of the method in the solution of 

the problem is obtained. 

2.2. Sequence-Based Selection Hyper-Heuristic  

Traditionally, a single point search selection hyper-heuristic framework employs two methods invoking 

them successively. The first method selects a suitable low-level heuristic from a suite of heuristics, 

applying that chosen heuristic to a candidate solution, thereby generating a new one. The second method, 

then, makes a decision on whether to accept or reject the newly generated solution [13]. The SSHH 

method is proposed to solve the problem subject to some constraints and create an initial solution, which 

consists of two parts: The component of choice and the acceptance component of the movement. In the 

selection section, a low-level initiative is selected and applied to the current solution and will create a 

new solution. Then, with respect to and, the acceptance component of the motion decides whether to 

accept or reject. Usually, five meta-phrasal methods are used to accept the movement. These are local 

hill-outs, gradual cooking, great deluge, record moves to the record, and late acceptance. For example, 

if we use hiking as a way of accepting the motion, then it will be accepted if its quality is better. 

Otherwise, it will be rejected. The sequences of innovative techniques are capable of delivering 

improved performance over a single, innovative method. But as searches progress, it becomes 

increasingly difficult to find solutions that achieve better performance than the current solution. 

A selection hyper-heuristic is a high-level search methodology that operates on top of the traditional 

heuristics (or neighborhood move operators) [11]. The combination of these simple operators to build a 

more complex sequence of operators is the logic behind the development of a SSHH framework.   

2.3. Neural Networks 

Many years ago, the use of neural networks had been considered as one of the essential tools in the 

application of artificial intelligence. Object identification, audio and speech analysis, and text review 

are among the uses in which neural networks are used. Corr et al. [10] examined the application of 

neural networks as a construction heuristic for the examination timetabling problem. The approach uses 

a Kohonen self-organizing neural network and is shown to have broad applicability. Building on the 

heuristic ordering technique, where events are ordered by decreasing scheduling difficulty, the neural 

network allows a novel dynamic, multi-criteria approach to be developed. The problem of each event 

to be scheduled is assessed on several characteristics, removing the dependence of order based on a 

single heuristic. Furthermore, this technique allows the sequence to be reviewed and modified as each 

event as a necessary step since the timetable and constraints are altered as events are placed. The 
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experimental results are presented for a range of examination timetabling problems using standard 

benchmark datasets.  

Zhang et al. [20] studied a learning style classification approach based on the DBN for large-scale online 

education. The authors proposed a DBN that is called DBNLS, which is based on the Index of Learning 

Style theory by Felder and Soloman [31] and the Readiness for education at a distance indicator. The 

aim is to identify students’ learning styles and classify them in two steps. In the first step, a learning 

style model is built to identify indicators of learning style based on the experiences of experts. In the 

second step, it relates the indicators to the different learning styles. This research improved the DBN 

model and identify a student’s learning style by analyzing each individual’s learning style features using 

the improved DBN. This research verifies the DBNLS by conducting practical experiments and the 

various learning styles by soliciting questionnaires from students. Then, this research utilized those data 

to train the DBNLS model. The experimental results show that the proposed DBNLS method has better 

accuracy than do the traditional approaches. 

Sanchis-Font et al. [21] did a study with aim how to automatically evaluate user experience by sentiment 

analysis techniques. For this aim, a corpus with the opinions given by a total of 583 users (107 English 

speakers and 476 Spanish speakers) around three learning management systems in different courses 

was built. All the collected opinions were manually labeled with polarity information (positive, 

negative, or neutral) by three human annotators, both at the whole view and sentence levels. Then, the 

authors applied the state-of-the-art sentiment analysis models, trained with a corpus of a different 

semantic domain (a Twitter corpus), to study the use of cross-domain models. The cross-domain models 

based on deep neural networks (convolutional neural networks, transformer encoders and attentional 

BLSTM models) have been tested. In the experiments, three commercial systems for the same task 

(Meaning Cloud, Microsoft Text Analytics and Google Cloud) were also tested. The results indicated 

that the models provide a better and accurate understanding on human needs in the interaction with 

virtual learning environments. This research is a step towards the development of automatic tools that 

capture the feed-back of user perception for designing virtual learning environments. 

Based on theoretical and biological reasons, it is suggested that such deep-seated architectures include 

a large number of nonlinear processing layers. But these deep models have a lot of hidden layers and a 

lot of parameters that need to be trained. This computational complexity and the large space of 

parameters have led to the use of common methods in neural networks less than large numbers of layers. 

The problem of the high number of layers in these types of networks, in addition to the low speed of 

training, leads to the presence of local minima, which in most cases, does not lead us to the desired 

result. In general, the available approaches to solve the problem can be summarized in Table 1. In this 

table, existing approaches, their main features, their strengths, and weaknesses are reflected. 

3. The Proposed Approach 

The proposed approach to solve the problem is based on deep-belief networks. These networks allow 

us to create networks with a large number of layers [6]. The deep-belief networks are used not only in 

categorization but also as a feature extraction method. The advantages of the deep-belief networks in 

learning are that they can extract high levels of information from training unlabeled data [15] so that 

the power of differentiation between different categories in data is increased [12]. The studies have 

shown that loopback networks in their layers can achieve the same characteristics as those extracted in 

different brain layers. 
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In this section, we describe the deep-belief networks briefly. Then, the steps in the proposed approach 

are presented. 

Table 1. A summary of the approaches to solve the course scheduling problem. 

 

3.1. Deep-Belief Networks 

The deep-belief networks are made up of layers called the Boltzmann Machine Limited. Each this 

limited machine is a productive and directional probability model that uses a hidden layer to model a 

distribution on its observed variables. In fact, by confining limited Boltzmann machines, we can create 

deep-belief systems for hierarchical processes. The restricted Boltzmann machine is a Boltzmann 

Approach [Ref.] Main features Strengths Weaknesses 

Graph coloring [7] 
Getting the optimal 
solution accurately. 

Avoid getting stuck in the 
local optimal. 

Dependent on initial 
conditions. 

Tabu search ([3], [16]) 

Preventing any 

repeat and repetitive 
operation. 

Not to be in local 

optimality. 
Long execution time. 

Simulated annealing [22] 
Use temperature 

factor. 

Ability to escape from the 

local maximum. 

There is no greedy 

performance. 

Random repeat optimization 

algorithm with hybrid 
neighbors [7] 

Possibility of 
accepting a worse 

program with 
probability. 

Provides a good solution 

to the optimum. 

In practice, due to the 
high number of possible 

solutions, it is unlikely to 
be used. 

Particle swarm optimization 
algorithm [23] 

Needs memory. 

Flexibility against local 

optimization problem; 
high convergence rate. 

Early convergence and 
cohesiveness in local 

optimization as well as 
reduction of population 

diversity. 

Hill climbing algorithm, the 

first choice [26] 

Suitable for 
problems with a 

large number of 
great functions. 

High speed; low memory 

consumption. 

Not perfect and not 

optimal. 

Genetic algorithm [19] Truly random. 
No need for a high-level 

mathematics. 

Fast convergence and 
lack of utilization of 

information distribution. 

Bee's algorithm [24] 
Local search along 
with general search. 

High efficiency in finding 
an optimal solution.  

Use the coordinate 

number of variables; 
dependent parameters 

can be defined. 

Memetic algorithm [25] Local search. 
Able to solve problems 

with a topical solution. 

High storage and high 

simulation time. 

Neural network [10] 

Inspired by the 
biological nervous 

system for 
processing data and 

information.  

Effective for solving 

complex and large 
problems. 

As the environment grows 

and the number of layers 

increases, they become 
faulty. 

SSHH method [13] 

Selection and use of 

sequences of 
innovative methods. 

Extracting the inherent 
features and 

relationships between 
data and generalizing 

them in other situations. 

Long runtime.  
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machine that cuts connections between hidden units and between observation units. This machine is a 

directional graphic model, which is called a Markov Random Field (MRF).  

Fig. 1 shows the general Boltzmann machine on the left-hand side and a restricted Boltzmann machine 

on the right-hand side [17]. The joints between hidden units and also between visible units are 

disconnected. The term 𝑊 is the concurrent weights between visible and hidden units, 𝐿 is the 

concurrent weights between visible and visible units. Finally, 𝐽 is the concurrent weights between 

hidden and hidden units. The diagonal values of 𝐿 and 𝐽 are zero. Since Boltzmann machines have a 

complicated theory and formulations, therefore Restricted Boltzmann Machines (RBM) is used for 

simplicity. If 𝐽 = 0 and 𝐿 = 0, the famous RBM model is introduced. 

 

 

 

 

 

 

 

 

 

Fig. 1. A general Boltzmann machine (Left-hand) and a restricted Boltzmann machine (Right-hand) [18]. 

3.2. The Steps in the Proposed Approach 

The proposed approach is illustrated in Fig. 2. As shown in this figure, we must specify the dataset at 

the first stage. Then, the input parameters are specified as the name of the teacher, the name of the 

course, the teaching time, the class number, the workshop number, the state of the day (closed or not), 

and the day number. If there are any changes in the name of the teachers, the name of the courses, and 

such information, they must be applied to the coding. In other words, any insertion, deletion, or updating 

of the information is done by changing the input file. For example, if the teacher number 5 is deleted or 

renamed in the input file that is the Excel file, this change of information is done by the user so that the 

new data is coded and given to the network. Then the following steps are performed: 
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Fig. 2. The steps in the proposed approach. 

 

 Step 1 (Specify Constraints and Dates). There are some constraints on each solution that each teacher 

has in teaching, the days they cannot attend, and the number of absences, as well as the holidays. 

Moreover, no two courses in an hour are to be with a teacher in one class. These constraints are classified 

into hard and soft constraints. The hard constraints must be satisfied to ensure the feasibility of the 

solution, whereas the soft constraints specify preferences. The violation of the soft constraint does not 

destroy the feasibility but rather affecting the quality of the solution. In fact, the objective function is set 

in such a way that the soft constraints are satisfied as much as possible. The quality of a solution is 

evaluated in terms of the amount of violations of the hard and soft constraints.  

 Step 2 (Generate an Initial Solution and perform Permutations). In this step, an initial solution must be 

generated. This solution is obtained by random generators, at first. Then the initial schedule is refined 

and improved by permutations. The number of modes in the initial solution equals the number of days 

of the week multiplied by the number of students multiplied by the number of rows in the input matrix. 

This states there is a large possible solution space that must be investigated. Therefore, we must consider 

a limited number of permutation modes.  

 Step 3 (Training the Deep-Belief System). The deep-belief network used in this study has one output 

layer, four input layers, and four hidden layers. The reason for choosing these settings for the network 

is quite experimental. The input layer receives the data and the output layer displays the output. The 

hidden layer has two important tasks. The first task is to record the data and the second one is concerned 

with the learning algorithm. DBNs are composed of multiple layers of RBMs. RBM is a Boltzmann 

machine where the connections between hidden visible layers are disjointed. Also the Boltzmann 
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machine is an undirected graphical model (or Markov Random Field). The network training is also 

modeled on ‘pretrainDBN’, which uses the ‘pretrainRBM’ method, which itself includes several 

methods used in this study of Gaussian-Bernoulli Restricted Boltzmann Machines (GBRBM). Fig. 3 

shows a three-layer deep belief network and a three-layer deep Boltzmann machine. The pretraining 

consists of learning a stack of modified RBM’s that are then composed to create a deep Boltzmann 

machine, a DBN model of three layers. Each RBM model performs a nonlinear transformation on its 

input vectors and produces an output vector, which is used as input for the next RBM model in the 

sequence. More details on this step are explained in the Subsection 4.2. 

  

 

 

 

 

 

 

Fig. 3. A three-layer deep B elief network and a three-layer deep Boltzmann machine (Left side). The 

pretraining consists of learning a stack of modified. RBM’s (Right-Side) [18]. 

The process of training the network is such that the data encoded in the input matrix is placed. The 

input matrix contains the data read at the beginning of the process from the data set. Then the input 

matrix is given to the network, and the non-interoperability condition is defined using coding in the 

macro environment for the network.  

 Step 4 (Estimate the output Using DBN). In this step, the network is able to process new data according 

to the previous inputs. We use the trained DBN to produce its output. The network can be based on what 

was previously learned, make a solution and decision, takes the input, and gives an output. In order to 

use the network, the string of received codes is given to the network. So, the output is an estimation 

obtained from the DBN.   

 Step 5 (Analysis of Results and Evaluation Criteria). In this step, the estimated output obtained from the 

DBN and the input is compared. For comparison, the value of the objective function is considered. The 

criteria for evaluation, here, are the error, execution time, and score for the solution obtained so far. The 

score is related to the quality of a solution, which is specified with the objective function of the violations 

of the hard and soft constraints defined for the problem.  

We focused our approach of DNN to DBN that is a popular and widely used deep architecture, trained 

using Hinton et al. algorithm [12]. The main reason for this selection is that DBN architecture 

significantly reduces the training complexity and makes the deep learning feasible [27].  Moreover, 

DBN is able to create deep representations at every layer so that the network learns a new and more 

abstract representation of the input. 

The main advantage of the network is its ability to learn that in one step the cases are entered into the 

network. Additionally, the constraints and conditions are determined by the user. If a teacher is removed 

from the list, for example, then the inlet of the input matrix is zero and the program runs from the 

beginning if the course is deleted. If the class number has changed, and if an event occurs, such as 
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atmospheric variations and the time spent on the matrix is deleted, the user is able to modify the input 

matrix according to the changed cases and retry the network training.  

4. Evaluate the Proposed Approach 

In this section, firstly, we specify the data set and then describe the main program used for the 

implantation. In the implementation, we must: (a) determine the number of repetitions for not reaching 

an infinite cycle, (b) read input data from the dataset file and make the input matrix, (c) generate an 

initial solution by permutation, (d) calculate the cost function in a matrix based on the absence of 

interference between the input data and violating soft constraints, (e) train the network by the solution 

found so far, (f) use the network and estimate its output by feeding the inputs, and (f) calculate errors. 

4.1. The Data Set 

There are several data sets in the field of time scheduling problems. To evaluate the proposed approach, 

the data set ITC2011 has been used [5]. This data set is suitable for use in scheduling systems and many 

types of research on the problem. It has several examples from different countries, including Brazil, 

Finland, Greece, and Netherlands. For each country, Table 2 is available. A separate table is designed 

to further explore the educational locations of each country. Each country can have one or more time 

tables that depend on the number of educational centers that are intended for that country. 

As an example, the specification of the data set for ‘Brazil-Instance2’1, is in Table 2. The fields in the 

table are ‘Times’ (total number of times) and ‘Teachers’, ‘Rooms’ and ‘Classes’ are the total numbers 

of resources of resource type” Teacher”,” Room” and” Class”, respectively. The #Events is the total 

number of events. For the solution, ‘Time’ represents an indivisible interval of time during which event 

run. The ‘Resource’ represents the entity that attend the event. 

There are several constraints on every instance of the problem. For the instance ‘Brazil-Instance2’, the 

constraints are categorized into three groups: (a) the scheduling constraints that includes 

‘AssignTimeConstraint’ and ‘SplitEventsConstraint’, (b) the event constraints that comprises 

‘DistributeSplitEventsConstraint’, ‘PreferTimesConstraint’, and ‘SpreadEventsConstraint’, and (c) the 

resource constraints that includes ‘AvoidClashesConstraint’, ‘LimitIdleTimesConstraint’, and 

‘ClusterBusyTimesConstraint’. The quality of a solution is specified with a values of 

(hardViolationScore, softViolationScore). For example, a solution with the values of (25, 78) indicates 

an infeasibility value of 25 (sum of weighted hard constraints violations) and an objective value of 78 

(sum of weighted soft constraints violations). The weight value and whether the constraint is hard or 

soft per each constraint type are presented in the instance. 

Table 2. Specification of the dataset ‘Brazil-Instance2’, used in this research. 

 

                                                   

1 https://www.utwente.nl/en/eemcs/dmmp/hstt/ 

Assets Times Teachers Rooms Students Classes #Events Total 

Duration 

Value 25 14 - - 6 63 150 
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In the proposed method, each item is assigned to an arbitrary integer value. So, the assigned items are 

then coded as described below, according to the information in Table 3. 

Table 3. The encoded sample of the input data. 

According to the information in Table 3: 

 For the name of the course, four digits are used for each course, for example, 2441, 1111, and so on.  

These assignments are done by the user. 

 The Id of the teacher is coded from number one to the number of teachers. For example, if there are fifty 

teachers in the college, numbers 1 through 50 will be numbered, respectively. 

 The class start hour is quantified into intervals. These intervals are 8-10, 10-12, 12-14, 14-16, 16-18, 

and 18-20. For the first interval, the number one, the second interval of the number two, and so on, are 

numbered up to six. The courses available for teaching at each faculty can be modified individually by 

the individual. 

 The class No. is numbered from one to the number of classes. For the workshop number, it works in the 

same way. 

 The number of the day is coded from one to seven, which is quoted from Saturday to Friday, and at the 

end of the campus, the graduation is indicated for ceremonies or special occasions with two numbers of 

one and zero.  

So according to the above, the file containing the generated codes will be created according to the high 

numbering. No two code strings should be in a shape that does not have overlap times. As an example, 

the code 244111231 indicates that the course of 2441 is carried out by the teacher one, at 8:00 to 10:00, 

in class 2, on Monday, with a non-closing condition. 

4.2. The Program Used for Implementation 

Fig. 4 illustrates the flowchart of the main program used for the implementation in MATLAB (R2017) 

environment. The main reason to use this environment is that many source code and Toolbox are 

available [17]. As the figure shows, the input matrix, ‘Numeric’, are read from an instance Excel file 

in which there are many rows. Each its row includes the class, the number of students, the week for a 

course.  

 

 

 

Variable 
Name of 

Courses 

Teacher's 

Id. 

Course- 

Start 

Time 

Class No.  
Workshop 

No. 
Day No. 

Holiday 

Status 

How to 

Code 

Four  digits 

numbers 

From 1 to 

the number 
of teachers 

Codes as 

time 
interval 

From 1 to 

the number 
of classes 

From 1 to the 

number of 
workshops 

From 1 

to 7 
Zero/One 

Sample 

1 
2441 1 1 2 0 3 1 

Sample 

2 
1313 9 2 0 2 3 0 
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Fig. 4. Flowchart of the main program used for the implementation.  

The program is run for many iterations. The counter of each iteration is denoted by ‘ITER’. In each 

iteration, an initial solution is generated and put into the matrix ‘INTSOL’. The size of this matrix is 

specified with the number of different modes in the search space. The number of modes of the ‘INTSOL 

equals the number of days of the week multiplied by the number of students multiplied by the number 

of input matrix states that is 40 modes. So in total, for the number of 30 students, there are 7×40×30 

possible states. To improve and refine the initial solution, a number of limited permutations are 

performed. In our implementation, a maximum of 50 is considered for the initial permutations. 
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The solutions in ‘INTSOL’ must be investigated to be a candidate solution. This investigation is 

performed subject to violating the soft/hard constraints on the problem. The element ‘E’ in ‘INTSOL’ 

must be checked subject to satisfying the hard/soft constraints. Based on the type of the hard/soft 

constraints, the amounts of violation in the objective function is calculated and put into the variable ‘V’. 

So the value of the objective function, denoted by ‘ObjectValue’, is increased with the amount of ‘V’. 

Then, the element ‘E’ is put into ‘CANSOL(ITER)’. The same operation is performed for every element 

of the ‘INTSOL’. 

Fig. 5 shows the train stages used in this study in the form of pseudo code. The deep-belief network 

used in this study has one output layer, four input layers, and four hidden layers. For training the DBF, 

we use the matrix ‘Numeric’ and ‘CANSOL’. In line 7 of the pseudo code, the training is initially 

modeled by the ‘pretrainRBM’ function, which includes several methods. We used GBRBM in this 

study. In line 8 of the pseudo code, the function ‘SetLinearMapping’ sets the RBM associated to the 

linear mapping to the last layer. It has three input parameters. The first parameter is the ‘dbn’ (the DBN 

model). The second parameter is the matrix ‘inputdata’, in which the number of rows is the number of 

data, and the number of columns is the number rows of visible (input) nodes. The third parameter is the 

matrix ‘outputdata’ is the teaching data. In this matrix, the number of rows is the number of data, and 

the number of columns is the number of hidden (output) nodes.  

1 Set outputnum to 1 

2 Set hiddennum to 4 

3 Set inputnum  to 4 

  

4 Set inputdata to NUMERIC 

5 Set outputdata to CANSOL 

  

6 dbn ← randDBN([inputnum, hiddennum, outputnum]);    

7 dbn ← pretrainDBN( dbn, inputdata );                       

8 dbn ← SetLinearMapping( dbn, inputdata, outputdata );      

9 dbn ← trainDBN( dbn, inputdata, outputdata );              

  

10 estimate ← v2h( dbn, inputdata ). 

  

Fig. 5. The pseudo code used for training DBF.  

In the training process, a momentum term was added to update the parameters to promote both the 

convergence speed and the performance the DBF. The initial momentum is set to 0.5 and after 5 epochs 

the momentum is set to 0.9. The options of the training process that applied to the program are according 

to the setting in Table 4.  
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Table 4. The setting used in running the deep-belief network [29]. 

 

 

 

 

 

After the training process, we used the network and calculated the objective values based on the new 

input to the network. In line 10 of the pseudo code in Fig. 5, the trained DBF is executed to provide an 

estimation by the network when the matrix ‘inputdata’ is feeding into. There is a function, as h2v [28] 

to make the transformation from hidden (output) variables to visible (input) variables. The matrix 

‘inputdata’ is used as its input parameters and the hidden (output) variables, where its number of row 

is the number of data and its number of column is the number of hidden (output) nodes. The output of 

the function h2v is the matrix ‘estimate’ as the network output, on which the error rate is calculated. In 

fact, the program error equals the estimates obtained minus the outputs divided by the total outputs 

available. We run the program for 100 iterations and collect the results. Table 5 shows an output sample 

of the proposed approach.  

Table 5. An output sample from the execution of the proposed approach. 

As an example, the program is run for one hundred iterations to process a subset of an instance in the 

dataset. In this dataset, there were 161 instances of the problem. Fig. 6 shows the sum of errors in the 

objective function (left-side) and the percentage of the sum of errors (right-side). As the figure (right-

side) shows the percentage of error is around 5% in the iteration one and around 1% in the iteration 100. 

There are fluctuations during running the program. The maximum percentage of the sum of errors is 

about 4% in the iterations 20 and 40.  

Options Setting 

Initial momentum.  0.5 

Maximum iteration for initial momentum. 5 
Final momentum after maximum iteration of initial momentum. 0.9 

Maximum iteration number. 100 
Number of training RBMs counted from the output layer.  all layer 

Weight cost. 0.0002 
Dropout rates for each layer. 0 

Step size in learning. 0.01 
Number of mini-batch data. Number of all data 

Name of 

Course 

Class 

Number 

Week 

Day 

Holiday 

Status 

Workshop 

Number 

Teaching 

Hours 
Teacher’s Id 

1011 30 4 1 0 1 5 

3021 30 3 1 0 1 5 

4444 0 3 1 121 3 4 

2121 10 1 1 0 4 6 

1313 8 4 0 0 1 2 

8787 0 5 0 100 4 9 

1324 15 1 1 0 3 16 
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Fig. 6. The sum of errors of the objective function (left-side), percentage of the sum of errors (right-side).   

The experimentation is conducted on a G4400 CPU at 3.50 GHz with a memory of 16.00 GB. To obtain 

the execution time, a ‘tic’ command is placed at the beginning of the program and a ‘toc’ command at 

the end of each run. This value will vary slightly in different systems with different specifications. The 

difference in the objective value between the newly generated solution and the best recorded solution 

after the application of the selected sequence of heuristics is used as a score value. Table 5 shows the 

score, execution time, and error rate of SSHH [5] and DBN for each selected instance over ten runs. 

The score is computed using the scoring scheme utilized in the second round of the ITC 2011 

competition for ranking the two approaches. The best values in Table 6 are highlighted in bold. Fig. 7 

shows the Score, Error Rate, Execution Time, and Average indicators of both approaches, SSH, and 

DBN, for each selected instance over ten runs. 

Table 6. The score, execution time, and error rate of SSHH along with DBN for each selected instance over ten 

runs. 

 

 
From Table 6 and Fig. 7, we can drive the following corollaries:  

 Corollary 1. The score for the proposed approach in 5 out of 8 instances of the problem are better than 

that of SSHHT. So, the proposed approach did better than SSHHT, on average. 

 Score Error Rate (%) Execution Time 

(Seconds) 

Instance SSHH DBN SSHH DBN SSHH DBN 

Brazil-Instance 2 1.45 1.30 6.10 5.01 180 178 

Finland-Elementary School 1.50 1.50 4.30 3.02 177 153 

Greece-Aigio1st High School 

2010 
1.20 1.45 5.50 4.25 166 156 

Italy-Instance 4  1.40 1.30 4.35 3.02 171 159 

Kosova-Instance1 1.20 1.15 7.41 6.25 169 177 

Netherlands-Kottenpark 2009 1.40 1.50 6.23 7.05 189 152 

Africa-Woodlands 2009 1.60 1.40 5.51 5.06 175 149 

Spain-School 1.50 1.35 4.32 3.88 198 176 

Average 1.41 1.37 5.47 4.69 178.13 162.50 
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 Corollary 2. The error rate for the proposed approach in 6 out of 8 instances of the problem are less than 

that of SSHHT. So, the proposed approach performed is better than SSHHT, on average. 

 Corollary 3. The execution time of the proposed approach in 7 out of 8 instances of the problem are less 

than that of SSHHT. So, the proposed approach performed is faster than SSHHT, on average. 

 Corollary 4. From Table 6 (last row) and calculation on the averages, we conclude the percentages of 

improvements in the proposed approach are about 2%, 8%, and 14% in three indicators (the score, the 

error rate, and the execution time), respectively.  

 Corollary 5. We considered three indicators to compare both approaches, namely the score, the error 

rate, and the execution time. As Fig. 7 and Table 6 (last row) show, the proposed approach performed is 

better than SSHHT, on average. 

 

Fig. 7. The score (left-side up), error rate (left-side down), execution time (right-side up), average (right-side 

down) of both approaches.     

From our experiments, we can conclude the program provided by the proposed method is highly flexible 

ahead of the changes and the entry of new data because the network draws the data in a single step in 

the form of a pattern. Moreover, the amount of human error and computation in the program is reduced 

because the deep-seated network is simple and obtains a better solution in total in the shortest time. 

5. Conclusion and Future Work 

In this research, the problem of scheduling academic courses has been investigated. The aim is to obtain 

a suitable timetable according to the constraints defined for the problem. To solve the problem, the data 

of a specific data set is investigated using the DBN. The reason for using the DBN to solve the 
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scheduling problem is to compete with the other methods mentioned in this field during the runtime and 

the degree of accuracy of the program to avoid interference. The overall results of this research show 

that the deep-belief network provides a better score, less error, and execution time for the scheduling of 

academic courses compared with SSHH approach. In our experience, DBN can be much more efficient 

in terms of computation and number of parameters for the same level of accuracy.  

The work carried out in this study included a set of constraints. The most important future work that 

can be done is to add other constraints to the problem. One of these constraints is taking a course at 

another faculty by a student at the college of origin. Another direction to future research is to modify 

the objective function so that the distribution of students in the classes is maximized. This is necessary 

to keep health protocols to avoid the Crona-19 virus in the education environments.    

References 

[1] Kazarlis, S., Petridis, V., & Fragkou, P. (2005). Solving university timetabling problems using advanced 

genetic algorithms. GAs, 2(7), 8-12.  

[2] McCollum, B. (2006, August). A perspective on bridging the gap between theory and practice in 

university timetabling. International conference on the practice and theory of automated 

timetabling (pp. 3-23). Springer, Berlin, Heidelberg. 

[3]  Aladag, C. H., & Hocaoglu, G. (2007). A tabu search algorithm to solve a course timetabling 

problem. Hacettepe journal of mathematics and statistics, 36(1), 53-64. 

[4] Carter, M. W. (2000, August). A comprehensive course timetabling and student scheduling system at 

the University of Waterloo. International conference on the practice and theory of automated 

timetabling (pp. 64-82). Springer, Berlin, Heidelberg.  

[5] Kheiri, A., & Keedwell, E. (2017). A hidden markov model approach to the problem of heuristic selection 

in hyper-heuristics with a case study in high school timetabling problems. Evolutionary 

computation, 25(3), 473-501.  

[6] Liu, Y., Zhou, S., Chen, Q. (2011). Discriminatory deep faith networks for visual 

data       classification. Pattern recognition, 44(10-11), 2287-2296.  

[7] Burke, E. K., & Petrovic, S. (2002). Recent research directions in automated timetabling. European 
journal of operational research, 140(2), 266-280.  

[8] Burke, E., Jackson, K., Kingston, J. H., & Weare, R. (1997). Automated university timetabling: The state 

of the art. The computer journal, 40(9), 565-571.  

[9] Carter, M. W., & Laporte, G. (1995, August). Recent developments in practical examination 

timetabling. International conference on the practice and theory of automated timetabling (pp. 1-21). 

Springer, Berlin, Heidelberg.  

[10] Corr, P. H., McCollum, B., McGreevy, M. A. J., & McMullan, P. (2006). A new neural network based 

construction heuristic for the examination timetabling problem. In Parallel problem solving from nature-
PPSN IX (pp. 392-401). Springer, Berlin, Heidelberg.  

[11] Glover, F. (1987). Tabu search methods in artificial intelligence and operations research. ORSA artificial 

intelligence, 1(2). ci.nii.ac.jp/naid/10026173744 

[12] Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. 

Science, 313(5786), 504-507.  
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