
   

 

1. Introduction  

Air pollution is the main problem of general health in developing countries. The causes of the many 

such pollutions are rooted in the energy section. It is the fourth and the greatest threat to human health 

after high blood pressure, unhealthy date, and smoking [1]. Almost 6.5 million people’s annual death 

are assigned to the low quality of the air. 

Earth warming caused by the emission of a lot of greenhouse gas is a global concern [2]. The second 

participation in Green House Gas (GHG) with 23% of CO2 emission in 2014 is a transportation section 

[3]. This section depends severely on the combustion of oil so improving and changing the energy 

consumption in this industry is one of the national aims of many countries. Countries as India, England, 

and Germany declared that they will not sell and use the vehicle with inner combustion to 2030 [4]. 
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A B S T R A C T P A P E R    I N F O 

The use of an Electric Vehicle (EV), particularly in different operations of 

goods distribution is a solution for salvaging the crowded cities of the world 

from air and noise pollutions as well as Green House Gas (GHG) emission. 

This paper presents a Multi-Depot Electric Vehicle Routing Problem (MD-

EVRP) with recharging stations by considering the expected penalty of fuzzy 

time windows in pickup/delivery. Since the MD-EVRP with Fuzzy Time 

Windows and Pickup/Delivery (MD-EVRP-FTW-PD) constraints is an NP-

hard problem, three meta-heuristics (i.e., Simulated Annealing (SA), Variable 

Neighborhood Search (VNS) and a hybrid of SA and VNS (VNS-SA)) are used 

to solve such a hard problem. The parameters of these algorithms are measured 

by the Taguchi experimental design method. The proposed hybrid VNS-SA 

algorithm is more efficient in comparison with other algorithms. 

Chronicle: 
  Received: 17 August 2020 

 Reviewed: 13 September 2020 

 Revised: 09 December 2020 

Accepted: 26 January 2021 

 
   Keywords: 

Electric Vehicle Routing. 

Green House Gas Emission. 

Fuzzy Time Windows. 

Simulated Annealing. 

Variable Neighborhood Search. 

J. Appl. Res. Ind. Eng. Vol. 8, No. 1 (2021) 1–18 

 
Journal of Applied Research on Industrial 

Engineering 
      www.journal-aprie.com 

 



 Ghobadi et al. / J. Appl. Res. Ind. Eng. 8(1) (2021) 1-18                   2 

European Union obligates to reduce CO2 in 2050 in comparison with 1990 between 80 and 90%. To 

reduce GHG emission and keep the global warming increase under 2 centigrade [5]. 

An electric vehicle is a helpful approach to solve the climate problem [6]. Among vehicles, electric 

trucks with a medium-size in comparison with a diesel truck produce less CO2, 300 tons on average [7]. 

Although, most of the scientific and technological achievements related to the private and general 

electric vehicles, in recent years, a large virtue of research is concerning by using electric vehicles in 

the distribution of goods. In the same portion, the share of the electric vehicle market is increasing. For 

example, in China, the sale of these vehicles has reached 331000 per year to more than 50% between 

2015 and 2017, which is 777000 set [8]. Also, in the world, 1.26 milliard electric vehicles in 2015 are 

used that are 100% more than 2010 [9]. This increase is due to features with an environment as a lack 

of GHG emission, less noise pollution, and high random energy that could provide logistic companies 

with a green picture for increasing social consciousness and environmental awareness [8]. However, 

this share of the market for vehicles is not satisfied. Then with financial incurring politics to finance the 

cost of buying a car, road toll exemption, and priorities of reaching the city center that some of the 

countries use it, can help to use these vehicles widely [10-13]. 

An electric vehicle challenges a limitation of movement ranges, and longings of complete charge time. 

Movement ranges limitation of these vehicles, that is, reaching to customers and returning to depot 

needs to recharge the battery, then the place of recharge station is important. Because of the long 

duration of charging time, it uses a changing battery technique instead of charging the battery, to spend 

less time. In the way vehicles to complete a route, faced trouble because of lack of suitable and enough 

under structures for changing the battery and lack of similar standards. For this reason, logistics 

companies prefer to provide these facilities by themselves. Thus, the place of the recharging stations 

plays an important role in optimization. 

A fuzzy optimization method is widely used in Vehicle Routing Problems (VRPs); however, a very 

limited uncertain problem is proposed for electric vehicles. To deal with unknown parameters, some 

researchers have used an incidental optimization method. However, in practical applications, it is 

difficult to describe these parameters as incidental variations for the lack of enough historical data for 

analyzing. In return, it can be used fuzzy variations to deal with these unknown parameters [14]. 

The model proposed in this paper for the Multi-Depot Electric Vehicle Routing Problem with Fuzzy 

Time Windows and Pickup/Delivery (MD-EVRP-FTW-PD) is time windows of fuzzy service time. 

Then, the model is first solved by GAMS software for small-sized problems and by three meta-heuristic 

algorithms (i.e., Simulated Annealing (SA), Variable Neighborhood Search (VNS) and a hybrid of SA 

and VNS (VNS-SA)) coded in MATLAB software for large-sized problems. Finally, the efficiency of 

the algorithms and solution time is reported and compared. Experimental results show that the proposed 

algorithm is effective for solving the MD-EVRP-FTW-PD. 

This paper is organized as follows. Section 2 considers the related work concerns with this investigation. 

Section 3 presents the MD-EVRP-FTW-PD model. Section 4 proposes meta-heuristic algorithms for 

solving this model. Section 5 reports the findings and result analyses. Finally, Section 6 provides the 

conclusion and some future studies. 
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2. Literature Review 

The wishes of the countries to use electric vehicles not only in cities with high crowded population and 

pollution but also in logistic distribution networks are increasing. Although in an electric vehicle 

section, there are many mathematical models, in commercial electric vehicles and trucks, there are many 

fields to investigate. First, a brief literature review of VRPs with Pickup and Delivery (VRP-PD) and 

fuzzy theory in VRPs is presented. Then, the papers related to EVRPs are reviewed to find the research 

gap. 

Çatay [15] studied on the VRP-PD. Fan [16] presented the VRP-PD and time windows to increase 

customer satisfaction. Wang and Qiu [17] studied the VRP-PD and probable demand and solved their 

model by a meta-heuristic algorithm. Setak et al. [18] presented a multi-depot capacitated Location-

Routing Problem (LRP) with simultaneous pickup and delivery and split loads. They used 

heterogeneous vehicles in their model and solved the problem with a generic algorithm. Wang and Chen 

[19] studied the VRP-PD and time windows and solved their problem by a generic algorithm. Several 

papers in the VRP-PD and time windows or multi-depot can be found in [20-24]. The fuzzy theory has 

also been used widely in VRPs, such as LRP [25], multi-depot VRP for hazardous material [26], fuzzy 

multi-depot VRP-PD [27]. Other related VRPs can be found in [28-30]. 

Although, the purpose of the VRP and EVRP is to find an optimal routing to cover all of the customers’ 

demands. As mentioned before, in contrast to classical vehicles, the domain of driving electric vehicles 

is short and the limits will be more due to battery capacities. 

Artmeier et al. [31] used a graph theory concept and suggested a routing optimization problem with 

alternative fuel vehicles. They presented the shortest path algorithm by considering vehicle limitations. 

Other studies can be mentioned in the literature, such as a study on the battery capacity by Lin et al. 

[32], concentration on variable policies, such as type of charges by Mart´ınez-Lao et al. [33], partial 

recharge station electric vehicle with time windows by Keskin and Çatay [34] and the possibility of 

battery swapping by Yang and Sun [35].  

The other studies concerning an EV location and routing problem are also presented. Schiffer and 

Walther [36] and Li et al. [37] studied the charge station LRP. Hof et al. [38] presented swapping battery 

and charge station LRP. Paz et al. [39] considered multi-depot LRP in three models. The first model 

has only a partial charge station in the route. The second model has only a battery-swapping station and 

the third one has partial charge station and battery swapping in the route. The results of their model 

show that partial charge and battery swapping are more efficient. Keskin and Çatay [40] represented 

the EVRP with time windows and fast chargers and proposed the ALNS algorithm to solve the model. 

For further studies in this field, the reader can refer to [41]. 

The point is this that the above-mentioned studies have been done in a certain environment and the 

unknown factors affecting the effects have been ignored suggested to these unknown factors. In fact, in 

addition to unknown factors relating to vehicles, many of the city and intercity logistic applied programs 

are the cases out of the atmosphere, traffic condition, road conditions, the existence of recharging 

stations, or battery changing, and unknown demands of customers. Although Zhang et al. [9] regarded 

three parameters of time service, energy consumption, and travel time as fuzzy, their model was one 

depot. 
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The model presented in this paper has a multi-depot, a set of customers with certain demand, the 

possibility of pickup/delivery, charge stations, and homogenous fleet with a fixed capacity of the EV. 

In this model, time windows of fuzzy service time for customer satisfaction. This model is very suitable 

for the decision-maker considering a multi-depot distribution and determining the route with the 

minimum cost under uncertainty.  

The contributions of this paper are to develop the EVRP-TW-PD model to a multi-depot model and use 

the expected penalty of time windows with a fuzzy approach for salsify customers. The model is solved 

for small and large sizes with GAMS software and also three algorithms of SA, VNS, and combination 

of SA and VNS algorithm. 

3. MD-EVRP-FTW-PD Model 

In this section, the important assumptions for formulating the model is first presented, and then, it 

concerns with notations and a description of the model. 

3.1. Assumptions Model 

The main assumptions about the proposed model are as follows: 

 The numbers of depots and vehicles in each inventory are specified. 

 Electric vehicles have the same capacity loading and battery as well as move with constant speed a 

limitation for driving. 

 The electrical energy consumption multiple is constant and is adjusted to the distance. 

 Recharging time in the station is fixed. 

 EVs move from distribution depots or recharging stations with a complete charge and do not consume 

energy in a customer service process. 

 Each customer has only one specific demand (delivery or pickup), and services to each customer are 

provident only one time. 

 EVs exit each disturbing depot, then provide service to customers continuously and finally return to the 

same depot from where it had started to move. 

 To satisfy customers, the time windows of a fuzzy number are considered to pick up or delivery. 

3.2. Notations 

The following notations are used in the proposed MD-EVRP-FTW-PD shown in (e.g., Table 1): 

Table 1. Definitions of sets, parameters, and variables. 

Notations Definition 

Sets and Indices 

O Set of all depots; denoted by index o. 

NC Set of customers. 

NE Set of recharging stations. 

NT Set of all nodes, ONCNE, i, j= {1,2, 3, …, n}. 

NK Set of electric vehicles; denoted by index k. 
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Notations Definition 

Parameters 

Disij Distance between nodes i and j. 

Demi Demand of node i. 

Capk Capacity of electric vehicle k. 

[LTi, UTi] Fuzzy interval: lower and upper bounds of acceptable time windows of node i. 

   [LEi, UEi] Fuzzy interval lower and upper bounds of expected time windows of node i. 

   STi Service time in node i. 

   TTij Travel time between nodes i and j. 

   BC Battery capacity of electric vehicle k of node i. 

   EC Electricity consumption coefficient. 

   CU Cost of unit transportation. 

CW Cost of unit time for waiting. 

CL Cost of unit time cost for late. 

Ko Number of electric vehicle k of depot o. 

LN An arbitrarily large number. 

Variables 

ijk
X  1 if the route between nodes i and j is traveled by electric vehicle k; 0, otherwise. 

ik
Y  1 if node i is served by electric vehicle k; 0, otherwise. 

ok
W  1 if electric vehicle k travels from depot o; 0, otherwise. 

Aijk Amount of pickup or delivery electric vehicle k on board on nodes i and j. 

TAik Time of vehicle k arrives at node i. 

TLik Time of vehicle k leaves node i. 

TSik Service start time of vehicle k at node i. 

RCAik Remaining charge when vehicle k arrives at node i. 

RCLik Remaining charge when vehicle k leaves node i. 

Subik Variable used for elimination of sub-tours. 

 

3.3. Determination of the Objective Function and Constraints 

In this paper, the minimization objective function is divided into two sections: Transporting cost and 

penalty cost of time windows. These sections are the total cost of transportation and the penalty cost of 

violating of soft and hard time windows, respectively. Since it is very important to rank the fuzzy subsets 

[42] in the transportation problem, the service time windows are assumed to be fuzzy. Different methods 

for ranking of fuzzy subsets are proposed in the literature. In this paper, the developed method of Liou 

and Wang [43] is used. Based on this method, the total integral value is a convex combination of the 

right and left integral values through an index of optimism, [0, 1]. The left and right integrals show 

the optimistic and pessimistic points of view of the customers, respectively. The total integral value is 

reached by a convex combination of the right and left integral values. This value is used to rank fuzzy 

numbers. 

In this model, uncertain parameters, the pattern sets of the fuzzy number F= (a, m, b), where a, m and b 

are estimated as the pessimistic value and most likely, and optimistic values, respectively Eq. (1). If F 

is a triangular fuzzy number, the membership function SF will be defined as follows [42, 44-46]. 
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Then, the Expected Interval (EI) and the Expected Value (EV) of F are calculable by: 

1 1

n n

n n 1 1

0 0
1 2
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EI(F) [ , ] [ (x)dx, g (x)dx] [ (a m), (m b)].E

2 2
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E E  
   

Therefore, for each of the parameters LTi, UTi, LEi, and UEi, three Pessimistic (A), probabilistic (m), and 

Optimistic (b) times are assumed. For example, LTi: LT (a)i, LT (m)i, LT (b)i. Then, we calculate the 

penalty cost of the mixed time windows if the vehicle arrives earlier or later than these intervals. The 

other limitation of this model is the limitation of a vehicle if the vehicle is not charged to reach the 

customer, it should be returned to the recharge station if not, it should be returned to the depot from 

which the vehicle had started to move. 

3.4. Mathematical Model 

In this subsection, the presented model is as follows: 

  

Minimize 
ij ijk ik ik ik

i NT i NT k NK i NC k NK
j i

Z CU( Dis X ) Y (CW.LL CL.UL )
    



        

subject to 
ijk

i NT,i j k NK

X 1,
  

   j NC,   

jik

i NT,i j k NK

X 1,
  

   j NC,   

ojk jok ok

j NC NE j NC NE

X X W ,
 

  
U U

 k NK,o O,    

ijk jik jk

i NT,i j i NT,i j

X X Y ,
   

    j NC NE,k NK,  U  

ojkX 0  j O NE,k NK,o O,   U  

ijk k ijk0 A Cap .X   i, j NT, j i,k NK,     

ijk j jik

i NT,i j k NK i NT,i j k NK

A Dem A
     

      j NC,   

okTL 0  k NK,o O,    

jk ijk ik ij

i NT,i j

TA X .(TL TT )
 

   j NC NE,k NK,  U  

ik ik ik iTL Y .(SST ST )   j NC NE,k NK,  U  

ik ik ik ikSST Y .(TA LL )   j NC NE,k NK,  U  
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ikRCA 0  j NT,k NK,    

jk ijk ik

i N ,i j

ij

T

ERCA X .(RCL )C.Dis
 

   j NT,k NK,    

ikRCL BC  i O NE,k NK,  U  

ik ikRCL RCA  j NC,k NK,    

ik jk ijkSub Sub LN.X LN 1     j NT, j NC, j i,k NK,      

ijk o

j NC NE k NK

X K
 

 
U

 i O,   

ik iTA LT  i NC NE,k NK,  U  

ik iTA UT  i NC NE,k NK,  U  

ijkX {0,1}  i, j NT,i j,k NK,     

ikY {0,1}  j NT,k NK,    

okW {0,1}  o O,k NK,    

ikSub 0,LN 0   i NT,k NK.    

Constraint (4) illustrates the objective function representing the total cost, including transportation costs 

and the costs for violating time windows. Constraints (5) & (6) ensure that every customer is served 

exactly once. Constraint (7) guarantees that each vehicle moved from each depot should be returned to 

the same depot. Constraint (8) represents the vehicle flow-conservation equation, that is, the number of 

times vehicle k enters into a point i is equal to the number of times it leaves point i. Constraint (9) 

guarantees the vehicle do not go to recharge stations from depots directly. Constraint (10) imposes the 

maximum vehicle capacity constraint. Constraint (11) ensures the vehicle load variation on a route. 

Constraint (12) imposes the departure time of a vehicle from each depot. Constraints (13) - (15) are to 

calculate the time that vehicle k arrives at and departs from the point i and the time starting service at 

point i. Constraint (16) ensures that the vehicles are fully charged after departing from the distribution 

center or the recharging stations. Constraints (17) - (19) represent the electricity constraint. Constraint 

(20) guarantees the elimination of the sub-tour. Constraint (21) represents the number of vehicles that 

cannot exceed mo. Constraints (22) & (23) represent time windows (according to what is said, fuzzy 

numbers). Constraints (24) & (26) are binary variables. Constraint (27) guarantees Subik, where LN is a 

non-negative auxiliary variable. 

3.5. Model Linearization  

Considering the nature of the problem, the model is formulated in nonlinear form. By considering that 

nonlinear models are time-consuming in comparison with their solving linear models and there is not 

available an algorithm for ensuring a comprehensive optimal answer. The presented mathematical 

model is a Mixed-Integer Nonlinear Programming (MINLP) model due to some nonlinear equations. 

The multiple variables in Eqs. (4), (13)-(15) & (17). Linearization methods are now applied to obtain an 

equivalent linear mathematical model. Linear Programming (LP) as a very multi-functional technique 

is used to making the design and solving a variety of problems [47]. This method was proposed by 

McCormick [48]. 
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In the second term of the objective function, two variables change Eqs. (28) and (29) are occurring. 

Some equations are non-linear that will be changed in linear equations. Then, the model is solved in an 

MIP form. 

 ik     i ikLL max LE TA ,0       i NT,k NK.    

 ik    ik iUL  max TA UE ,0     i NT,k NK.    

4. Proposed Method 

A reason for using the meta-heuristic algorithm is the history and complexity of the MD-EVRP-FTW-

PD model for its optimization. This section represents a solution representation method, neighborhood 

structure, solution initialization, operators to deal with the infeasible solutions, and adjusted method of 

parameters and parameters of each algorithm. Then, three meta-heuristic algorithms (i.e., SA, VNS, and 

a hybrid of SA and VNS) are proposed to solve the presented model. 

4.1. Solution Representation Method 

To write the computer programs for the proposed algorithms, we first need the representation structure 

method of solutions. The structure must be in a manner that can be observed and studied performing a 

solution. The structure design of the representation method has an important role in the fitness function. 

The solution representation is a solution string that includes several cell customers, depots, and charge 

stations. Vehicle order of visit between nodes is determined in this representation. The (e.g., Fig. 1) 

shows a small problem with four customers and two depots and one recharge station are shown. In this 

figure, the places of 1 and 2 are depots, and 3, 4, 5, and 6 are nodes of customers, and 7 is the charge 

station showing an electric vehicle movement tour. To assign customers to electric vehicles, all the cells 

from the beginning of the string will be assigned to the first vehicle until we reach a zero value.  

 

 

Fig. 1. Example of a solution representation. 

 

4.2. Neighborhood Structure  

The main purpose of the neighborhood structure in the algorithms is to construct a neighborhood 

solution out of an available solution by changing them [49]. The SA algorithm uses temperature changes 

to make neighborhood structures. The VNS algorithm uses three moving actors to make a new 

neighborhood for current solutions. The hybrid VNS-SA algorithm uses the combination of these 

structures presented separating in describing each algorithm.  

4.3. Solution Initialization Algorithm 

To begin the algorithm, it needs to initialize the suitable and quality solution. After recalling the main 

parameters out of initializing the solutions based on the demand limitation (for delivery and pickup), 

the maximum limit of the loading capacity (the algebraic sum of delivery and pickup should not exceed 

the vehicle capacity) and the charge limitation of EVs should have enough charge. Breach of limitations 

may result in an infeasible solution thus the strategy of the punishment extent suitable with the extent 

of a limitation breach in the algorithm should be added to the fitness function. These parameters (i.e., 

1 3 4 5 6 1 0 7 2 
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Sol.demand, Sol.charge, and Sol.cap) are equal to the extent of punishment for the demand limitation 

breach of per unit, charge, and the extent of the loading capacity. This results in a feasible solution with 

the  coefficient. 

4.4. Simulated Annealing Algorithm  

SA is a simple and effective meta-heuristic algorithm for solving optimization problems proposed by 

Metropolis in 1953.   It was first used in optimization by Kirkpatrick et al. (1983). SA has been used 

successfully in various types of VRPs and shown good performance [50]. 

SA is an algorithm based on slowly annealing technique, which is based on local searching in solution 

space and accepts probabilistic and non-standard solutions to escape from local optimization to reach 

for better answers. By decreasing the annealing condition for each given temperature, the level of energy 

is calculated according to the Boltzmann distribution. Algorithm parameters are included in initial 

temperature, final temperature, the number of iterations in the fixed temperature, and the number of 

iterations in the case of lack of any solution improvement. The algorithm by establishing one of two 

conditions: reaching to final temperature or several important solution iterations is concluded. To escape 

of local optimization, SA uses a function for accepting the worse solution. 

In this probable function, the current situational situation, a situation in the neighborhood, Boltzmann 

consonant, and current temperature are determined. In Eq. (30),   means the deviation of energy (i.e., 

objective) function values. 

R= exp [−Δ/(K∗T)].  

It is necessary to mention that the initial solution of the SA algorithm is presented by using the method 

of producing the initial solution in the next section. 

In SA, one of neighborhood search methods is used in each repetition, until the best solution results; 

however, there is not any specific procedure for using the neighborhood search method. This 

neighborhood search process will be continued until the number of repetition reach to determined 

quantity, then the system temperature will be reduced and this process will be continued to reach the 

stopping criterion. 

4.5. Variable Neighborhood Search Algorithm  

VNS is a meta-heuristic algorithm used to solve hybrid and global optimization problems. In 1997, 

Mladenović and Hansen [51] first developed a VNS algorithm. The main idea of this algorithm is the 

systematic neighboring change by using a local searching method. The general structure of this method 

is as follows. First, several neighboring structures and a primary answer are determined, then the 

algorithm using the primary neighboring structure, based on two first improvement selection 

approaches or best improvement selection starts to search. In the case of observing any improvement in 

solution, the better solution is replaced by the current solution, and the neighboring structure returns to 

the first start. After several iterations and in a case of not observing any improvement in answer, it 

enters the next neighboring structure. The stopping condition of this algorithm is included in the case 

as a limitation in the number of iterations, the computational time, the number of iterations between 

two consequent improvements in answering as well finding a locally optimal solution in the whole 
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neighboring structure. The VNS algorithm has a more meta-heuristic algorithm structure and its 

advantage is fewer parameters, consequently, it has high speed.  

The suggested VNS algorithm to the given problem has four main phases, namely the generate solution 

initialization, shaking, local search phase, and altimetry stop.  

 Generating the initial solutions: The solution initialization is made with generating a line matrix. It is 

necessary to point out that this phase will be continued to find a solution. 

 Shaking: The aim of this phase is to make a shake in the existing solution. In this phase, several making 

neighbor structures are used and the neighborhood structure is changed.  

 Local search: This phase aims to find the local optimal solution. After making the neighborhood in this 

phase, the local search method is applied to the changed solution. Swap, Insertion, and Reversion are 

used in this paper. The first operator (insertion) first selects two elements of i and j as a sample, and then 

take the i-th element from its place and locate it in the place of j 1  (one cell after j). The second 

operator (i.e., reversion) first selects the elements of i and j as a sample and then ordering of their 

arrangements, and all of the elements between them are reversed. The third move operator (i.e., swap) 

select two elements of i and j accidently and then change the place of their elements with each other. 

 Stopping criterion: In each algorithm in the neighborhood, if in the number of repetitions MaxIt2, a 

better answer than the current answer will not be found, the neighborhood will be increased and if the 

algorithm in the neighborhood will be Lmax, the neighborhood will be returned to l1. The algorithm will 

be stopped if the number of repetitions reaches to MaxIt. 

4.6. Hybrid SA and VNS Algorithm  

The concept of the SA algorithm into VNS, it guarantees the effectiveness of VNS and alleviates the 

potential weakness of VNS (intensification) [42]. The reason is perhaps the strategies for searching the 

answer space by two algorithms. In the SA algorithm in each iteration, one of the methods for searching 

the neighborhood is used to produce a new answer. In this algorithm, there is not a specific procedure 

for using the methods for the searching neighborhood. However, in the VNS algorithm, first, the 

methods for neighborhood searching are arranged in terms of the extent of changes that applied in 

solution. Then, the algorithm starts from its search by the method of neighborhood searching with the 

least changes in answer, and if the solution does not find any consequent repetition, it will choose the 

next search that causes more change in the current solution. This causes the algorithm with a few 

changes to follow the better solution if the current solution is good. If a better solution cannot be found, 

the solution will be changed more or in order words, it will continue its search in more far space from 

the current solution. The pseudo-code of VNS-SA used in this paper is shown in (e.g., Fig. 2). 

The SA algorithm uses temperature changes of the neighborhood structure. The VNS algorithm has no 

temperature, uses three defined neighborhoods, keeps a better solution in proportionate to that 

neighborhood, and omits the worse solution. However, the hybrid of SA and VNS (i.e., VNS-SA 

algorithm) starts with finding initial solutions. It continues in addition to conventional neighborhood 

structures of VNS, an internal loop algorithm out of neighborhood search in temperature until l ≤ lmax. 

Then, a geometric function is used to reduce the temperature of SA Eq. (31). 

Ti+1= αTi , 

where  is temperature reducing parameter, Ti is the current temperature, and Ti+1 is the new temperature. 

The algorithm will continue to reach to the determined final temperature. 
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Fig. 2. Pseudo-code of the SA algorithm into VNS (i.e., VNS-SA). 

 

4.7. Taguchi Parameter Design 

The results of the meta-heuristics are dependent on the values of the input parameters, it has been 

proposed. The parameters of the effect of the meta-heuristic algorithms on their suitable function, in 

which the Taguchi analysis is a statistical method used to adjust parameters. In this method, a rate 

named S/N is used to study solutions. At this rate, S is extant of utility, and N is a non-utility. As a result, 

the is to increase the quantity of this rate as possible [52]. 

From the standard table of the orthogonal arrays, the L9 is selected as the fittest orthogonal array design, 

which fulfills all the minimum requirements. For each algorithm, the effect parameters are determined 

by trial and error. For each parameter, three levels are considered. Minitab Software is used to analyze 

the data. By considering a number of the selected factors and selected levels for the analysis, a suitable 

standard table is chosen for this study. Then, three typical problems are selected accidentally. Each 

problem by considering the given quantities for the parameters in each line of the Taguchi table to times 

runes. The mean objective function values are reported to Minitab17 software [47]. Finally, for each 

parameter, the level with more S/N as the best level of that parameter is considered.  
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4.8. Parameter Tuning 

To solve the model, the parameters of the meta-heuristic algorithms are tuned according to (e.g., Table 

2). In this table, T is the final temperature and  is the reduction multiple of temperature in the SA 

algorithm. T0 is also the initial temperature. MaxIt and MaxIt2 respectively the maximum repeated 

number, the repetition number in each neighborhood, and the probable selection of neighborhood 

structure relating to the daily visit of customers in the VNS algorithm. 

Table 2) Parameters of the meta-heuristics algorithms. 

SA  VNS  VNS-SA 

Parameter Value  Parameter Value  Parameter Value 

T0 100  MaxIt 300-500  T0 100 

 0.98  MaxIt2 3   0.98 

T 0.01     T 0.01 

      MaxIt 300-500 

      MaxIt2 10 

 

5. Numerical Results and Comparison 

The Solomon benchmark is a known benchmark used in VRPs. Solomon’s problems are based on the 

features and characteristics that are classified. Each group is included in 8 to 12 problems and a 

maximum of customers is 100. These problems are included in three main groups (C, R, and RC), and 

two sub-groups (C1, C2, R1, R2, RC1, RC2). The problems are different in terms of four features. The 

quantity of demand, time windows, and service time. Also, the problems of a single depot are 

considered. There are two important points for using this benchmark in electric VRPs: First, this has 

not the possibility of specifying the place of charge stations. Second, the central depot is defined.  

To produce the instance problems in small and large sizes, it is used as a combination of the Solomon 

benchmark and instances in the literature with a little change. The Euclidean distance of the cities from 

Solomon’s benchmark and fuzzy time windows and time services of both points of pessimistic and 

optimistic values is then calculated. For each customer, a fixed quantity of pickup or delivery is 

considered. For each depot, the number of vehicles is allocated. The number of recharge stations candid 

place is specified in ([2+0.05C], [3+0.1C]) interval. 

The model for small-sized samples is solved by using of solving CPLEX in commercial software GAMS 

24.1.2. The algorithms are running on the computer with specification Core i5, CPU 2.60 GHZ using 

software MatlabR2017a (64-bit) by Microsoft windows10 for small and large sizes. 

5.1. Efficiency of the Algorithms of Small-Sized Problems 

In small-sized problems, 10 problems are produced randomly and the results of an exact solution with 

GAMS software and CPLEX solver are compared to SA, VNS, and VNS-SA algorithms.  

The results of a typical problem solving are shown in (e.g., Tables 3 & 4). C, D, E, K the data of the 

problem briefly characterize the number of customers, depots, charge stations, and the number of 

vehicles. Time at the table is expressed in terms of seconds and the error is expressed based on the 

following equation. 
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Gap%= 
RA−RB

RB
∗100. 

RA and RB are solutions resulted from the algorithm and the best-resulted solutions. In this paper 

equation, as specified in the table, the quality of solutions resulted from three are suitable meta-heuristic 

algorithms. The average error rate of algorithms: SA, VNS, VNS-SA are at 0.45, 0.23, 0.12. 

respectively. The maximum error is SA as 0.92. In terms of time, GAMS is equal to 3.618. 

Table 3. Results of GAMS in small-sized problems. 

Instance C-D-E-K CPLEX Time (s) 

1 4-2-1-3 194.56 0.1 

2 5-2-1-3 293.96 0.3 

3 5-2-1-4 304.2 0.2 

4 5-2-2-4 342.54 0.27 

5 6-2-2-4 312.15 0.38 

6 7-2-2-4 367.51 4.81 

7 7-2-3-4 325.73 4.14 

8 8-2-2-3 547.12 8.45 

9 8-2-3-3 603.64 8.2 

10 9-2-2-4 714.6 9.33 

Average  400.601 3.618 

 

Table 4. Results of MATLAB in small-sized problems. 

Instance C-D-E-K SA t(s) Gap% VNS t(s) Gap% VNS-SA t(s) Gap% 

1 4-2-1-3 195.8 0.05 0.64 195.55 0.08 0.51 195.55 0.09 0.51 

2 5-2-1-3 297 0.12 1.03 294.98 0.1 0.35 293.96 0.1 0.00 

3 5-2-1-4 304.35 0.1 0.05 304.2 0.11 0.00 304.2 0.09 0.00 

4 5-2-2-4 342.97 0.3 0.13 342.67 0.25 0.04 342.61 0.19 0.02 

5 6-2-2-4 313.84 0.35 0.54 313.16 0.31 0.32 313.76 0.3 0.52 

6 7-2-2-4 367.61 0.37 0.03 367.58 0.42 0.02 367.57 0.4 0.02 

7 7-2-3-4 325.79 0.9 0.02 325.99 0.7 0.08 325.73 0.65 0.00 

8 8-2-2-3 552.15 1.8 0.92 551.14 0.99 0.73 547.12 0.7 0.00 

9 8-2-3-3 603.69 2.01 0.01 604.41 1.12 0.13 603.66 0.91 0.00 

10 9-2-2-4 721.95 2.63 1.03 715.65 1.18 0.15 715.3 1.02 0.10 

Average  402.51 0.86 0.44 401.53 0.53 0.23 400.94 0.45 0.12 

 

5.2. Efficiency of the Algorithms for Large-Sized Problems   

In large-sized problems, groups similar to Solomon benchmark problems with the same dimension for 

15-200 customer are chosen, and by considering the pickup or delivery of each customer. Then, a 

solving method is applied to them. The results of solving the typical problems are shown in (e.g., Tables 

5 & 6) VNS-SA in large-sized instances is better than SA and VNS algorithms. The percent of error, 

the VNS-SA with 0.011 error has a very insignificant error. SA with average error 2.645 has a weaker 

instance than the proposed algorithm. The least time consuming is to solve the VNS-SA algorithm. 
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Table 5. Results of SA and VNS for large-sized problems. 

Instance C-D-E-K SA t(s) Gap (%) VNS t(s) Gap (%) 

1 25-2-4-6 33073 12.92 1.122 32870 11.20 0.501 

2 25-2-5-6 34297 15.56 1.016 33952 14.32 0.000 

3 30-3-5-7 42398 26.30 1.150 42199 22.85 0.675 

4 35-3-6-7 43016 29.41 1.458 43019 35.30 1.465 

5 40-3-6-8 51202 40.34 2.027 51043 47.60 1.710 

6 45-4-5-8 59211 46.26 2.062 59159 56.20 1.972 

7 50-4-6-9 62726 50.80 2.121 61423 93.56 0.000 

8 50-4-7-9 77925 51.22 2.224 77840 96.21 2.112 

9 60-5-8-10 86390 67.30 2.545 86108 109.20 2.210 

10 60-5-9-10 108205 68.12 2.606 107795 123.65 2.217 

11 70-6-10-11 118603 80.35 2.897 117862 191.41 2.254 

12 80-6-11-11 125275 91.65 2.680 123815 250.00 1.484 

13 90-7-11-12 140154 109.20 3.123 138078 273.22 1.595 

14 100-9-12-14 150289 181.60 3.327 149795 319.65 2.987 

15 100-10-13-15 167568 319.36 3.185 166288 321.30 2.397 

16 120-14-15-18 186150 363.30 3.380 185220 412.60 2.863 

17 130-14-16-19 187150 420.24 3.873 185720 435.60 3.079 

18 160-15-17-20 213598 492.51 3.878 212101 455.32 3.150 

19 180-15-20-22 214048 539.37 4.097 213101 490.14 3.637 

20 200-16-22-27 239314 658.00 4.135 239117 525.25 4.049 

Average 
 

117030 183.19 2.645 116325 214.23 2.018 

 

According to the convergence rate of the proposed hybrid VNS-SA algorithm in (e.g., Fig. 3), it can 

result that as the problem size becomes large, the algorithm has better quality in terms of objective 

function values. The (e.g., Fig. 4) depicts the objective function values with different small-sized 

problems.  

 

Fig. 3. Convergence rate of the proposed hybrid VNS-SA algorithm. 
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Table 6. Results of VNS-SA for large-sized problems. 

Instance C-D-E-K VNS-SA t(s) Gap% 

1 25-2-4-6 32706 9.92 0.000 

2 25-2-5-6 33975 11.76 0.068 

3 30-3-5-7 41916 14.52 0.000 

4 35-3-6-7 42398 21.03 0.000 

5 40-3-6-8 50185 32.50 0.000 

6 45-4-5-8 58015 45.99 0.000 

7 50-4-6-9 61520 71.02 0.158 

8 50-4-7-9 76230 73.15 0.000 

9 60-5-8-10 84246 89.35 0.000 

10 60-5-9-10 105457 92.50 0.000 

11 70-6-10-11 115264 115.62 0.000 

12 80-6-11-11 122005 125.48 0.000 

13 90-7-11-12 135910 139.79 0.000 

14 100-9-12-14 145450 150.36 0.000 

15 100-10-13-15 162395 156.90 0.000 

16 120-14-15-18 180064 173.10 0.000 

17 130-14-16-19 180172 189.35 0.000 

18 160-15-17-20 205623 232.70 0.000 

19 180-15-20-22 205623 240.60 0.000 

20 200-16-22-27 229811 273.09 0.000 

Average   113448 112.94 0.011 

 

 

Fig. 4. Objective function values for small-sized problems. 

 

 

6. Conclusions and Future Research 

In this paper, a new mathematical model for an Electric Vehicle Routing Problem (EVRP) with fuzzy 

time windows was presented. The objective function of the presented model was to minimize the cost 
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of the traveled distance and the penalty of time windows with a fuzzy approach. To show the efficiency 

of the proposed hybrid algorithm, the results were compared with the results obtained by the exact 

solution, Simulated Annealing (SA), and Variable Neighborhood Search (VNS) algorithms. Then, the 

proposed hybrid VNS-SA algorithm showed that its performance outperformed than the SA and VNS 

algorithms in small- and large-sizes problems. By considering the following issues that help to a deeper 

understanding of the effects of these factors on solutions, it is suggested to develop the model to make 

more practical the following future studies: 

 Using a heterogeneous fleet and different speeds. 

 Considering environmental factors (e.g., changing the temperature degrees), mountain routes, traffic, 

and queue in the battery recharge station. 

 Considering the fuzzy stochastic and robust models. 

References 

[1] Energy and Air Pollution (2016). Retrieved August 20, 2020, from https://www.iea.org/reports/energy-

and-air-pollution. 

[2] Fallah, M., Tavakkoli-Moghaddam, R., Alinaghian, M., & Salamatbakhsh-Varjovi, A. (2019). A robust 

approach for a green periodic competitive VRP under uncertainty: DE and PSO algorithms. Journal of 

intelligent & fuzzy systems, 36(6), 5213-5225.  

[3] Looking for something? (n.d.). Retrieved August 14, 2020, from 

https://www.iea.org/publications/freepublications/publication/co2-emissions-from-fuel-combustion-

highlights-2016.html  

[4] Sperling, D. (2018). Three revolutions: steering automated, shared, and electric vehicles to a better 

future. Island Press, Washington, DC, the USA. 

[5] Giechaskiel, B., Joshi, A., Ntziachristos, L., & Dilara, P. (2019). European regulatory framework and 

particulate matter emissions of gasoline light-duty vehicles: A review. Catalysts, 9(7), 586. 

[6] Yong, J. Y., Ramachandaramurthy, V. K., Tan, K. M., & Mithulananthan, N. (2015). A review on the 

state-of-the-art technologies of electric vehicle, its impacts and prospects. Renewable and sustainable 

energy reviews, 49, 365-385. 

[7] Zhao, Y., Noori, M., & Tatari, O. (2016). Vehicle to Grid regulation services of electric delivery trucks: 

Economic and environmental benefit analysis. Applied energy, 170, 161-175. 

[8] International Energy Agency. (2018). Key world energy statistics 2018. OECD Publishing. 

[9] Zhang, S., Chen, M., Zhang, W., & Zhuang, X. (2020). Fuzzy optimization model for electric vehicle 

routing problem with time windows and recharging stations. Expert systems with applications, 145, 113-

123. 

[10] Truck Voucher Incentive Program. (2015). Retrieved August 15, 2020, from 

https://www.nyserda.ny.gov/All%20Programs/Programs/Truck%20Voucher%20Program 

[11] Hannisdahl, O. H., Malvik, H. V., & Wensaas, G. B. (2013, November). The future is electric! The EV 

revolution in Norway—explanations and lessons learned. 2013 world electric vehicle symposium and 

exhibition (EVS27) (pp. 1-13). IEEE. 

[12] Foltyński, M. (2014). Electric fleets in urban logistics. Procedia-social and behavioral sciences, 151, 48-

59. 

[13] Patar, K. B., Kumar R. H, P., Jain, R. R. K., & Pati, S. (2018). Methodology for retrofitting electric power 

train in conventional powertrain-based three-wheeler. Journal of applied research on industrial 

engineering, 5(3), 263-270. 

[14] Liu, B. D. (2004). Uncertainty theory: an introduction to its axiomatic foundations. New York: Springer-

Verlag Berlin Heidelberg. 

[15] Çatay, B. (2010). A new saving-based ant algorithm for the vehicle routing problem with simultaneous 

pickup and delivery. Expert systems with applications, 37(10), 6809-6817. 

[16] Fan, J. (2011). The vehicle routing problem with simultaneous pickup and delivery based on customer 

satisfaction. Procedia engineering, 15, 5284-5289 

[17] Wang, C., & Qiu, Y. (2011). Vehicle routing problem with stochastic demands and simultaneous delivery 

and pickup based on the cross-entropy method. In Advances in automation and robotics, Vol. 2 (pp. 55-

60). Springer, Berlin, Heidelberg.  



17              Multi-depot electric vehicle routing problem with fuzzy time windows and…   

[18] Setak, M., Azizi, V., & Karimi, H. (2015). Multi depots capacitated location-routing problem with 

simultaneous pickup and delivery and split loads: formulation and heuristic methods. Journal of 

industrial engineering research in production systems, 2(4), 67-81. 

[19] Wang, H. F. & Chen, Y. Y. (2012). A genetic algorithm for the simultaneous delivery and pickup 

problems with time window. Computers & industrial engineering, 62(1), 84-95. 

[20] Laporte, G. (2009). Fifty years of vehicle routing. Transportation science, 43, 408-416. 

[21] Toth, P., & Vigo, D. (Eds.). (2014). Vehicle routing: problems, methods, and applications. Society for 

Industrial and Applied Mathematics.  

[22] Tavakkoli-Moghaddam, R., Meskini, M., Nasseri, H., & Tavakkoli-Moghaddam, H. (2019, September). 

A multi-depot close and open vehicle routing problem with heterogeneous vehicles. 2019 international 

conference on industrial engineering and systems management (IESM) (pp. 1-6). IEEE.  

[23] Thibbotuwawa, A., Bocewicz, G., Nielsen, P., & Banaszak, Z. (2020). Unmanned aerial vehicle routing 

problems: a literature review. Applied sciences, 10(13), 4504.  

[24] Zaker, M., Kheirkhah, A., & Tavakkoli-Moghaddam, R. (2020). Solving a multi-depot location-routing 

problem with heterogeneous vehicles and fuzzy travel times by a meta-heuristic algorithm. International 

journal of transportation engineering, 7(4), 415-431.  

[25] Zarandi, M. H. M., Hemmati, A., & Davari, S. (2011). The multi depot capacitated location routing 

problem with fuzzy travel times. Expert systems with applications, 38(8), 10075–84. 

[26] Du, J. M., Li, X., Yu, L., Dan, R., & Zhou, J. D. (2017). Multi-depot vehicle routing problem for 

hazardous materials transportation: A fuzzy bilevel programming. Information sciences, 399, 201-218. 

[27] Nadizadeh, A. (2017). The fuzzy multi-depot vehicle routing problem with simultaneous pickup and 

delivery: formulation and a heuristic algorithm. International journal of industrial engineering & 

production research, 28(3), 325-345. 

[28] Alinaghian, M., & Shokouhi, N. (2018). Multi-depot multi-compartment vehicle routing problem, solved 

by a hybrid adaptive large neighborhood search. Omega, 76, 85-99. 

[29] Zheng, J. (2020). A vehicle routing problem model with multiple fuzzy windows based on time-varying 

traffic flow. IEEE access, 8, 39439-39444. 

[30] Rajak, S., Parthiban, P., & Dhanalakshmi, R. (2020). Multi-depot vehicle routing problem based on 

customer satisfaction. International journal of services technology and management, 26(2-3), 252-265. 

[31] Artmeier, A., Haselmayr, J., Leucker, M. & Sachenbacher, M. (2010). The shortest path problem 

revisited: Optimal routing for electric vehicles. Annual conference on artificial intelligence (pp. 309-

316). Berlin, Heidelberg: Springer.   

[32] Lin, J., Zhou, W., & Wolfson, O. (2016). Electric vehicle routing problem. Transportation research 

procedia, 12, 508-521. 

[33] Mart´ınez-Lao, J., Montoya, F. G., Montoya, M. G. & Manzano-Agugliaro, F. (2017). Electric vehicles 

in Spain: an overview of charging systems. Renewable & sustainable energy reviews, 77, 970–983. 

[34] Keskin, M., & Çatay, B. (2016). Partial recharge strategies for the electric vehicle routing problem with 

time windows. Transportation research part C: emerging technologies, 65, 111-127. 

[35] Yang, J., & Sun, H. (2015). Battery swap station location-routing problem with capacitated electric 

vehicles. Computers & operations research, 55, 217-232. 

[36] Schiffer, M., Walther, G. (2017). The electric location routing problem with time windows and partial 

recharging. European journal of operational research, 260(3), 995-1013. 

[37] Li, Y., Zhang, P. W., & Wu, Y. F. (2018). Public recharging infrastructure location strategy for promoting 

electric vehicles: a bi-level programming approach.  Journal of cleaner production, 172, 2720-2734. 

[38] Hof, J., Schneider, M., & Goeke, D. (2017). Solving the battery swap station location-routing problem 

with capacitated electric vehicles using an AVNS algorithm for vehicle-routing problems with 

intermediate stops. Transportation research part B: methodological, 97, 102-112. 

[39] Paz, J. C., Granada-Echeverri, M., & Escobar, J. W. (2018). The multi-depot electric vehicle location 

routing problem with time windows. International journal of industrial engineering computations, 9(1), 

123–136. 

[40] Keskin, M. & Çatay, B. (2018). A metaheuristic method for the electric vehicle routing problem with 

time windows and fast chargers. Computers & operations research, 100, 172-188. 

[41] Pelletier, S., Jabali, O. & Laporte, G. (2016). 50th anniversary invited article-goods distribution with 

electric vehicles: Review and research perspectives. Transportation science, 50(1), 3-22. 

[42] Molla- Alizadeh-Zavardehi, S., Nezhad, S. S., Tavakkoli-Moghaddam, R., & Yazdani, M. (2013). 

Solving a fuzzy fixed charge solid transportation problem by metaheuristics. Mathematical and computer 

modelling, 57(5-6), 1543-1558. 



 Ghobadi et al. / J. Appl. Res. Ind. Eng. 8(1) (2021) 1-18                   18 

[43] Liou, T. S., & Wang, M. J. (1992). Ranking fuzzy numbers with integral value. Fuzzy sets and systems, 

50(3), 247-255. 

[44] Niakan, F., & Rahimi, M. (2015). A multi-objective healthcare inventory routing problem; a fuzzy 

possibilistic approach. Transportation research part E: logistics and transportation review, 80, 74-94. 

[45] Jiménez, M. (1996). Ranking fuzzy numbers through the comparison of its expected intervals. 

International journal of uncertainty, fuzziness and knowledge-based systems, 4(4), 379-388. 

[46] Das, S. K., & Mandal, T. (2017). A new model for solving fuzzy linear fractional programming problem 

with ranking function. Journal of applied research on industrial engineering, 4(2), 89-96. 

[47] Mahmoudi, F., & Nasseri, S. H. (2019). A new approach to solve fully fuzzy linear programming 

problem. Journal of applied research on industrial engineering, 6(2), 139-149. 

[48] McCormick, G. P. (1976). Computability of global solutions to factorable nonconvex programs: Part I - 

Convex underestimating problems. Mathematical programming, 10(1), 147-175. 

[49] Zhang, D., Liu, Y., M’Hallah, R., & Leung, S. C. (2010). A simulated annealing with a new neighborhood 

structure-based algorithm for high school timetabling problems. European journal of operational 

research, 203(3), 550-558.  

[50] Fallah, M., Tavakkoli-Moghaddam, R., Salamatbakhsh-Varjovi, A., & Alinaghian, M. (2019). A green 

competitive vehicle routing problem under uncertainty solved by an improved differential evolution 

algorithm. International journal of engineering, 32(7), 976-981.  

[51] Mladenović, N., & Hansen, P., (1997). Variable neighborhood search. Computers & operations research, 

24(11), 1097-1100. 

[52] Montgomery, D.C. (1997). Design and analysis of experiments. John Wiley & Sons, New York, the 

USA. 

 

©2021 by the authors. Licensee Journal of Applied Research on industrial Engineering . 
This article is an open access article distributed under the terms and conditions of the 
Creative Commons Attribution (CC BY) license 
(http://creativecommons.org/licenses/by/4.0/).  


