Document Type : Research Paper

Author

Department of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.

Abstract

Demand forecasting can have a significant impact on reducing and controlling companies' costs, as well as increasing their productivity and competitiveness. But to achieve this, accuracy in demand forecasting is very important. On this point, in the present study, an attempt has been made to analyze the time series related to the demand for a type of women's luxury handbag based on a framework and using machine learning methods. For this purpose, five machine learning models including Adaptive Neuro-Fuzzy Inference System (ANFIS), Multi-Layer Perceptron Neural Network (MLPNN), Radial Basis Function Neural Network (RBFNN), Discrete Wavelet Transform-Neural Networks (DWTNN), and Group Model of Data Handling (GMDH) were used. The comparison of the models was also based on the accuracy of the forecasting according to the values of forecasting errors. The RMSE, MAE error measures as well as the R, correlation coefficient were used to assess the forecasting accuracy of the models. The RBFNN model had the best performance among the studied models with the minimum error values and the highest correlation value between the observed values and the outputs of the model. But in general, by comparing the error values with the data range, it is concluded that the models performed reasonably well.

Keywords

Main Subjects

  1. Darvishinia, R., Ebrahimzadeh Shermeh, H., & Barzkar, S. (2019). Development of a forecasting model for investment in Tehran stock exchange based on seasonal coefficient. Journal of applied research on industrial engineering6(4), 333-366. https://dx.doi.org/10.22105/jarie.2019.1963 92.1103
  2. Ali, A. Y., Hassen, J. M., & Wendim, G. G. (2019). Forecasting as a framework for reducing food waste in Ethiopian university canteens. Journal of applied research on industrial engineering6(4), 374-380. https://dx.doi.org/10.22105/jarie.2020.206803.1109
  3. Abolghasemi, M., Beh, E., Tarr, G., & Gerlach, R. (2020). Demand forecasting in supply chain: the impact of demand volatility in the presence of promotion. Computers & industrial engineering142, 106380. https://doi.org/10.1016/j.cie.2020.106380
  4. Fattah, J., Ezzine, L., Aman, Z., El Moussami, H., & Lachhab, A. (2018). Forecasting of demand using ARIMA model. International journal of engineering business management10, 1847979018808673. https://doi.org/10.1177/1847979018808673
  5. Lau, H. C., Ho, G. T., & Zhao, Y. (2013). A demand forecast model using a combination of surrogate data analysis and optimal neural network approach. Decision support systems54(3), 1404-1416. https://doi.org/10.1016/j.dss.2012.12.008
  6. Goli, A., Zare, H. K., Moghaddam, R., & Sadeghieh, A. (2018). A comprehensive model of demand prediction based on hybrid artificial intelligence and metaheuristic algorithms: a case study in dairy industry. Journal of industrial and systems engineering, 11(4), 190-203. http://www.jise.ir/article_76524.html
  7. Parmezan, A. R. S., Souza, V. M., & Batista, G. E. (2019). Evaluation of statistical and machine learning models for time series prediction: identifying the state-of-the-art and the best conditions for the use of each model. Information sciences484, 302-337. https://doi.org/10.1016/j.ins.2019.01.076
  8. Cankurt, S., & SUBAŞI, A. (2016). Tourism demand modelling and forecasting using data mining techniques in multivariate time series: a case study in Turkey. Turkish journal of electrical engineering and computer sciences24(5), 3388-3404. https://doi.org/10.3906/elk-1311-134
  9. Kandananond, K. (2012). A comparison of various forecasting methods for autocorrelated time series. International journal of engineering business management4, 4. https://journals.sagepub.com/doi/pdf/10.5772/51088
  10. Tugay, R., & Öğüdücü, Ş. G. (2017). Demand prediction using machine learning methods and stacked generalization. Proceedings of the 6th international conference on data science, technology and applications, 1, 216–222. https://doi.org//10.5220/0006431602160222
  11. Chou, J. S., & Tran, D. S. (2018). Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders. Energy165, 709-726. https://doi.org/10.1016/j.energy.2018.09.144
  12. Ardabili, S., Mosavi, A., & Várkonyi-Kóczy, A. R. (2019, September). Advances in machine learning modeling reviewing hybrid and ensemble methods. International conference on global research and education (pp. 215-227). Springer, Cham.
  13. Shih, H., & Rajendran, S. (2019). Comparison of time series methods and machine learning algorithms for forecasting Taiwan Blood Services Foundation’s blood supply. Journal of healthcare engineering2019. https://doi.org/10.1155/2019/6123745
  14. Pavlyshenko, B. M. (2019). Machine-learning models for sales time series forecasting. Data4(1), 15. https://doi.org/10.3390/data4010015
  15. Qiu, X., Ren, Y., Suganthan, P. N., & Amaratunga, G. A. (2017). Empirical mode decomposition based ensemble deep learning for load demand time series forecasting. Applied soft computing54, 246-255. https://doi.org/10.1016/j.asoc.2017.01.015
  16. Kilimci, Z. H., Akyuz, A. O., Uysal, M., Akyokus, S., Uysal, M. O., Atak Bulbul, B., & Ekmis, M. A. (2019). An improved demand forecasting model using deep learning approach and proposed decision integration strategy for supply chain. Complexity2019. https://doi.org/10.1155/2019/9067367
  17. Mostafaeipour, A., Goli, A., & Qolipour, M. (2018). Prediction of air travel demand using a hybrid artificial neural network (ANN) with Bat and Firefly algorithms: a case study. The journal of supercomputing74(10), 5461-5484. https://doi.org/10.1007/s11227-018-2452-0
  18. Goli, A., Moeini, E., Shafiee, A. M., Zamani, M., & Touti, E. (2020). Application of improved artificial intelligence with runner-root meta-heuristic algorithm for dairy products industry: a case study. International journal on artificial intelligence tools29(05), 2050008. https://doi.org/10.1142/S0218213020500086
  19. Rai, S., Gupta, A., Anand, A., Trivedi, A., & Bhadauria, S. (2019, July). Demand prediction for e-commerce advertisements: a comparative study using state-of-the-art machine learning methods. 2019 10th international conference on computing, communication and networking technologies (ICCCNT)(pp. 1-6). IEEE. DOI: 1109/ICCCNT45670.2019.8944783
  20. Guanghui, W. A. N. G. (2012). Demand forecasting of supply chain based on support vector regression method. Procedia engineering29, 280-284. https://doi.org/10.1016/j.proeng.2011.12.707
  21. Srisaeng, P., Baxter, G. S., & Wild, G. (2015). An adaptive neuro-fuzzy inference system for forecasting Australia's domestic low cost carrier passenger demand. Aviation19(3), 150-163. https://doi.org/10.3846/16487788.2015.1104806
  22. Srisaeng, P., Richardson, S., Baxter, G., & Wild, G. (2016). Forecasting Australia’s domestic low cost carrier passenger demand using a genetic algorithm approach. Aviation20(2), 39-47. https://doi.org/10.3846/16487788.2016.1171798
  23. Scholz-Reiter, B., Kück, M., & Lappe, D. (2014). Prediction of customer demands for production planning–Automated selection and configuration of suitable prediction methods. CIRP annals63(1), 417-420. https://doi.org/10.1016/j.cirp.2014.03.106
  24. Carbonneau, R., Vahidov, R., & Laframboise, K. (2007). Machine learning-Based Demand forecasting in supply chains. International journal of intelligent information technologies (IJIIT)3(4), 40-57. https://doi.org/10.4018/jiit.2007100103
  25. Vairagade, N., Logofatu, D., Leon, F., & Muharemi, F. (2019, September). Demand forecasting using random forest and artificial neural network for supply chain management.  International conference on computational collective intelligence(pp. 328-339). Springer, Cham. https://doi.org/10.1007/978-3-030-28377-3_27
  26. Ampazis, N. (2015). Forecasting demand in supply chain using machine learning algorithms. International journal of artificial life research (IJALR)5(1), 56-73. https://doi.org/10.4018/IJAL R.2015010104
  27. Efendigil, T., Önüt, S., & Kahraman, C. (2009). A decision support system for demand forecasting with artificial neural networks and neuro-fuzzy models: a comparative analysis. Expert systems with applications36(3), 6697-6707. https://doi.org/10.1016/j.eswa.2008.08.058
  28. Chen, Y., Zhao, H., & Yu, L. (2010). Demand forecasting in automotive aftermarket based on ARMA model. 2010 international conference on management and service science(pp. 1-4). IEEE. https://doi.org/10.1109/ICMSS.2010.5577867
  29. Carbonneau, R., Laframboise, K., & Vahidov, R. (2008). Application of machine learning techniques for supply chain demand forecasting. European journal of operational research184(3), 1140-1154. https://doi.org/10.1016/j.ejor.2006.12.004
  30. Zhang, X. (2004). Evolution of ARMA demand in supply chains. Manufacturing & Service operations management6(2), 195-198. https://doi.org/10.1287/msom.1040.0042
  31. Du, X. F., Leung, S. C., Zhang, J. L., & Lai, K. K. (2013). Demand forecasting of perishable farm products using support vector machine. International journal of systems science44(3), 556-567. https://doi.org/10.1080/00207721.2011.617888
  32. Chan, H. K., Xu, S., & Qi, X. (2019). A comparison of time series methods for forecasting container throughput. International journal of logistics research and applications22(3), 294-303. https://doi.org/10.1080/13675567.2018.1525342
  33. Yahya, N. A., Samsudin, R., Shabri, A., & Saeed, F. (2019). Combined group method of data handling models using artificial bee colony algorithm in time series forecasting. Procedia computer science163, 319-329. https://doi.org/10.1016/j.procs.2019.12.114
  34. de Oliveira, J. F. L., Pacífico, L. D. S., de Mattos Neto, P. S. G., Barreiros, E. F. S., de Oliveira Rodrigues, C. M., & de Almeida Filho, A. T. (2020). A hybrid optimized error correction system for time series forecasting. Applied soft computing87, 105970. https://doi.org/10.1016/j.asoc.2019.105970
  35. Sezer, O. B., Gudelek, M. U., & Ozbayoglu, A. M. (2020). Financial time series forecasting with deep learning: a systematic literature review: 2005–2019. Applied soft computing90, 106181. https://doi.org/10.1016/j.asoc.2020.106181
  36. Adeniran, A. O., Kanyio, O. A., & Owoeye, A. S. (2018). Forecasting methods for domestic air passenger demand in Nigeria. Journal of applied research on industrial engineering, 5(2), 146–155 http://repository.futminna.edu.ng:8080/jspui/handle/123456789/8743
  37. Minli, Z., & Shanshan, Q. (2012). Research on the application of artificial neural networks in tender offer for construction projects. Physics procedia24, 1781-1788. https://doi.org/10.1016/j.phpro.2012.02.262
  38. Movahedi Sobhani, F., & Madadi, T. (2015). Studying the suitability of different data mining methods for delay analysis in construction projects. Journal of applied research on industrial engineering2(1), 15-33.
  39. Nury, A. H., Hasan, K., & Alam, M. J. B. (2017). Comparative study of wavelet-ARIMA and wavelet-ANN models for temperature time series data in northeastern Bangladesh. Journal of King Saud university-science29(1), 47-61. https://doi.org/10.1016/j.jksus.2015.12.002
  40. Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks: the state of the art. International journal of forecasting14(1), 35-62. https://doi.org/10.1016/S0169-2070(97)00044-7
  41. Li, G. Q., Xu, S. W., & Li, Z. M. (2010). Short-term price forecasting for agro-products using artificial neural networks. Agriculture and agricultural science procedia1, 278-287. https://doi.org/10.1016/j.aaspro.201 0.09.035
  42. Moreno, J. J. M. (2011). Artificial neural networks applied to forecasting time series. Psicothema23(2), 322-329.
  43. Olawoyin, A., & Chen, Y. (2018). Predicting the future with artificial neural network. Procedia computer science140, 383-392. https://doi.org/10.1016/j.procs.2018.10.300
  44. Lo, D. C., Wei, C. C., & Tsai, E. P. (2015). Parameter automatic calibration approach for neural-network-based cyclonic precipitation forecast models. Water7(7), 3963-3977. https://doi.org/10.3390/w7073963
  45. Faris, H., Aljarah, I., & Mirjalili, S. (2017). Evolving radial basis function networks using moth–flame optimizer. In Handbook of neural computation(pp. 537-550). Academic Press. https://doi.org/10.1016/B978-0-12-811318-9.00028-4
  46. Tatar, A., Naseri, S., Sirach, N., Lee, M., & Bahadori, A. (2015). Prediction of reservoir brine properties using radial basis function (RBF) neural network. Petroleum1(4), 349-357. https://doi.org/10.1016/j.petlm.2015.10.011
  47. Shabri, A., & Samsudin, R. (2014). A hybrid GMDH and box-jenkins models in time series forecasting. Applied mathematical sciences8(62), 3051-3062. https://doi.org/10.12988/am s.2014.44270
  48. Ivakhnenko, A. G. (1968). The group method of data handling, a rival of the method of stochastic approximation. Soviet automatic control13(3), 43-55.
  49. Farlow, S. J. (1981). The GMDH algorithm of Ivakhnenko. The American statistician35(4), 210-215. https://www.researchgate.net/publication/254330626_The_GMDH_algorithm_of_Ivakhnenko
  50. Anastasakis, L., & Mort, N. (2001). The development of self-organization techniques in modelling: a review of the group method of data handling (GMDH) (Report No. 813).  University of Sheffield, United Kingdom. https://gmdhsoftware.com/GMDH_%20Anastasakis_and_Mort_2001.pdf
  51. Ivakhnenko, A. G., & Müller, J. A. (1995). Self-organisation of nets of active neurons. System analysis modeling simulation, 20(1–2), 93–106.
  52. Ziari, H., Sobhani, J., Ayoubinejad, J., & Hartmann, T. (2016). Analysing the accuracy of pavement performance models in the short and long terms: GMDH and ANFIS methods. Road materials and pavement design17(3), 619-637. https://doi.org/10.1080/14680629.2015.1108218
  53. Jang, J. S. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE transactions on systems, man, and cybernetics23(3), 665-685. DOI:1109/21.256541
  54. Takagi, T., & Sugeno, M. (1983). Derivation of fuzzy control rules from human operator's control actions. IFAC proceedings volumes16(13), 55-60. https://doi.org/10.1016/S1474-6670(17)62005-6
  55. Aengchuan, P., & Phruksaphanrat, B. (2018). Comparison of fuzzy inference system (FIS), FIS with artificial neural networks (FIS+ ANN) and FIS with adaptive neuro-fuzzy inference system (FIS+ ANFIS) for inventory control. Journal of intelligent manufacturing29(4), 905-923. https://doi.org/10.1007/s10845-015-1146-1
  56. Sremac, S., Kazimieras Zavadskas, E., Matić, B., Kopić, M., & Stević, Ž. (2019). Neuro-fuzzy inference systems approach to decision support system for economic order quantity. Economic research-ekonomska istraživanja32(1), 1114-1137. https://doi.org/10.1080/1331677X.2019.1613249
  57. Alexandridis, A. K., & Zapranis, A. D. (2013). Wavelet neural networks: a practical guide. Neural networks42, 1-27. https://doi.org/10.1016/j.neunet.2013.01.008
  58. Gürsoy, Ö., & Engin, S. N. (2019). A wavelet neural network approach to predict daily river discharge using meteorological data. Measurement and control52(5-6), 599-607. https://doi.org/10.1177/0020294019827972
  59. Kærgaard, K., Jensen, S. H., & Puthusserypady, S. (2016). A comprehensive performance analysis of EEMD-BLMS and DWT-NN hybrid algorithms for ECG denoising. Biomedical signal processing and control25, 178-187. https://doi.org/10.1016/j.bspc.2015.11.012
  60. Khosravi, A., Machado, L., & Nunes, R. O. (2018). Time-series prediction of wind speed using machine learning algorithms: a case study Osorio wind farm, Brazil. Applied energy224, 550-566. https://doi.org/10.1016/j.apenergy.2018.05.043
  61. Sun, G., Jiang, C., Cheng, P., Liu, Y., Wang, X., Fu, Y., & He, Y. (2018). Short-term wind power forecasts by a synthetical similar time series data mining method. Renewable energy115, 575-584. https://doi.org/10.1016/j.renene.2017.08.071
  62. Al-hnaity, B., & Abbod, M. (2016). Predicting financial time series data using hybrid model. In Intelligent systems and applications(pp. 19-41). Springer, Cham. https://doi.org/10.1007/978-3-319-33386-1_2
  63. Neill, S. P., & Hashemi, M. R. (2018). Ocean modelling for resource characterization. Fundamentals of ocean renewable energy, 193-235. https://doi.org/10.1016/B978-0-12-810448-4.00008-2