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Abstract 

   

1 | Introduction 

The change point problem arises in various practical fields such as Epidemiology, Toxicology, 

Medical, Economical surveys, Quality control, Statistical process control, Natural events, 

Demography and Mortality. Demography is a kind of statistical study of populations which is too 

important for programming in every country. In analytical demography, population analysis is done 

by applying several mathematical methods to model population distribution and to detect linear and 

non-linear population changes [1]. Vital statistics such as birth, death, marriage, divorce are important 

indicators in demography which are affected by different problems duration study years. Increasing 

or decreasing in the rate of vital statistics cause the change in the pattern of population. Mortality, the 

death occurs within a population, is affected by population factors such as age, sex, race, occupation 

and social class. Therefore, changes in population pattern will cause the distribution of mortality in 

one time period differ from the other time periods.  
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There are many different fields the change point analysis arises. In those cases, the main problem is locating the unknown 

change points. The aim of this study is to detect location and time of change point in Poisson regression model. We 

assume for years before and after the change point 𝑘0, then observation 𝑦𝑡 has a Poisson distribution with parameters 

𝜆0, 𝜆1, respectively. We used several methods for estimation change point in real mortality data by assume Poisson 

regression model. Using two simulated and real data analysis showed that the change point has been occurred in year 

1993 and this confirmed by all methods. Our findings have shown that the change pattern of mortality trend in Iran is 

related to improvement of health indicators and decreasing mortality rate in Iran. 
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Let 𝑋1, … , 𝑋𝑘0
, 𝑋𝑘0+1, … , 𝑋𝑛 be a sequence of independent observations where 𝑋1, … , 𝑋𝑘0

 come from 

Poisson distribution according to the Eq. (1) with rate 𝜆0 and the remaining observations 𝑋𝑘0+1, … , 𝑋𝑛 

have the Poisson distribution with parameter 𝜆1, where 𝜆0 ≠ 𝜆1, that is 

 

This problem is referred as the change point detection in statistical literatures. We test the null hypothesis 

of no change point 𝐻0: 𝜆 = 𝜆0, against 𝐻1: 𝜆 = 𝜆1 which stands a change point has been occurred in 

unknown point 𝑘0 = 1, … , 𝑛 − 1. If  𝐻0 is rejected, then we estimate 𝜆0, 𝜆1 and 𝑘0.  

During the last four decades, change point analysis has been received considerable attentions from both 

theoretical and practical aspects. This problem first proposed in the context of quality control. The most 

often investigated change point problem is that of the change in the mean of normal variables. Some 

literatures which deal with change point detection in Poisson distribution random variables are [2]. A 

best reference in change point detection in parametric families of distributions is [3]. For a 

comprehensive review in change point analysis see [4] and [5] and references therein.  

Testing and estimation the change point in the Poisson distribution has a long history. The maximum 

likelihood point estimation and driving a Bayesian-based interval estimator for a change point in a 

Poisson process is studied by Khosravi et al. [6]. The procedures are evaluated through simulation 

studies and application to the British coal-mining disaster data [7]. A test for change point hypothesis 

and estimated position and parameters before and after change point is studied by Ng et al. [8] using 

simulation and an example on coal-mining disasters. A Bayesian approach to estimation and hypothesis 

testing for a Poisson process with a change-point in coal-mining disasters data is studied by Ng et al. [8]. 

We have done the simulations and have seen the good results.  

In the current article, change point analysis is done for Iranian mortality rates during 1971 to 2007 under 

both Poisson and Poisson regression modeling. We first test the existence of change point and then we 

estimate the location of change point. This article is organized as follows. In Section 2, the Bayesian 

approach is proposed to change point detection in Poisson distribution and then the theoretical results 

are extended to the Poisson regression models. In Section 3, we compare these methods using simulated 

data and illustrate results of the procedures using mortality data, provided by Iran vital statistics. The 

conclusions of this study, which are expected to yield new insights regarding potential substantive 

applications in mortality, are presented in Section 4.  

2 | Change Point Detection Methods    

Here, the Bayesian change point detection methods are reviewed. First, they are proposed for Poisson 

distribution and then they are extended to the Poisson regression model.  

2.1 | Bayesian Approach in Poisson Distribution 

In spite of likelihood point of view to statistics, the Bayesian approach assumes priors for parameters 

and uses them to obtain the posterior. We get total information contained in the problem, from the 

posterior distribution. In a parametric setting, if π(θ)  is the probability density of prior of 𝜃 and 𝑦 =

(𝑦1, … , 𝑦𝑛) is observed data, then the posterior is given by Eq. (2) as follows  

 

The posterior 𝜋(𝜃|𝑦) is proportional to product of likelihood of 𝜋(𝑦|𝜃) and prior 𝜋(𝜃). The 𝜋(𝑦) is 

marginal density of 𝑦. We can obtain inferences about the change point and the parameters before and 

after change point, using a Bayesian approach which specifies prior distributions for the parameters as 

follows 𝜋(𝜆0)~𝛤(𝑎0, 𝑏0), and 

Xi~ {
poi(λ0) i = 1,2, … , k0,

poi(λ1) i = k0 + 1, … , n.
  (1) 

π(θ|𝐲) =
π(𝐲|θ)π(θ)

π(𝐲)
. (2) 
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Where Γ , DU, and IG are gamma, discrete uniform and inverse gamma distributions. Here, for simplicity 

reasons, it is assumed that 𝑎0 = 𝑎1 = 0.5. Therefore, 𝜃 = (𝑘0, 𝜆0, 𝜆1, 𝑏0, 𝑏1) and the five-dimensional 

posterior distribution is given by 

Which is proportional to  

Markov Chain Monte Carlo (MCMC) is applied to generate samples from posterior distribution similar to 

EM algorithm in non-Bayesian methods [9]. The Gibbs sampler is one of the most well-known versions 

of MCMC which simulates samples from the posterior distribution. Sampling from this full conditional 

posterior distribution ultimately yields draws from the unconditional posterior distribution [9]. For our 

problem, full conditional distributions are given by Eq. (4) as follows 

 

2.2 | Extension to the Poisson Regression  

In this section, we formulate our problem as change point detection in Poisson regression model. Poisson 

regression is a form of regression analysis used to model counting data. Here, it is assumed that response 

variable 𝑌 (mortality rates) has Poisson distribution and the logarithm of its expected value is modeled by 

a linear combination of some covariates 𝑥. In the simplest case, with a single covariates 𝑥, the model is 

given by 

By obtaining the observations (𝑌𝑖, 𝑥𝑖), 𝑖 = 1, … , 𝑛, then the parameters 𝑎 and 𝑏 are estimated from maximum 

likelihood method. Following [10], we let covariate be year itself be in our problem is i.e. = =
i

x i , i 1, ..., n.  

We test if a change has occurred in parameters 𝑎 and 𝑏 (at the same time) and after 
0

H  is rejected, we 

estimate the change point
0

k . 

π(λ1)~Γ(a1, b1), 

π(k0)~DU(1,2, … , n − 1), 

b0, b1~IG(0.5,1). 

 

π(k0, λ0, λ1, b0, b1|𝐲) ∝ ∏ λ0
yik0

i=1 e−λ0 ∏ λ1
yin

i=k0+1 e−λ1 ×× λ0
−0.5e

−λ0/b0 ×

λ1
−0.5e

−λ1/b1 × e
− 

1

b0b0
−1.5 × e

− 
1

b1b1
−1.5. 

 

∝ λ0
(∑ Yi

k0
i=1 +0.5)−1e

−λ0(k0+
1

b0
)
λ1

(∑ Yi
n
i=k0+1 +0.5)−1

e
−λ1(n−k0+

1

b1
)
e

−λ0
b1 e

−λ1
b2 × e

− 
1

b0b0
−1.5 ×

e
− 

1

b1b1
−1.5. 

(3) 

f(λ0|k0, λ1, b0, b1, 𝐲) = Γ (∑ Yi
k0
i=1 + 0.5,

b0

b0k0+1
), 

f(λ1|k0, λ0, b0, b1, 𝐲) = Γ (∑ Yi
n
i=k0+1 + 0.5,

b1

b1(n−k0)+1
), 

f(b0|k0, λ0, λ1, b1, 𝐲) = IG (0.5,
1

λ0 + 1
) , f(b1|k0, λ0, λ1, b0, 𝐲) = IG (0.5,

1

λ1 + 1
), 

f(k0|λ0, λ1, b0, b1, 𝐲) ∝ λ0
∑ Yi

k0
i=1 λ1

∑ Yi
n
i=k0+1 e−k0λ0−(n−k0)λ1. 

(4) 

log(E(Y|X = x)) = a + bx.  

http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/Count_data
http://en.wikipedia.org/wiki/Poisson_distribution
http://en.wikipedia.org/wiki/Logarithm
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Independent_variable
http://en.wikipedia.org/wiki/Maximum_likelihood
http://en.wikipedia.org/wiki/Maximum_likelihood
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Likelihood Ratio (LR) method. Suppose that the Poisson regression is given by Eq. (5), i.e., 

 

Where = =
i

x i , i 1,..., n . The null and alternative hypotheses are 

 

Under
1

H , the log-likelihood function is given by  

 

 

In which * *a,b,a ,b are unknown coefficients and C is known constant. The likelihood function under 

the null hypothesis is derived from the above formula by letting 𝑎 = 𝑎 ∗ and 𝑏 = 𝑏 ∗. Since the formulas 

of maximum likelihood estimators of the parameters as well as the likelihood ratio have nasty forms 

they are not proposed and they are derived, numerically, in practice.   

The Bayesian method. Notice that in the Poisson regression  

 

Where 𝛽′ = (𝑎, 𝑏) and 𝑋𝑖 = (1, 𝑖). The prior for   is 
2

N (μ, )  where μ  and   are known mean vector 

and variance matrix of  , respectively. Here, *a,b,a  and *b are independent with common distribution

2N(0,σ ) . Denote the density of normal distribution with zero mean and variance 𝜎2 computed at 𝑒, 

by 𝑛(𝑒, 0, 𝜎2). Also, in this article, we let =2σ 1 [3]. Therefore, the five dimensional posterior 

distributions are given by Eq. (6) as follow. The Maximum A Posteriori (MAP) estimations of 

parameters are derived by maximizing the posterior with respect the parameters, as follow: 

  

 

Where 𝑙(𝑎, 𝑏, 𝑎∗, 𝑏∗, 𝑘0) is given by Eq. (5).  

3 | Comparisons 

Here, the performances of the likelihood ratio and the Bayesian methods are compared in simulated 

data and a real data set is analyzed by Bayesian method. To run, calculations and computations, R 

program and packages are used.  

Simulated data: LR method. Here, we assume that 𝑎 = 2, 𝑏 = 4 for 𝑖 = 1, … , 𝑘0 and 𝑎∗ = 7, 𝑏∗ = 9 for 

𝑖 = 𝑘0 + 1, … , 𝑛 = 100, for the Poisson regression model. 

The performances of the procedures are compared by MSE of the change point estimators. The results 

are presented in Table 1. Comparing estimates of (�̂�, �̂�) and (�̂�∗, �̂�∗) with actual values of (𝑎, 𝑏) and (𝑎∗, 𝑏∗), 

it is seen that the MSE of (�̂�, �̂�) and (�̂�∗, �̂�∗) are too small in each cells of Table 1. Another likelihood-

based approach is the Bayesian Information Criterion (BIC). Notice that the results of BIC and LR 

methods are the same using simulated observations, since the BIC is a monotone function of LR results 

[3]. 

E(Y|xi) = λi, log(λi) = ai + bixi. (5) 

 = =

 = = = = +


0 i i

1 i i 0 i i 0

H : (a , b ) (a, b) for i 1,...,n,

H : (a , b ) (a, b) for i 1,...,k and(a , b ) (a*, b*) for i k 1,...,n.
 

 

l(a, b, a∗, b∗, k0) = C + a ∑ yi
k0
i=1 + b ∑ xiyi

k0
i=1 + a ∗ ∑ yi

n
i=k0+1 + b∗ ∑ xiyi

n
i=k0+1 +

− ∑ ea+bxi
k0
i=1 − ∑ ea∗+b∗xin

i=k0+1 . 
 

λi = exp(𝛃′𝐗i).  

π(a, b, a∗, b∗, k0|𝐲) ∝ exp(l(a, b, a∗, b∗, k0)) × n(a, 0, σ2) × n(b, 0, σ2) × n(a∗, 0, σ2) ×

n(b∗, 0, σ2). 
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Table 1. LR results: simulation Poisson regression model. 

 

 

 

 

 

 

 

 

Simulated data: Bayesian approach. Here, the Bayesian result of running the Bayesian change point 

detection method in the Poisson regression. 

       Table 2. Bayesian results: simulation poisson regression model. 

 

 

 

 

 

 

 

 

The following figure (Fig. 1) compares the MSE of LR and Bayesian methods. It is seen that, both of 

methods works similar although, the Bayesian method is larger than the LR methods, when the change 

point is close to the starting points.  

 

 

𝐛ഞ ∗ 𝐚ഞ∗ 𝐌𝐒𝐄(
𝐤ഞ

𝐧
) × 𝟏𝟎𝟓 𝐛ഞ  𝐚ഞ 𝐤ഞ 𝐤𝟎 

9 8 3.6 4 2 10 10 

9 7 2.5 4 2 16 15 

9.15 6.15 40 4.2 1.98 21 20 

9 6 8 4 2 24 25 

9 6 0.047 4 2 30 30 

9 6 0.013 4 2 35 35 

9 6.25 0.018 4 2 42 40 

9.1 7.08 18 3.98 2.1 44 45 

9 7.45 0.01 4 2 51 50 

9.03 6.98 3.4 4.08 1.9 54 55 

9.1 7.1 4 3.98 2.1 61 60 

9 7 0.051 4 2 64 65 

9.12 7.02 2.5 4.08 2.1 69 70 

9 7 0.092 4 2 75 75 

9 7 0.032 4 2 81 80 

9 7 0.034 4 2 85 85 

9 7 0 4 2 90 90 

9 7 0.14 4 2 95 95 

𝐛ഞ ∗ 𝐚ഞ∗ 𝐌𝐒𝐄(
𝐤ഞ

𝐧
) × 𝟏𝟎𝟓 𝐛ഞ  𝐚ഞ 𝐄(𝐤ഞ) 𝐤𝟎 

9 8 3.2 4 2 10 10 

9 7 1.5 4 2 15 15 

9.15 6.15 39.38 4.2 1.98 21 20 

9 6 7.1 4 2 25 25 

9 6 0.084 4 2 30 30 

9 6 0.075 4 2 35 35 

9 6.25 0.18 4 2 40 40 

9.1 7.08 18.73 3.98 2.1 44 45 

9 7.45 0.199 4 2 50 50 

9.03 6.98 3.19 4.08 1.9 54 55 

9.1 7.1 3.52 3.98 2.1 61 60 

9 7 1.01 4 2 65 65 

9.12 7.02 1.96 4.08 2.1 69 70 

9 7 0.88 4 2 75 75 

9 7 0.094 4 2 80 80 

9 7 0.45 4 2 85 85 

9 7 0.88 4 2 90 90 

9 7 0.82 4 2 95 95 
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Fig. 1. Comparison of Bayesian and LR results. 

Hereafter, the sensitivity of results to the priors is studied (see, Fig. 2). To this end, notice that an small 

change in the parameter 𝜎2. It is seen that results are very sensitive to the value of 𝜎2.  

 

Fig. 2. MSE of Bayesian-estimate with respect to 𝝈. 

Real data set: the mortality data. Vital statistics such as birth, death, marriage, divorce and migration 

are the best direct indexes to estimate population changes in developed countries. These data have been 

registered by National Organization for Civil Registration (NOCR) in all countries. In Iran, these data 

are collected in Statistical Yearly Book published by Statistical Center of Iran (SCI), a national 

government organization [11]. Another direct procedure for recording information about the members 

of a given population is census. The census data is commonly used for research, business marketing, 

planning, sampling surveys and other studies. Census is conducted every ten years by SCI in Iran.  

From SCI reports, it is seen that a total of 9.7 million deaths registered in during 1971 to 2007 in Iran. 

About 5.9 million (61.1%) were in male and 3.8 million (38.9%) in female with sex ratio 1.6 that from 

them 5.86 million (60.4%) were in urban and 3.84 million (39.6%) in rural. Crude death rate in all studied 

population according to census statistics during 1971 to 2010 was 5.1 per 1000 people. The results 

showed that the CDR rate in Iran was 13 in years 1970-75 and dropped to 5 in 2005-2010 (see Fig. 3). 

Life expectancy at birth increased during the third (57.7) and fourth (59.6) censuses, but during recent 

ten years, it was increased more rapidly and reached to 71 in years 2005-2010 (see Fig. 4). This descriptive 

result suggests the existence of change point among the data. To check these possibilities, we first test 

the existence of change point and then we estimate it. 
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Fig. 3. Life expectancy in Iran 1970-2010. 

 

 

Fig. 4. Crude death rate in Iran 1970-2010. 

Here, we assume a Poisson regression model for Iranian mortality rates and we let the single covariate be 

year. We use LR and BIC to detect change point and that is successfully detected in =
0

k 22 . The null 

hypothesis is rejected because 

 

The maximum value of LR is 31968.7 with change point at 𝑘0 = 22. Results showed that each of the BIC 

and LR is better for detecting the change point in Poisson regression with similar results. Using the 

Bayesian setting, the MAP estimator of
0

k  is derived. It is seen again the point 22 is best selection for 

change point. The variance of this estimator using a bootstrap technique is derived 0.1 which shows this 

estimator works well.  

4 | Conclusion 

In this article, we used likelihood-based and Bayesian methods to detect the change point in Iranian 

mortality rates. First, we supposed the rates are independent Poisson distributed random variables and 

then we got the Poisson regression model. It is shown that a change has been occurred on mortality rates 

at 𝑘0 = 22 which stands for year 1993. This result corresponds to result of SCI, although their results are 

descriptive. All methods work well under Poisson regression model.  For future, we are adding some new 

covariates to our model rather than only years as well as we are training other priors. 

  −
=  =

0 0 1
H 1 k n 1 H 0

BIC 34160 min BIC (k ) 2195.5.   

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10
years

L
if
e

 E
x
p

e
c
ta

n
c
y

0

2

4

6

8

10

12

14

0 2 4 6 8 10
years

C
ru

d
e

 D
e

a
th

 R
a

te
 p

e
r 

1
0

0
0

 p
o

p
u

la
ti
o

n

CDR



 

 

8 

H
a
b

ib
i|
 

J.
 A

p
p

l.
 R

e
s.

 I
n

d
. 

E
n

g
. 

8
(S

p
e
c
. 

Is
su

e
) 

(2
0
2
1)

 1
-8

 

 

Acknowledgments  

The author is grateful to the referee for several suggestions for improving the article. 

References 

 Assareh, H., Noorossana, R., & Mengersen, K. L. (2013). Bayesian change point estimation in Poisson-

based control charts. Journal of industrial engineering international, 9(1), 1-13.  

 Benson, A., & Friel, N. (2018). Adaptive MCMC for multiple change point analysis with applications to 

large datasets. Electronic journal of statistics, 12(2), 3365-3396. 

 Chen, J., & Gupta, A. K. (2014). Parametric statistical change point analysis: With applications to genetics, 

medicine, and finance. Birkhauser Boston. https://doi.org/10.1007/978-0-8176-4801-5  

 Chernoyarov, O. V., Kutoyants, Y. A., & Top, A. (2018). On multiple change-point estimation for 

Poisson process. Communications in statistics-theory and methods, 47(5), 1215-1233. 

 Jarrett, R. G. (1979). A note on the intervals between coal-mining disasters. Biometrika, 66(1), 191-193. 

 Khosravi, A., Taylor, R., Naghavi, M., & Lopez, A. D. (2007). Mortality in the Islamic republic of Iran, 

1964-2004. Bulletin of the world health organization, 85, 607-614. 

 Mohammad, I. (2006). Trends and patterns of mortality in china, Japan and India: a comparative 

analysis. The social sciences, 1(3), 149-153. 

  Ng, K. H., Midi, H., & Ng, K. H. (2017). Change point detection of robust individuals control 

chart. International journal of industrial engineering: theory, applications, and practice, 24(5). 

https://doi.org/10.23055/ijietap.2017.24.5.2947 

  Nyambura, S., Mundai, S., & Waititu, A. (2016). Estimation of change point in Poisson random 

variables using the maximum likelihood method. American journal of theoretical and applied statistics, 5(4), 

219-224. 

 Pina-Monarrez, M. R. (2018). Generalization of the Hotelling's T2 decomposition method to the r- chart. 

International journal of industrial engineering: theory, applications and practice, 25(2). 

https://doi.org/10.23055/ijietap.2018.25.2.2053 

 Shaochuan, L. (2019). A Bayesian multiple change point model for marked Poisson processes with 

applications to deep earthquakes. Stochastic environmental research and risk assessment, 33(1), 59-72. 

https://doi.org/10.1007/978-0-8176-4801-5
https://doi.org/10.23055/ijietap.2017.24.5.2947
https://doi.org/10.23055/ijietap.2018.25.2.2053

