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Abstract 

1 | Introduction  

Manufacturing industries are under great pressure from the global competitive market. Decreasing 

product life cycle, marketing required time, and different customer needs have encouraged 

manufacturers to improve the efficiency and productivity of their operations. Cellular Manufacturing 

System (CMS) leads to a smooth flow due to arranging people and equipment layout in the efficient 

and process-oriented cells, which reduces setup times of customer orders.  

Manufacturing systems must be able to produce the most economical and highest-quality products, 

in the shortest possible time, to deliver just-in-time products to customers. Moreover, manufacturing 

systems must be able to adapt or rapidly respond to changes in product demand without the need 

for major investment. Manufacturing systems such as job shop scheduling and flow shop scheduling 
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systems are not able to meet these needs and requirements [1]. Therefore, the production system must be 

able to change and redesign to rapidly responding to the changes in product demand. As a result, cellular 

manufacturing has emerged as a promising and remedial manufacturing system. CMS is one of the group 

applications in manufacturing systems. Furthermore, it is one of the new production methods, which are 

used today in most large manufacturing centers, with relatively high product diversity, and with 

multipurpose facilities. The design of a CMS consists of three phases. 

The first phase is cell formation. The Cell Formation Problem (CFP) consists of two basic tasks: assigning 

a machine to a cell, or forming machine groups, and assigning a part to a cell, or forming ‘‘part families’’. 

The second phase is the facility layout, and the last one involves scheduling, which is responsible for 

scheduling tasks in each cell. Most of the research in the last two decades has been focused on the cell 

formation phase, while in today's competitive world, effective sequencing and scheduling are essential to 

survival in the market environment. Scheduling is a means to optimize using available resources. Resources 

and tasks in scheduling can be various. Time has always been a fundamental constraint. As the industrial 

world expands, resources become more critical. Scheduling these resources leads to increased efficiency 

and capacity utilization, reducing the time required to complete tasks, and ultimately, increasing the 

profitability of an organization. Effective scheduling of resources such as machines, human resources, etc., 

is a requirement in today's highly competitive environment. Therefore, this study deals with integrated 

cellular scheduling, with the allocation of human resources.  

The research is structured as follows: Section 2 reviews the research literature. Problem definition and 

mathematical modeling are presented in Section 3. Section 4 describes the solution approach to the 

proposed model. Section V includes the validation of the proposed model and the research computational 

results, and finally, Section VI concludes the research and describes the future suggestions.  

2 | Literature Review 

The problem of CMS scheduling, due to its wide range of applications, has become an important problem 

in the field of scheduling. In a cellular manufacturing environment, types of machines or parts (tasks) are 

grouped within part families, each of which is then assigned to a manufactured cell. Thus, the problem of 

CMS scheduling is mainly related to the sequence of part family operations, and parts within families, in 

which each manufactured cell is assigned to produce a certain number of part families. In a manufactured 

cell, parts (tasks) with similar implementing and instrumentalization conditions can be considered as part 

families. Many developed algorithms for group scheduling problems have two steps. The first step is 

determining the sequence of parts in the group, and the second step is determining the sequence of the 

groups. It is worth noting that group scheduling is an NP-Hard problem [2]. There are various studies on 

solving group scheduling problems using heuristic methods. Considering the number of cells, the existing 

research literature can be classified into two groups: those that consider a cell individually, and those that 

consider multiple cells. 

Barzinpour and Zagardi [2] proposed a new mathematical model for scheduling the parts family, and parts 

in each family, in a CMS with a “job shop flow” structure. In this model, there is an assumed part family 

sequence-dependent setup times and cell translocation. In this problem, there are several production 

processes to manufacture each part, and the model chooses one of them, which makes the production 

system flexible. They used a Simulated Annealing (SA) algorithm to solve the problem. Logendran et al. 

[3] suggested three Tabu Search (TS) based response methods for the two-machine group scheduling 

problem, consisting of sequence-dependent part families, with a total completion time criterion. Schaller 

[4] considered the scheduling problem of a single machine manufactured cell to minimize the total 

tardiness.  

The available research literature on scheduling a manufactured cell with more than two machines can be 

divided into two groups. Gupta and Schaller [5] considered scheduling a set of tasks in a manufactured 

cell, with sequence-independent family setup times, to minimize total turnaround time. Hendizadeh et al. 
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[6] proposed a metaheuristic method based on the TS for the problem of CMS scheduling the regular 

flow line, considering the sequence-dependent part family preparation times. This paper introduces TS-

based metaheuristic methods for scheduling parts and tasks to minimize total manufacturing time, in 

which the setup time of each cell depends on the sequence of parts. The concepts of estimation and 

adaptation, the worst action of SA in the proposed metaheuristic method, have been tested to improve 

strength and variety; the efficiency and effectiveness of the proposed TS-based metaheuristic method 

are compared with the best heuristic and metaheuristic reported algorithms in this problem. The 

computational results show that the TS method is quite effective in minimizing the total manufacturing 

time of a reasonable processing time. 

Zandieh et al. [7] used three metaheuristic methods based on “TS”, “SA” and “Genetic Algorithm (GA)” 

for a group scheduling problem with sequence-dependent setup times, during hybrid flexible flow shop. 

Salmasi et al. [8] proposed a mathematical planning model with the aim of minimizing time in the total 

flow for the sequence-dependent flow shop group scheduling problem. They heuristically used the TS 

algorithm and hybrid Ant Colony Optimization (ACO) algorithm to solve the problem and to evaluate 

the algorithms used a Lower Bounds (LB) method based on the branch and price algorithm. They 

reported the superiority of the hybrid ACO over the TS. 

Solimanpur et al. [9] addressed setup time-based cellular scheduling with several cells and have allowed 

intercellular translocation. In this case, they considered a two-step policy to solve their model. In the 

first step, the work sequence is determined, and in the second step, the bottleneck machine is identified 

and arranged based on the binary comparison. Finally, they solved their model using the two-step SVS 

algorithm, and the response was compared with the results of the LN-PT method, and they concluded 

that the SVS algorithm is more efficient than the LN-PT; it should be noted that, according to this 

article, the LN-PT method is derived from Logendran et al. [3]. They examined different methods of 

solving, combining three methods of PT, LN, CDS, and finally, concluded that the LN-PT method is 

better than CDS-PT, PT-CDS, and PT-LN. In this method, LN and PT are used in the first and second 

stages, respectively. Zagardi and Bohloli [10] investigated the effect of learning on group scheduling 

with a job shop flow structure with the aim of minimizing the maximum completion time and assuming 

sequence-dependent setup times of the parts family. They developed two GAs and a heuristic method 

to solve it. The learning effect in this paper means reducing the processing time of tasks, by repeating 

tasks and increasing the skill and ability of the worker. Zandieh and Karimi [11] examined a multi-

objective group scheduling problem, in a flexible hybrid job shop flow with sequence-dependent setup 

times, or the goal of minimizing total weighted tardiness, and the maximum completion time, 

simultaneously. To solve this problem, they proposed a multi-population GA. Li et al. [12] presented 

the problem of parts dynamic scheduling in a multi-CMS, taking into account intercellular translocation 

and flexible paths. 

Tavakkoli-Moghaddam et al. [13] proposed a new model for scheduling the CMS and used GA and 

Memetic algorithm to solve the problem. In the proposed model, like other group scheduling problems, 

scheduling includes cell scheduling and part family scheduling within the cell family. In it, intercellular 

translocation is allowed, and the processing path of parts is identified and is one of the attributes of the 

problem. The objective function of the model is minimizing intercellular translocation time and total 

manufacturing time. In fact, there is, in the model, the effect of intercellular translocation on schedule 

taking into account the time tardiness on each translocation and minimizing intercellular translocation 

time. Tavakkoli-Moghaddam et al. [13] developed a model and discussed a multi-criteria group 

scheduling problem considering intercellular translocation, and developed a scatter search method to 

solve the problem. The difference between this problem and the previous one, and in fact, the 

dimensions in which the model is developed are: in this model, one of the simplifying assumptions of 

the problem is removed. The setup time of the machines, in the previous article, was assumed to be 

zero, while here, it is considered non-zero and cell sequence-dependent. In this paper, the objective 

function, in addition to intercellular translocation time, and total construction time, includes two other 

criteria: tardiness time and cell setup cost, which depends on the cell sequence. To standardize the type 
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of criteria, all of them are considered the cost. The goal was to minimize costs. Using parts in the 

multicellular system and intracellular translocation, Solimanpur and Elmi [14] employed the SVS, NTS 

algorithm, and minimized the time to complete all tasks. 

Considering the literature, it can be found that most of the literature on CMS scheduling is presented as a 

group scheduling with a job shop flow structure, and in a small number, as a flow line scheduling. Whereas, 

despite intracellular translocation, determining the best sequence of intracellular parts and then sequencing 

cells may lead to the least completion time; thus determining the sequence of all parts should not lead to 

the shortest completion time, therefore, determining the sequence of all intracellular parts should be done 

in parallel. Li et al. [12] proposed a nonlinear programming model for this problem and used a scatter 

search metaheuristic method to solve the problem. Subsequently, Solimanpur and Elmi [14] presented an 

integer linear model for the JSCS problem, despite intercellular translocation and reverse parts, and used 

the SA algorithm to solve it. In this model, the part family and the production process of parts are 

determined. 

According to the literature review, it can be said that development and research in this field have been 

done in different dimensions. Considering various objective functions, dynamic conditions, system 

flexibility, using the human resource in the problem, the attributes of production design in the cellular 

system, have been among these dimensions, which all these efforts have been to bringing the problem 

closer to real-world condition and applying their results. In some papers, due to the complexity of problems 

and time-consuming exact solution methods, various metaheuristic methods have been proposed to solve 

large-scale problems. There have been extensive studies in the field of scheduling, which results of which 

can be seen in the field of CMS scheduling. As it is obvious in the cellular scheduling literature, in most 

cases, group scheduling has been used in CMS scheduling problems, which first deal with the elements of 

the group and then, the scheduling of the groups. One of the constraints of group scheduling methods is 

that, in most cases, it is assumed that there are no intercellular machines, and this assumption is not taken 

into account, because the intercellular machines complicate the flow of materials and manufacturing 

scheduling system. There is limited research on intercellular machines so that the only research is the study 

of Solimanpur and Elmi [14] and Tavakkoli-Moghaddam et al. [15] on scheduling with job-shop structure. 

Egilmez et al. [16] studied a stochastic skill-based manpower allocation problem. Three stochastic 

nonlinear mathematical models were developed to deal with manpower level determination, cell loading 

and individual worker assignment phases. Karthikeyan et al. [17] presented an optimization model for 

worker assignment in a dynamic CMS. They developed a GA to solve the model. Azadeh et al. [18] studied 

human factors on a multi-objective dynamic CMS to minimize the total cost and inconsistency in the 

decision-making style of operators. Two metaheuristic algorithms including Non-dominated Sorting 

Genetic Algorithm (NSGA) and Multi-Objective Particle Swarm Optimization (MOPSO) are developed. 

Méndez-Vázquez and Nembhard [19] studied the impact of organizational factors on worker-cell 

assignment in CMSs. Chu et al. [20] studied a CMS considering workers’ assignment with learning-

forgetting effect. An adaptive memetic differential search algorithm is developed to solve the proposed 

model. The application of heuristic and metaheuristic algorithms was reviewed by Kesavan et al. [21] for 

solving CMS problems. Recently, a novel methodology was developed by Goli et al. [22] to address the 

fuzzy integrated cell formation and production scheduling including Automated Guided Vehicles (AGVs) 

and human factors. They employed a hybrid GA and a Whale Optimization Algorithm (WOA) to tackle 

the complexity of the problem. 

Now, if we concentrate on CFP in the presented scheduling models so far, we find that in some of them, 

both machine groups and the part families are among the parameters of the model [2] and [23] and in some 

others, the allocation of the part to the cell, except for decision variables, and in machine groups, is still a 

parameter [14], [13] and [15]. Since the tasks scheduling is doing depends on the allocation of machines 

and parts to the cells and the manufacturing process related to the parts, changing each one will definitely 

affect the other, however, has not been addressed in the existing papers. On the other hand, the CFP is 
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developed with the presence of the worker, and human resources are an effective factor in the execution 

of tasks, which has also been ignored in CMS scheduling. 

Heydari and Aazami [24] developed a job shop scheduling problem with sequence-dependent setup 

times to minimize the maximum tardiness and make span. As they considered two objectives, the ε-

constraint method is applied to solve the problem. Dehnavi-Arani et al. [25] developed an integrated 

scheduling problem and cell information in a CMS. They considered automated guided vehicles to make 

the flexibility in the handling system. Aghajani-Delavar et al. [26] developed a multi-objective vibration-

damping algorithm for solving a CMS considering human resource and tool allocation. They used three 

multi-objective algorithms including NSGA-II, MOPSO, and MOIWO to validate their proposed 

algorithm. Guo et al. [27] developed a new optimization model for a digital twin and flexible CMS. They 

considered the air conditioner production line as a case study. 

Now, considering the gap in the literature, in the present study, we will pay attention to the CFP and 

cellular scheduling, simultaneously. A novel model presented where bottleneck machines and human 

resources are considered. Thus, cellular scheduling is done simultaneously along with cell formation, in 

the three-dimensional space of machine-part-human resource, with goals of minimizing the completion 

time of all tasks in the system and minimizing intercellular translocations related to bottlenecks machines 

and human resource. It should be noted that the scheduling is doing with a job-shop structure, there is 

a sequence in the operation of each part, the multi-skill of the workers and the ability to performing 

several different operations by each machine, has caused flexibility in the process of manufacturing parts. 

3 | Problem Statement 

Due to the wide applications of cellular manufacturing, CMS scheduling has become important in the 

field of scheduling. Scheduling of parts and part families plays an effective role in the successful 

implementation of CMSs. According to the importance of flexibility in the manufacturing system, this 

feature has received less attention in most cellular manufacturing problems [28]. One of the flexibility 

levels is using machinery that can produce parts with different manufacturing processes, in which the 

manufacturing time of each operation is different in the process. In this case, depends on the type of 

flexibility in the cellular system, different manufacturing processes (by different machines) can be used 

to manufacture parts in each family, which is indicated as a “multiple process schedule”. The “process 

schedule” of each part includes the machinery required in the operation sequence of that part. In CMS 

problems, if there is a “multiple process schedule”, in most cases, the selection of the manufacturing 

process in the manufacturing cell formation stage is considered. In the next step, the parts’ scheduling 

affects each other, and an integrally consider the process scheduling can lead to better use of 

manufacturing resources and improving scheduling goals, which have received less attention in the field 

of cellular systems. 

Considering the sequence operation in the CFP provides more information for the designer. Sequence 

operation determines the order of processing parts and tasks in the manufacturing process. Regardless 

of the sequence operation in cell formation, it is possible to miscalculate intercellular and intracellular 

movements based on the cells in which a part is moved for processing. Another key point in the CMS 

is human resources. In real life, grouping machines and parts not only can make the system more 

efficient, but the allocation of human resources also plays a key role in optimizing production resources. 

Since human resource plays an important role in doing tasks on machines, allocating them to machines 

is an important factor to full efficiency of the cellular system, and ignoring them significantly reduces 

the benefits of cellular manufacturing. Some previous research has addressed this issue [29]. In order to 

increase production flexibility, a unique manufacturing system requires multi-skilled workers. To this 

end, a multi-skilled workforce has been used, as it has a significant impact on the success of cellular 

manufacturing. 
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The CMS scheduling problem is NP-Hard [4], and one of the most difficult and important hybrid 

optimization problems. Due to the inherent complexity of hybrid optimization problems, and in particular 

the problem of CMS scheduling, the use of heuristic methods to solve such problems has led to effective 

improvements in produce acceptable solutions. By increasing the dimensions of the problem, the 

traditional methods of determining the optimal solution will be practically inefficient due to the time-

consuming calculations. 

This study introduces a mathematical model for scheduling tasks on machines in the three-dimensional 

space of machine-part-human resources. In the proposed model, there are machine flexibility and human 

resource. That is, each machine is capable of performing several different operations, and each worker has 

the skill of working with multiple machines. Moreover, the sequence operations for each part are 

considered in this model. It should be noted that in the proposed model, unlike most cellular scheduling 

models, instead of sequencing parts within each family, and sequencing cells in both steps, only the 

sequence of tasks on each machine is specified, which includes two mentioned sequences. 

3.1 | Assumptions  

I. The time of each operation of a part on different machines is specific and constant. 

II. The number of machines is specified and constant. 

III. The number of cells in the CMS is specified. 

IV. All machines are available for processing at the moment of zero. 

V. The machine's efficiency is 100%. 

VI. There will be no failure time for machines. 

3.2 | Notations 

The main components of the proposed model are given by Tables 1 to 3. 

Table 1. Definitions of indices. 

 

 

 

 

Table 2. Definitions of parameters. 

 

 

 

 

Notations Definitions 

c Number of cells (c = 1, 2,…, C). 

p Number of parts (p = 1, 2,…, P). 

k Number of machines (k = 1, 2,…, K). 

w Number of workers (w =1, 2,…, W). 

f Part families (f = 1, 2,…, F). 

Ii The operation number of part i. 

Notations  Definitions 

tij The processing time of the operator j on part I. 

sfk  Setup time of machine k for processing the part family f. 

M  A large positive real number. 

aijk  If operator j on part i requires machine k, it takes 1; otherwise it takes 0. 

bfi  If part i belongs to part family f, it takes 1; otherwise it takes 0. 

dikw  If part i is processed on machine k with worker w, it takes 1; otherwise it takes 0. 

cfk  If machine k belongs to the part family f, it takes 1; otherwise it takes 0.  
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Table 3. Definitions of variables. 

  

 

 

 

 

 

3.3 | Proposed Mathematical Model 

In this model, the following two objectives have been examined. The first objective (𝐹1) (Eq. (1)) is to 

minimize the completion time of all tasks in the system. The second objective (𝐹2) (Eq. (2)) is to minimize 

the number of intercellular translocation related to machine bottlenecks and human resources. In fact, 

this model deals with integrated cellular scheduling to achieve both effective objectives simultaneously. 

 

 

The following are the constraints of the problem: 

 

 

Constraint (3) indicates that any work can be processed on one machine and by one worker. 

 

 

 

Constraints (4), (5) and (6) ensure that the processing time on each machine is equal or greater than the 

completion time of the previous part family on that machine. 

 

According to Constraint (7) at the time of processing of the part, the worker related to that machine is 

available. 

Constraint (8) indicates that the processing of each part on each machine is scheduled after the start time 

of the related part family. 

Notations Definitions 

Bfk   Start time of part family f on machine k. 

Bfkw  Start time to part family f on machine k by worker w. 

Dfk End time of part family f on machine k. 

cpij  End time of operator j on part i.  

RMW  Available time of worker w. 

Q ff′  Binary variable to detect a partial sequence of part families f and f'. 

zii′ Binary variable to detect a partial sequence of parts i and i'.  

scn  Setup time of machine n in cell c. 

minimize   (F1) =  Cmax. (1) 

minimize  (F2) =  ∑ interwi

w

i=1

+ ∑ interk j

k

j=1

. (2) 

∑ dikw

W

w =1

= 1,               (k ∈ {1,2, … , K}, i ∈ {1, 2, … , p}) (3) 

Bfk + M × (1 − cfk) ≥ sfk,     (f ∈ {1, 2, … , F}, k ∈ {1,2, … , K}). (4) 

Bf′k + M × (1- (cfk × cf′k) + Q ff′) ≥ sf′k + Dfk, f, f ′ ∈ {1, 2, … , F}│f = f ′, k ∈

{1,2, … , K}). 
(5) 

Bfk + M × (2- (cfk × cf′k) − Q ff′) ≥ sfk + Df′k,  (f, f ′ ∈ {1, 2, … , F}│f = f ′, k ∈

{1,2, … , K}). 
(6) 

BfkW + M × (1 − cfk)≥ RMW,  (f ∈ {1, 2, … , F}, k ∈ {1,2, … , K}, w ∈ {1,2, … , W}). (7) 

 pij − tij + M ×(1- (bfi × aijk))≥ Bfk, (f ∈ {1, 2, … , F}, k ∈ {1,2, … , K}, i ∈

{1,2, … , p}, j ∈ {1,2, … , Ii}). 
(8) 

cpij − tij + M × (1 −(aijk × ai j−1 k′))≥ cpi.j−1, 

( k, k′ ∈ {1,2. … , K}|
k ≠ k′, i ∈ {1,2, … , p},

 j ∈  {1,2. … , Ii} 
). 

(9) 
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Constraint (9) indicates that each operation on each part will start after ending processing time on the 

previous part. 

Constraints (10) and (11) indicate the sequence operating of parts are processed on a machine. These 

constraints ensure that no two operations are processed on a machine simultaneously. 

Constraint (12) ensures that the processing of each part family on each machine is completed, if all 

operations of that part family are completed on that machine. 

Constraint (13) defines makespan as the end time of all part families. 

Constraints (14) and (15) are introduced as negative and binary variables, respectively. 

4 | Proposed Solution Approach 

As mentioned, this study addresses the CFP and cellular scheduling. Reviewing previous studies shows 

that for each of these two problems, various algorithms have been proposed and implemented, and 

acceptable results have been obtained. These algorithms include GA, TS, and SA algorithms. Selecting GA 

and TS algorithm among them is due to some reasons, which are briefly mentioned: The presentation 

model is bi-objective, and applying the GA to multi-objective problems is simple and useful. Therefore, 

the GA was used. However, the nature of the problem did not allow us to use this algorithm alone, because 

the proposed algorithm had to focus on each solution to the CFP and also search the various solutions to 

the scheduling problem. The GA, on the other hand, was only responsive to a large-scale search and did 

not provide the necessary focus. To solve this problem, algorithms such as TS and SA had to be used. 

Therefore, a combination of GA and TS algorithm was used to solve the problem, in which its expected 

scatter is provided using the GA and the expected intensity, is provided by the TS algorithm. The 

performance of the multi-objective hybrid algorithm (MO-TS-GA) is expressed in the following execution 

steps: 

Step 1. Initialization of machine to cell (CM) and worker to cell (CW) chromosomes. 

Step 2. Definition of Tabu list to assign the machine and the worker to the cell. 

Step 3. Repetition of the following steps until the stop condition is met. 

Sub-Step 3.1. Addition of selected solutions to the tabu list. 

cpij − tij + M × (1-(aijk × ai′j′k′ × bfi × bfi′) + zii′))≥ cpi′j′, 

(i, i ′ ∈ {1, 2, … , p}|i ≠ i ′, f ∈ {1,2, … , F}, j ∈ {1,2, … , Ii}, j ′ ∈ {1,2, … , Ii′}, k ∈ {1,2, … , K}). 
(10) 

cpi′j′ − ti′j′ + M × (2-(aijk × ai′j′k′ × bfi × bfi′) − zii′))≥  cpij , 

 (i, i ′ ∈ {1, 2, … , p}|i ≠ i ′, f ∈ {1,2, … , F}, j ∈ {1,2, … , Ii}, j ′ ∈ {1,2, … , Ii′}, k ∈ {1,2, … , K}). 
(11) 

Dfk + M ×(1-(bfi × aijk))≥ cpij, (f ∈ {1, 2, … , F}, k ∈ {1,2, … , K},i ∈ {1,2, … , p} 

j ∈ {1,2, … , Ii}), 

(12) 

cmax ≥ Dfk,   (f ∈ {1, 2, … , F}, k ∈ {1,2, … , K}). (13) 

cmax ≥ 0. (14) 

bfi, aijk, dikw, cfk ∈ {0, 1}, ∀  i, j, f, k. (15) 
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Sub-Step 3.2. Formation of a population of solutions related to assigning parts operations, and 

scheduling them to machines and workers (Ind) according to the solutions of assigning machine to cell 

and worker  to cell (CM, CW). 

Sub-Sub-Step 3.2.1. Repetition of the following steps until the stop condition is met:  

Sub-Sub-Step 3.2.2. Ranking the population members. 

Sub-Sub-Step 3.2.3. Formation based on intersection space rankings. 

Sub-Sub-Step 3.2.4. Formation of the offspring population using mutation and intersection functions. 

Sub-Sub-Step 3.2.4. Calculation of the rank of the offspring population. 

Sub-Sub-Step 3.2.5. Formation of the next generation. 

Sub-Step 3.3. Updating the front solutions. 

Sub-Step 3.4. Calculate the probability of updating the best solutions for assigning the machine to the 

cell and worker to the cell by comparing the best-obtained front and the resulting front of the current 

repetition. 

Sub-Step 3.5. Updating the solutions based on the above possibility. 

Step 4. Report of the best-obtained front. 

According to the above pseudo-code, in the proposed algorithm, there is a multi-objective GA 

embedded in a TS algorithm, which changes the assignment of the machine and worker to the cell by 

the TS algorithm, and changes in the scheduling processing work through the GA. Finally, by calculating 

a simple probability, the solutions are related. The flowchart of the algorithm is shown in Fig. 1. 

5 | Computational Results 

The studied problem in this research is computationally complex since the CFP belongs to the NP-Hard 

problems. The problem of CMS scheduling, considering computational complexity, is classified as an 

NP-Hard problem [4]. As mentioned before, this study addresses the CFP and CMS scheduling in the 

three-dimensional space of machine-part-human resources. Therefore, the complexity of the studied 

problem is obvious, and only the small-scale problems can be solved in a reasonable time using software 

such as LINGO. 

It is impossible to solve large-scale problems because of the lots of time required to solve them, and 

also the required large memory by the computer. Therefore, in this chapter, a multi-objective hybrid 

algorithm based on GA and TS algorithms is suggested according to the proposed model, and the 

computational results are presented at the end. 

5.1 | Developing a Sample Problem 

In this part, to examine the validity of the proposed model, a sample problem is provided, and then, will 

be solved using the Global solution approach in LINGO software. This example includes 2 cells, 2 

workers, 2 machines, and 2 parts with a maximum of 2 operations. Table 4 shows the ability of each 

worker to work with machines. For example, worker 1 can work on machines 1 and 2. Table 5 shows 

the processing time of operations on the machines. The least number of machines and workers assigned 

to each cell is 1. 
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start

developing neighborhoods 

according to the movement 

approach

Initialization of CM and CW 

chromosomes

formulating a tabu list

Is there a stop 

condition?

Initialization of the lnd 

chromosome and making the 

initial population

Addition of related movements to 

the tabu list and updating it

selecting non-tabu neighborhood

no

rankings Population

Ranking the offspring population 

and formation of the next 

generation

Formation of the offspring 

population using mutation and 

intersection

Selection based on ranks and the 

formation of an intersection space

Information of the best 

answer front

end

yes

Updating answers

Calculation of the probability of 

updating CM and CW answers

Updating the best answers based 

on the obtained probability

yes
Is there a GA stop 

condition?

no

 

Fig. 1. Flowchart of MO-TS-GA hybrid algorithm. 

 

Table 4. Input information of machine-worker. 

 

 

 

 𝐰𝟏  𝐰𝟐 

 𝐦𝟏 1  0 

𝐦𝟐 1 1 
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Table 5. Processing times of parts operations (seconds). 

    

 

 

5.2 | Exact Solution of the Sample Problem 

Since LINGO cannot solve bi-objective models, the Min-Max method was used to solve the example. 

In other words, the model was solved for each of the objectives and using the optimal solutions and the 

Max-Min method the optimal solution was obtained simultaneously for two objectives. The resulting 

values are given in Table 6. The resulting allocations are also shown in Table 7. The network graph of the 

problem is shown in Fig. 2 to show the system scheduling. In Fig. 2, for each machine, the worker who 

performs the operation of the part related to that machine, and the time to complete the processing of 

that operation, are listed. Machine 2, for example, has completed the first operation on part 1, by worker 

1, in 5 seconds. 

Table 6. Output information of objective functions. 

 

 

Table 7. Output information of assigning part, machine, and worker to cells. 

 

 

Fig. 2. Network graph problem. 

According to the sample, as expected, the cell formation method and the selection of the parts 

manufacturing process, and the completion time of all system tasks influenced each other, and by 

presenting and solving the proposed model, we were able to minimize both objectives to some extent. 

Another noteworthy point is the time to solve the model by LINGO. By adding just one part with two 

operations to the sample, after a few hours, LINGO was still unable to solve the problem, which 

indicates the high complexity of the problem and proves the need to use a metaheuristic algorithm. 

5.3 | Computational Results of MO-TS-GA Hybrid Algorithm 

Since metaheuristic algorithms are stochastic in nature, using a set of parameters in different problems 

generally leads to different solutions. Accordingly, setting the parameters of the algorithm to solve a 

specific problem is of particular importance. Extensive experiments were performed to select the 

 𝐦𝟏  𝐦𝟐 

𝐩𝟏 7  5 

𝐩𝟐 4 3 

Total intercellular translocations = f2 2 

Maximum time to complete all tasks = f1 12 

Run time (seconds) 656 

Part Assigned to Machines in Workers Assigned to 

Cell 1    Cell 2                  Cell 1    Cell 2                  Cell 1    Cell 2                  

  1            2                     2           1                     2               1 
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appropriate values for the parameters of GA and TS algorithm. To judge the selection of proper parameters 

from a set of values, two criteria were considered: Pareto optimal solutions and computer processing time. 

These two criteria are in conflict. For example, increasing the number of populations in the GA or 

increasing the iterations in the TS algorithm leads to a better solution, which increases the execution time 

of the algorithm, especially for large-scale problems. 

Based on the stochastic nature of these algorithms, the setting parameter is, in fact, a stochastic multi-

objective problem. The following method was used considering the complexity of the stochastic multi-

objective parameter setting problem of this research. In order to limit the search space, some candidate 

values were selected for each parameter. A list of parameters and their levels is summarized in Table 8. 

Table 8. List of MO-TS-GA parameters and their values. 

 

 

 

According to Table 8, several combinations of parametric values were selected for the proposed algorithm. 

Based on the stochastic behavior of metaheuristic algorithms, each problem needed to be solved several 

times. 

Therefore, two examples of test problems were considered: (The largest-scale problem with 15 machines, 

7 workers, 30 parts with 3 operations and 3 cells; the smallest - scale problem, with 2 machines, 2 workers, 

2 parts and 2 operations for each part and 2 cells). The algorithm was run 10 times for each set of 

parameters. According to these results, the best parameters were selected. For example, the results of 10 

combinations of the compounds on the smallest-scale problem are given in Table 9. 

After selecting the best algorithm, several other tests were performed, including the selection of two 

superior parameter sets, and considering another test problem involving 5 machines, 2 workers, and 18 

parts and 2 operations for each part and 2 cells. Finally, more effective parameters than the others were 

selected and used to perform the examples. 

After setting the parameters, we implemented the proposed algorithm for large-scale problems. Since the 

proposed MO-TS-GA approach is stochastic in nature, each sample problem is solved 30 times for small-

scale problems with small and medium dimensions, 10 times for large-scale problems, and then the 

minimum, maximum and mean values are reported for objective function and runtime. 

Table 9. The effect of parameter values on algorithm efficiency measures. 

 

 

 

 

 

 

 

Parameters Values 

Psize 15,23,35 
OffsSize 40,50,70 

Pc  0.85,0.9,0.95 

Pm  0.01,0.05,0.09 

GAItr 10,30,50 
TSItr 10,15,30 

Row Time (seconds) Pareto Optimal Solutions Psize OffsSize 𝐏𝐜 𝐏𝐦 GA.Itr TS.Itr 

1 3.097 5 15 40 0.85 0.01 10 10 

2 4.14 8 15 50 0.85 0.05 10 15 

3 6.50 12 25 50 0.9 0.09 30 30 

4 12.77 15 25 70 0.95 0.09 50 15 

5 5.94 6 35 40 0.85 0.09 30 10 

6 7.61 10 25 50 0.95 0.05 30 15 

7 7.23 9 35 70 0.95 0.01 50 10 

8 4.57 7 15 40 0.95 0.01 10 10 

9 15.10 13 35 70 0.95 0.09 50 30 

10 5.15 7 25 50 0.9 0.05 30 15 
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The attribution of the GA part, according to the parameter setting, is as follows. 

I. The population size (popsize) is considered 25 for the large-scale problem, and 15 for the rest. 

II. Initialization of machine. The offspring size (offsSize) is considered 50 for the large-scale problem, 

and 40 for the rest. 

III. The number of genetics is considered 30 for the large-scale problem, and 10 for the rest. 

IV. The mutation and the intersection operator rates are considered 0.05 and 0.95, respectively. 

V. Moreover, the attribution of the TS algorithm part is as follows: 

VI. The number of iteration in the TS is considered 15 for the large-scale problem, and 10 for the rest. 

VII. General attribution also includes: 

VIII. The processing time of the operation of each part is correct in small-scale problem and is randomly 

generated from [1-10]. 

IX. In medium and large-scale problems, stochastic number processing times are selected from [0-1]. 

According to the explanations, the numerical results obtained from the algorithm are described in Table 

10. 

Table 10. Results of MO-TS-GA algorithm. 

 

According to the results obtained from the proposed algorithm, it is demonstrated that our algorithm 

can yield high-quality solutions within reasonable run times. In fact, the best-found solutions were 

provided by the algorithm for each problem instance in terms of completion time, total displacement 

and run time. To this end, it is suggested to managers as a useful tool to tackle the complexity of the 

problem in manufacturing systems. Moreover, the proposed algorithm has sufficient flexibility in order 

to incorporate further assumptions related to the problem. 

6 | Conclusion   

The present research has proposed a comprehensive model to design a CMS. The proposed model, 

considering two of the most important objectives of each cellular manufacturing unit, that is, 

intercellular translocation, and the maximum completion time of all tasks, and considering limitations 
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such as the ability of workers to perform operations related to each part on each machine, and the time 

required to perform it, determines which operation of which part, should be performed on which machine, 

and by which worker, it also schedules tasks in a way that minimizes the maximum time of completing all 

task. In other words, this research integrally addresses the problem of CMS scheduling, and the 

fundamental and determining time limitations, in addition to other limitations, are considered in the CMS. 

The bottleneck machine, human resources, the sequence operation manufacture parts, and the flexibility 

in the manufacturing process of parts, have distinguished this research from previous research works and 

bring its situations closer to the real world. 

This is clearly a very complex problem and it is not possible to solve it using traditional and precise methods 

particularly in medium and large sizes. Therefore, the present study designed a new hybrid multi-objective 

metaheuristic method based on GA and TS algorithm (MO-TS-GA) to solve this problem. The result of 

its implementation, both in terms of the quality of the solutions and in terms of the time of solving, was 

optimal in comparison with the solutions obtained from LINGO software. 

After reviewing the research limitations, the following suggestions are made for future work. Extending 

the design model, and scheduling manufactured cells in a dynamic multi-criteria environment; developing 

a model to design and schedule manufactured cells in a multi-criteria environment by depending on the 

intercellular translocation of bottlenecks machines and workers, on the interval between them; and also, 

the developing a model to design and schedule manufactured cells employing more than one machine from 

each type of machine, as well as more than one worker from each type of worker having several human 

resources with the same skill. Moreover, other solution approaches like other metaheuristic algorithms can 

be applied [30]-[32]. Other multi-objective approaches such as goal programming can be used to solve the 

problem [33]-[34]. Finally, the effects of uncertainty can be studied in the problem through robust 

optimization [33], [35] and [37], fuzzy programming [36] and [38], stochastic optimal control [39], or grey 

systems [40]. 
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