Document Type : Review Paper

Authors

1 Department of Applied Mathematics (FSEG), University des Sciences Sociales et de Gestion de Bamako (USSGB), Quartier du Fleuve Rue 310, Porte 238, Mali.

2 Department of Applied Mathematics (FSEG), Université des Sciences Sociales et de Gestion de Bamako (USSGB), Quartier du Fleuve Rue 310, Porte 238, Mali.

10.22105/jarie.2021.288186.1331

Abstract

The aim of this paper is to introduce a formulation of fully fuzzy transportation problems involving pentagonal and hexagonal fuzzy numbers for the transportation costs and values of supplies and demands.  We introduce new technique for improve methods for solving the fully fuzzy transportation problems with parameters given as the pentagonal and hexagonal fuzzy numbers. Algorithms are proposed to find the non-negative fuzzy optimal solution of fully fuzzy transportation problems with parameters given as pentagonal and hexagonal fuzzy numbers. This technique is also best optimal solution in the literature and illustrated with numerical examples.

Keywords

Main Subjects

Kaur, A., Kacprzyk, J., Kumar, A., & Analyst, C. F. (2020). Fuzzy transportation and transshipment problems. Springer International Publishing.
Zadeh L.A (1965) Fuzzy sets. Information control 8, 338-353.
Ramesh, G., & Ganesan, K. (2012). Duality theory for interval linear programming problems. IOSR journal of mathematics4(4), 39-47.
Sudha, G., & Ganesan, K. (2020, November). A new algorithm for fully interval integer transportation problem. AIP conference proceedings(Vol. 2277, No. 1, p. 200010). AIP Publishing LLC. https://doi.org/10.1063/5.0025569
Rabinson, G. C., & Chandrasekaran, R. (2019). A method for solving a pentagonal fuzzy transportation problem via ranking technique and ATM. International journal of research in engineering, IT and social sciences9(4), 71-75.
Kalyani, S., & Nagarani, S. (2020, October). A fully fuzzy transportation problem with hexagonal fuzzy number. AIP conference proceedings(Vol. 2261, No. 1, p. 030078). AIP Publishing LLC. https://doi.org/10.1063/5.0016903
Kamble, A. J. (2017). Some notes on pentagonal fuzzy numbers. Int J fuzzy math arch13, 113-121.
Kumar Das, S. (2020). Application of transportation problem under pentagonal neutrosophic environment. Journal of fuzzy extension and applications1(1), 27-41.
Kumar, R., Edalatpanah, S. A., Jha, S., & Singh, R. (2019). A pythagorean fuzzy approach to the transportation problem. Complex & intelligent systems5(2), 255-263.
Zhu, K., Ji, K., & Shen, J. (2021). A fixed charge transportation problem with damageable items under uncertain environment. Physica a: statistical mechanics and its applications581, 126234. https://doi.org/10.1016/j.physa.2021.126234
Ladji Kané, Moctar Diakité, Souleymane Kané, Hawa Bado, Moussa Konaté and Koura Traoré. (In Press). A new algorithm for fuzzy transportation problems with trapezoidal fuzzy numbers under fuzzy circumstances. Journal of fuzzy extension & applications. http://dx.doi.org/10.22105/jfea.2021.287198.1148
Thamaraiselvi, A., & Santhi, R. (2015). Solving fuzzy transportation problem with generalized hexagonal fuzzy numbers. IOSR journal of mathematics11(5), 8-13.
Ghadle, K. P., & Pathade, P. A. (2017). Solving transportation problem with generalized hexagonal and generalized octagonal fuzzy numbers by ranking method. Global journal of pure and applied mathematics13(9), 6367-6376.
Geetha, S. S., & Selvakumari, K. (2020). A new method for solving fuzzy transportation problem using pentagonal fuzzy numbers. Journal of critical reviews7(9), 171-174.
Ghadle, K., & Pathade, P. (2016). Optimal solution of balanced and unbalanced fuzzy transportation problem using hexagonal fuzzy numbers. International journal of mathematical research5(2), 131-137.
Fahrudin, M., & Nuraini, A. (2021, May). Performance evaluation of new ranking function methods with current ranking functions using VAM and MM-VAM. 1st International conference on mathematics and mathematics education (ICMMEd 2020) (pp. 418-424). Atlantis Press.