Document Type : Research Paper

Authors

1 Department of Information Technology Management, North Tehran Branch, Islamic Azad University, Tehran, Iran.

2 Department of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.

3 Department of Industrial Management, North Tehran Branch, Islamic Azad University, Tehran, Iran.

Abstract

Cryptocurrencies are considered as new financial and economic tools having special and innovative features, among which Bitcoin is the most popular. The contribution of the Bitcoin market continues to grow due to the special nature of Bitcoin. The investors' attention to Bitcoin has increased significantly in recent years due to significant growth in its prices. It is important to create a prediction system which works well for investment management and business strategies due to the high chaos and volatility of Bitcoin prices. In this study, in order to improve predictive accuracy, Bitcoin price dataset is first divided into a time interval through time window, then propose a new model based on Long Short-Term Memory (LSTM) neural networks and Metaheuristic algorithms. Chaotic Dolphin Swarm Optimization algorithm is used to optimize the LSTM. Performance evaluation indicated that the proposed model can have more effective predictions and improve prediction accuracy. In addition, the performance of the optimized model is better and more reliable than other models.

Keywords

Main Subjects

  1. Nakamoto, S. (2008). Bitcoin: a peer-to-peer electronic cash system. Decentralized business review. https://www.debr.io/article/21260-bitcoin-a-peer-to-peer-electronic-cash-system
  2. Sovbetov, Y. (2018). Factors influencing cryptocurrency prices: Evidence from bitcoin, ethereum, dash, litcoin, and monero. Journal of economics and financial analysis2(2), 1-27. DOI: 1991/jefa. v2i2.a16
  3. Velankar, S., Valecha, S., & Maji, S. (2018, February). Bitcoin price prediction using machine learning. 20th international conference on advanced communication technology (ICACT)(pp. 144-147). IEEE. DOI: 23919/ICACT.2018.8323676
  4. Atsalakis, G. S., Atsalaki, I. G., Pasiouras, F., & Zopounidis, C. (2019). Bitcoin price forecasting with neuro-fuzzy techniques. European journal of operational research276(2), 770-780. https://doi.org/10.1016/j.ejor.2019.01.040
  5. Guo, T., Bifet, A., & Antulov-Fantulin, N. (2018, November). Bitcoin volatility forecasting with a glimpse into buy and sell orders. 2018 IEEE international conference on data mining (ICDM)(pp. 989-994). IEEE.
  6. Crosby, M., Pattanayak, P., Verma, S., & Kalyanaraman, V. (2016). Blockchain technology: Beyond bitcoin. Applied innovation2(6-10), 71. https://j2-capital.com/wp-content/uploads/2017/11/AIR-2016-Blockchain.pdf
  7. Jang, H., & Lee, J. (2017). An empirical study on modeling and prediction of bitcoin prices with bayesian neural networks based on blockchain information. IEEE access6, 5427-5437. DOI: 1109/ACCESS.2017.2779181
  8. Yang, L., Liu, X. Y., Li, X., & Li, Y. (2019, October). Price prediction of cryptocurrency: an empirical study. International conference on smart blockchain(pp. 130-139). Springer, Cham. DOI: 1007/978-3-030-34083-4_13
  9. Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions. European journal of operational research, 270(2), 654-669. https://doi.org/10.1016/j.ejor.2017.11.054
  10. Rashid, T. A., Fattah, P., & Awla, D. K. (2018). Using accuracy measure for improving the training of LSTM with metaheuristic algorithms. Procedia computer science140, 324-333.
  11. Wu, T. Q., Yao, M., & Yang, J. H. (2016). Dolphin swarm algorithm. Frontiers of information technology & electronic engineering17(8), 717-729. DOI: 1631/FITEE.1500287
  12. Qiao, W., & Yang, Z. (2019). Modified dolphin swarm algorithm based on chaotic maps for solving high-dimensional function optimization problems. IEEE access7, 110472-110486. DOI: 1109/ACCESS.2019.2931910
  13. Ewees, A. A., Abd Elaziz, M., Alameer, Z., Ye, H., & Jianhua, Z. (2020). Improving multilayer perceptron neural network using chaotic grasshopper optimization algorithm to forecast iron ore price volatility. Resources policy65, 101555. https://doi.org/10.1016/j.resourpol.2019.101555
  14. Heidari, A. A., Faris, H., Aljarah, I., & Mirjalili, S. (2019). An efficient hybrid multilayer perceptron neural network with grasshopper optimization. Soft computing23(17), 7941-7958. https://link.springer.com/article/10.1007/s00500-018-3424-2
  15. Zhou, C., Yin, K., Cao, Y., & Ahmed, B. (2016). Application of time series analysis and PSO–SVM model in predicting the Bazimen landslide in the three gorges reservoir, China. Engineering geology204, 108-120. DOI: 1016/j.enggeo.2016.02.009
  16. Albariqi, R., & Winarko, E. (2020, February). Prediction of bitcoin price change using neural networks. 2020 international conference on smart technology and applications (ICoSTA)(pp. 1-4). IEEE. DOI: 1109/ICoSTA48221.2020.1570610936
  17. Hitam, N. A., Ismail, A. R., & Saeed, F. (2019). An optimized support vector machine (SVM) based on particle swarm optimization (PSO) for cryptocurrency forecasting. Procedia computer science163, 427-433. DOI: 1016/j.procs.2019.12.125
  18. Kurbucz, M. T. (2019). Predicting the price of bitcoin by the most frequent edges of its transaction network. Economics letters184, 108655. DOI: 1016/j.econlet.2019.108655
  19. Chen, C. C., Chang, J. H., Lin, F. C., Hung, J. C., Lin, C. S., & Wang, Y. H. (2019, December). Comparison of forcasting ability between backpropagation network and ARIMA in the prediction of bitcoin price. 2019 international symposium on intelligent signal processing and communication systems (ISPACS)(pp. 1-2). IEEE. DOI: 1109/ISPACS48206.2019.8986297
  20. Heo, J. S., Kwon, D. H., Kim, J. B., Han, Y. H., & An, C. H. (2018). Prediction of cryptocurrency price trend using gradient boosting. KIPS transactions on software and data engineering7(10), 387-396. DOI: 3745/KTSDE.2018.7.10.387
  21. Xiong, L., & Lu, Y. (2017, April). Hybrid ARIMA-BPNN model for time series prediction of the Chinese stock market. 3rd international conference on information management (ICIM) (pp. 93-97). IEEE. DOI: 1109/INFOMAN.2017.7950353
  22. Katsiampa, P. (2017). Volatility estimation for bitcoin: a comparison of GARCH models. Economics letters, 158, 3-6. DOI: 1016/j.econlet.2017.06.023
  23. Radityo, A., Munajat, Q., & Budi, I. (2017, October). Prediction of bitcoin exchange rate to American dollar using artificial neural network methods. International conference on advanced computer science and information systems (ICACSIS) (pp. 433-438). IEEE. DOI: 1109/ICACSIS.2017.8355070
  24. Sin, E., & Wang, L. (2017, July). Bitcoin price prediction using ensembles of neural networks. 13th international conference on natural computation, fuzzy systems and knowledge discovery (ICNC-FSKD) (pp. 666-671). IEEE. DOI: 1109/FSKD.2017.8393351
  25. Greaves, A., & Au, B. (2015). Using the bitcoin transaction graph to predict the price of bitcoin. Retrieved from http://snap.stanford.edu/class/cs224w-2015/projects_2015/Using_the_Bitcoin_Transaction_Graph_to_Predict_the_Price_of_Bitcoin.pdf
  26. Madan, I., Saluja, S., & Zhao, A. (2015). Automated bitcoin trading via machine learning algorithms. Retrieved from http://cs229.stanford.edu/proj2014/Isaac%20Madan,%20Shaurya%20Saluja,%20Aojia %20Zhao,Automated%20Bitcoin%20Trading%20via%20Machine%20Learning%20Algorithms.pdf
  27. Chen, Zh., Li, C., & Sun, W. (2020). Bitcoin price prediction using machine learning: an approach to sample dimension engineering. Journal of computational and applied mathematics, 365, 112395. DOI: 1016/j.cam.2019.112395
  28. Dutta, A., Kumar, S., & Basu, M. (2020). A gated recurrent unit approach to bitcoin price prediction. Journal of risk and financial management, 13(2), 23. DOI: 3390/jrfm13020023
  29. Yamak, P. T., Yujian, L., & Gadosey, P. K. (2019, December). A comparison between arima, lstm, and gru for time series forecasting. Proceedings of the 2nd international conference on algorithms, computing and artificial intelligence (pp. 49-55). Association for computing machinery. New York, NY, United States. DOI: 1145/3377713.3377722
  30. Hashish, I. A., Forni, F., Andreotti, G., Facchinetti, T., & Darjani, S. (2019, September). A hybrid model for bitcoin prices prediction using hidden Markov models and optimized LSTM networks. 24th IEEE international conference on emerging technologies and factory automation (ETFA) (pp. 721-728). IEEE. DOI: 1109/ETFA.2019.8869094
  31. Li, L., Arab, A., Liu, J., Liu, J., & Han, Z. (2019, July). Bitcoin options pricing using LSTM-based prediction model and blockchain statistics. 2019 IEEE international conference on Blockchain (Blockchain) (pp. 67-74). IEEE. DOI: 1109/Blockchain.2019.00018
  32. Zhengyang, W., Xingzhou, L., Jinjin, R., & Jiaqing, K. (2019, June). Prediction of cryptocurrency price dynamics with multiple machine learning techniques. Proceedings of the 4th international conference on machine learning technologies (pp. 15-19). Association for Computing Machinery, New York, NY, United States. DOI: 1145/3340997.3341008
  33. Aggarwal, A., Gupta, I., Garg, N., & Goel, A. (2019, August). Deep learning approach to determine the impact of socio economic factors on bitcoin price prediction. 2019 twelfth international conference on contemporary computing (IC3) (pp. 1-5). IEEE. DOI: 1109/IC3.2019.8844928
  34. Felizardo, L., Oliveira, R., Del-Moral-Hernandez, E., & Cozman, F. (2019, October). Comparative study of Bitcoin price prediction using wavenets, recurrent neural networks and other machine learning methods. 6th international conference on behavioral, economic and socio-cultural computing (BESC) (pp. 1-6). IEEE. DOI: 1109/BESC48373.2019.8963009
  35. Yiying, W., & Yeze, Z. (2019, March). Cryptocurrency price analysis with artificial intelligence. 5th international conference on information management (ICIM) (pp. 97-101). IEEE. DOI: 1109/INFOMAN.2019.8714700
  36. Karakoyun, E. S., & Cibikdiken, A. O. (2018, May). Comparison of arima time series model and lstm deep learning algorithm for bitcoin price forecasting. The 13th multidisciplinary academic conference in Prague(Vol. 2018, pp. 171-180). MAC Prague Consulting s.r. o.
  37. Lv, L., Kong, W., Qi, J., & Zhang, J. (2018). An improved long short-term memory neural network for stock forecast. 2nd international conference on electronic information technology and computer engineering (EITCE 2018) (Vol. 232, p. 01024). EDP Sciences. DOI: 1051/matecconf/201823201024
  38. McNally, S., Roche, J., & Caton, S. (2018, March). Predicting the price of bitcoin using machine learning. 26th euromicro international conference on parallel, distributed and network-based processing (PDP) (pp. 339-343). IEEE. DOI: 1109/PDP2018.2018.00060
  39. Jafarian-Namin, S., Goli, A., Qolipour, M., Mostafaeipour, A., & Golmohammadi, A. M. (2019). Forecasting the wind power generation using Box–Jenkins and hybrid artificial intelligence: a case study. International journal of energy sector management, 13(4), 1038-1062. DOI: 1108/IJESM-06-2018-0002
  40. Goli, A., Moeini, E., Shafiee, A. M., Zamani, M., & Touti, E. (2020). Application of improved artificial intelligence with runner-root meta-heuristic algorithm for dairy products industry: a case study. International journal on artificial intelligence tools, 29(05), 2050008. https://doi.org/10.1142/S0218213020500086
  41. Ansari, A., Ahmad, I. S., Bakar, A. A., & Yaakub, M. R. (2020). A hybrid metaheuristic method in training artificial neural network for bankruptcy prediction. IEEE access, 8, 176640-176650. DOI: 1109/ACCESS.2020.3026529
  42. Saiedi, E., Broström, A., & Ruiz, F. (2021). Global drivers of cryptocurrency infrastructure adoption. Small business economics, 57(1), 353-406. DOI: 1007/s11187-019-00309-8