Document Type : Research Paper

Authors

1 Department of Industrial Engineering, Payame Noor University, Tehran, Iran.

2 Department of Industrial Engineering, Lahijan Branch, Islamic Azad university, Lahijan, Iran.

3 Department of Industrial Engineering, Faculty of Mechanic and Industrial Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran.

4 Department of Industrial Engineering, South Tehran Branch, Azad University, Tehran, Iran.

5 Department of IT Management, Qeshm Branch, Islamic Azad University, Qeshm, Iran.

Abstract

China introduces a new strain of coronavirus as a causative of a new respiratory disease after several people contracted an unusual pneumonia in December 2019. The World Health Organization stated that the outbreak of the virus resulted in public health emergencies around the world. Humanitarian supply chain management is concerned with managing the efficient flow of aid materials, information and services and aim to reduce the impact of disaster on human lives. In this paper, provides a ranking for key resources in the humanitarian supply chain in the emergency department of Iranian hospital using hybrid decision-making method under COVID-19 conditions. According to the obtain results, nurses in RK 1, receptionists RK 2, general surgeon RK 3, heart residents RK 4 and pulmonologist RK 5. Hybrid decision-making method in this paper is an invaluable contribution to the emergency department and medical managers for evaluates of current situation Emergency Department when crisis occur.

Keywords

Main Subjects

  1. Kemp, E., Price, G. N., Fuller, N. R., & Kemp, E. F. (2020). African Americans and COVID-19: beliefs, behaviors and vulnerability to infection. International journal of healthcare management13(4), 303-311. https://doi.org/10.1080/20479700.2020.1801161
  2. Shirazi, H., Kia, R., & Ghasemi, P. (2020). Ranking of hospitals in the case of COVID-19 outbreak: a new integrated approach using patient satisfaction criteria. International journal of healthcare management13(4), 312-324. https://doi.org/10.1080/20479700.2020.1803622
  3. Kumar, S., Raut, R. D., & Narkhede, B. E. (2020). A proposed collaborative framework by using artificial intelligence-internet of things (AI-IoT) in COVID-19 pandemic situation for healthcare workers. International journal of healthcare management13(4), 337-345. https://doi.org/10.1080/20479700.2020.1810453
  4. Wald, G. (2020). Humanitarian logistics during corona times. Retrieved from https://www.researchgate.net/publication/343386531
  5. Altay, N., & Pal, R. (2014). Information diffusion among agents: implications for humanitarian operations. Production and operations management23(6), 1015-1027. https://doi.org/10.1111/poms.12102
  6. Ambulkar, S., Blackhurst, J., & Grawe, S. (2015). Firm's resilience to supply chain disruptions: scale development and empirical examination. Journal of operations management33, 111-122. https://doi.org/10.1016/j.jom.2014.11.002
  7. Ehrgott, M., & Wiecek, M. M. (2005). Mutiobjective programming. In Multiple criteria decision analysis: State of the art surveys (pp. 667-708). Springer, New York, NY.‏ https://doi.org/10.1007/0-387-23081-5_17
  8. Yousefi, M., Yousefi, M., & Fogliatto, F. S. (2020). Simulation-based optimization methods applied in hospital emergency departments: a systematic review. Simulation96(10), 791-806. https://doi.org/10.1177/0037549720944483
  9. Bal, A., Ceylan, C., & Taçoğlu, C. (2017). Using value stream mapping and discrete event simulation to improve efficiency of emergency departments. International journal of healthcare management10(3), 196-206. https://doi.org/10.1080/20479700.2017.1304323
  10. Duguay, C., & Chetouane, F. (2007). Modeling and improving emergency department systems using discrete event simulation. Simulation83(4), 311-320. https://doi.org/10.1177/0037549707083111
  11. Ahmed, M. A., & Alkhamis, T. M. (2009). Simulation optimization for an emergency department healthcare unit in Kuwait. European journal of operational research198(3), 936-942. https://doi.org/10.1016/j.ejor.2008.10.025
  12. Abo-Hamad, W., & Arisha, A. (2013). Simulation-based framework to improve patient experience in an emergency department. European journal of operational research224(1), 154-166. https://doi.org/10.1016/j.ejor.2012.07.028
  13. Kadri, F., Chaabane, S., & Tahon, C. (2014). A simulation-based decision support system to prevent and predict strain situations in emergency department systems. Simulation modelling practice and theory42, 32-52. https://doi.org/10.1016/j.simpat.2013.12.004
  14. Zeinali, F., Mahootchi, M., & Sepehri, M. M. (2015). Resource planning in the emergency departments: A simulation-based metamodeling approach. Simulation modelling practice and theory53, 123-138. https://doi.org/10.1016/j.simpat.2015.02.002
  15. Feng, Y. Y., Wu, I., & Chen, T. L. (2017). Stochastic resource allocation in emergency departments with a multi-objective simulation optimization algorithm. Health care management science20(1), 55-75. https://doi.org/10.1007/s10729-015-9335-1
  16. Traoré, M. K., Zacharewicz, G., Duboz, R., & Zeigler, B. (2019). Modeling and simulation framework for value-based healthcare systems. Simulation95(6), 481-497.
  17. Daldoul, D., Nouaouri, I., Bouchriha, H., & Allaoui, H. (2018). A stochastic model to minimize patient waiting time in an emergency department. Operations research for health care18, 16-25. https://doi.org/10.1016/j.orhc.2018.01.008
  18. Chen, W., Guo, H., & Tsui, K. L. (2020). A new medical staff allocation via simulation optimisation for an emergency department in Hong Kong. International journal of production research58(19), 6004-6023. https://doi.org/10.1080/00207543.2019.1665201
  19. Aghapour, A. H., Yazdani, M., Jolai, F., & Mojtahedi, M. (2019). Capacity planning and reconfiguration for disaster-resilient health infrastructure. Journal of building engineering26, 100853. https://doi.org/10.1016/j.jobe.2019.100853
  20. Ordu, M., Demir, E., Tofallis, C., & Gunal, M. M. (2021). A novel healthcare resource allocation decision support tool: a forecasting-simulation-optimization approach. Journal of the operational research society72(3), 485-500. https://doi.org/10.1080/01605682.2019.1700186
  21. Pegoraro, F., Santos, E. A. P., & Loures, E. D. F. R. (2020). A support framework for decision making in emergency department management. Computers & industrial engineering146, 106477. https://doi.org/10.1016/j.cie.2020.106477
  22. Pegoraro, F., Santos, E. A. P., Loures, E. D. F. R., & Laus, F. W. (2020). A hybrid model to support decision making in emergency department management. Knowledge-based systems203, 106148. https://doi.org/10.1016/j.knosys.2020.106148
  23. Jahangiri, Sh., Abolghasemian, M., Ghasemi, P., & Pourghader Chobar, A. (2021). Simulation-based optimization: analysis of the emergency department resources under COVID-19 conditions. International journal of industrial and systems engineering, 1(1). 1504/IJISE.2021.10037641
  24. Yang, C. H., Hsu, W., & Wu, Y. L. (2021). A hybrid multiple-criteria decision portfolio with the resource constraints model of a smart healthcare management system for public medical centers. Socio-economic planning sciences, 101073. https://doi.org/10.1016/j.seps.2021.101073
  25. Ghorui, N., Ghosh, A., Mondal, S. P., Bajuri, M. Y., Ahmadian, A., Salahshour, S., & Ferrara, M. (2021). Identification of dominant risk factor involved in spread of COVID-19 using hesitant fuzzy MCDM methodology. Results in physics21, 103811. https://doi.org/10.1016/j.rinp.2020.103811
  26. Christopher, M. (2016). Logistics & supply chain management. Pearson Uk.
  27. Mangan, J., & Lalwani, C. (2016). Global logistics and supply chain management. John Wiley & Sons.
  28. Kovacs, G., & Spens, K. M. (2012). Relief supply chain management for disasters: humanitarian aid and emergency logistics. Hershey, PA: Information Science Reference. DOI: 4018/978-1-60960-824-8
  29. John, L., & Ramesh, A. (2012). Humanitarian supply chain management in India: a SAP‐LAP framework. Journal of advances in management research, 9(2), 217-235. https://doi.org/10.1108/09727981211271968
  30. Rezaei, J. (2016). Best-worst multi-criteria decision-making method: some properties and a linear model. Omega64, 126-130. https://doi.org/10.1016/j.omega.2015.12.001
  31. Hwung, C. L., & Yoon, K. (1981). Multiple attribute decision making: methods and applications a state-of-the-art survey (lecture notes in economics and mathematical systems. Springer-Verlag, New York
  32. Ertuğrul, İ., & Karakaşoğlu, N. (2009). Performance evaluation of Turkish cement firms with fuzzy analytic hierarchy process and TOPSIS methods. Expert systems with applications36(1), 702-715. https://doi.org/10.1016/j.eswa.2007.10.014
  33. Wang, Y. J. (2008). Applying FMCDM to evaluate financial performance of domestic airlines in Taiwan. Expert systems with applications34(3), 1837-1845. https://doi.org/10.1016/j.eswa.2007.02.029
  34. Sánchez-Lozano, J. M., García-Cascales, M. S., & Lamata, M. T. (2016). Comparative TOPSIS-ELECTRE TRI methods for optimal sites for photovoltaic solar farms. Case study in Spain. Journal of cleaner production127, 387-398. https://doi.org/10.1016/j.jclepro.2016.04.005
  35. Onat, N. C., Gumus, S., Kucukvar, M., & Tatari, O. (2016). Application of the TOPSIS and intuitionistic fuzzy set approaches for ranking the life cycle sustainability performance of alternative vehicle technologies. Sustainable production and consumption6, 12-25. https://doi.org/10.1016/j.spc.2015.12.003