Document Type : Research Paper

Authors

Department of Computer Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran.

Abstract

With the exponentially increasing volume of online data, searching and finding required information have become an extensive and time-consuming task. Recommender systems as a subclass of information retrieval and decision support systems by providing personalized suggestions helping users access what they need more efficiently. Among the different techniques for building a recommender system, Collaborative Filtering (CF) is the most popular and widespread approach. However, cold start and data sparsity are the fundamental challenges ahead of implementing an effective CF-based recommender. Recent successful developments in enhancing and implementing Deep Learning architectures motivated many studies to propose Deep Learning-based solutions for solving the recommenders' weak points. In this research, unlike the past similar works about using Deep Learning architectures in recommender systems that covered different techniques generally, we specifically provide a comprehensive review of Deep Learning-based CF recommender systems. This in-depth filtering gives a clear overview of the level of popularity, gaps, and ignored areas on leveraging Deep Learning techniques to build CF-based systems as the most influential recommenders.

Keywords

[1]     Kolahkaj, M., Harounabadi, A., Nikravanshalmani, A., & Chinipardaz, R. (2021). Incorporating multidimensional information into dynamic recommendation process to cope with cold start and data sparsity problems. Journal of ambient intelligence and humanized computing, 12, 9535–9554. https://link.springer.com/article/10.1007/s12652-020-02695-4
[2]     Olague, G., Ibarra-Vázquez, G., Chan-Ley, M., Puente, C., Soubervielle-Montalvo, C., & Martinez, A. (2020). A deep genetic programming based methodology for art media classification robust to adversarial perturbations [presentation]. Advances in visual computing: 15th international symposium, ISVC 2020, (pp. 68–79). https://link.springer.com/chapter/10.1007/978-3-030-64556-4_6
[3]     Dokuz, Y., & Tufekci, Z. (2021). Mini-batch sample selection strategies for deep learning based speech recognition. Applied acoustics, 171, 107573. https://doi.org/10.1016/j.apacoust.2020.107573
[4]     Keshtkar Langaroudi, M., & Yamaghani, M. (2019). Sports result prediction based on machine learning and computational intelligence approaches: A survey. Journal of advances in computer engineering and technology, 5(1), 27–36.
[5]     Panahandeh Khojin, G., Toloie Ashlaghi, A., & Afshar Kazmi, M. A. (2022). Provide an optimal model for determining and ranking inefficiency factors in the banking industry by combining data envelopment analysis and neural network. Journal of decisions and operations research, 7(4), 610–627.
[6]     Sadr, H., Pedram, M. M., & Teshnehlab, M. (2020). Multi-view deep network: a deep model based on learning features from heterogeneous neural networks for sentiment analysis. IEEE access, 8, 86984–86997.
[7]     Khan, Z. Y., Niu, Z., Sandiwarno, S., & Prince, R. (2021). Deep learning techniques for rating prediction: a survey of the state-of-the-art. Artificial intelligence review, 54, 95–135.
[8]     Mohamaddoust, R., Mohammadzadeh, J., Khalilian, M., & Nikravanshalmani, A. (2021). Measuring the community value in online social networks. International journal of nonlinear analysis and applications, 12(Spec. Issue), 189–202.
[9]     Da’u, A., & Salim, N. (2020). Recommendation system based on deep learning methods: a systematic review and new directions. Artificial intelligence review, 53(4), 2709–2748.
[10]   Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep Learning based recommender system: A survey and new perspectives. ACM computing surveys (CSUR), 52(1), 1–38.
[11]   Alharthi, H., Inkpen, D., & Szpakowicz, S. (2018). A survey of book recommender systems. Journal of intelligent information systems, 51, 139–160.
[12]   Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE transactions on knowledge and data engineering, 17(6), 734–749.
[13]   Kolahkaj, M., Harounabadi, A., Nikravanshalmani, A., & Chinipardaz, R. (2020). A hybrid context-aware approach for e-tourism package recommendation based on asymmetric similarity measurement and sequential pattern mining. Electronic commerce research and applications, 42, 100978. https://doi.org/10.1016/j.elerap.2020.100978
[14]   Pradeep, N., Rao Mangalore, K. K., Rajpal, B., Prasad, N., & Shastri, R. (2020). Content based movie recommendation system. International journal of research in industrial engineering, 9(4), 337–348.
[15]   Cami, B. R., Hassanpour, H., & Mashayekhi, H. (2019). User preferences modeling using dirichlet process mixture model for a content-based recommender system. Knowledge-based systems, 163, 644–655.
[16]   Batmaz, Z., Yurekli, A., Bilge, A., & Kaleli, C. (2019). A review on deep learning for recommender systems: challenges and remedies. Artificial intelligence review, 52, 1–37.
[17]   Dakhel, A. M., Malazi, H. T., & Mahdavi, M. (2018). A social recommender system using item asymmetric correlation. Applied intelligence, 48, 527–540.
[18]   Zhang, R., Liu, Q., & Wei, J. X. (2014). Collaborative filtering for recommender systems [presentation]. 2014 second international conference on advanced cloud and big data (pp. 301–308). https://doi.org/10.1109/CBD.2014.47
[19]   Riyahi, M., & Sohrabi, M. K. (2020). Providing effective recommendations in discussion groups using a new hybrid recommender system based on implicit ratings and semantic similarity. Electronic commerce research and applications, 40, 100938. https://doi.org/10.1016/j.elerap.2020.100938
[20]   Furtado, F., & Singh, A. (2020). Movie recommendation system using machine learning. International journal of research in industrial engineering, 9(1), 84–98.
[21]   Hajieskandar, A., Mohammadzadeh, J., Khalilian, M., & Najafi, A. (2020). Molecular cancer classification method on microarrays gene expression data using hybrid deep neural network and grey wolf algorithm. Journal of ambient intelligence and humanized computing, 14, 5297–5307.
[22]   Kalantari, S., Nazemi, E., & Masoumi, B. (2020). Emergence phenomena in self-organizing systems: a systematic literature review of concepts, researches, and future prospects. Journal of organizational computing and electronic commerce, 30(3), 224–265.
[23]   Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User modeling and user-adapted interaction, 12, 331–370.
[24]   Gohari, F. S., & Tarokh, M. J. (2017). Classification and comparison of the hybrid collaborative filtering systems. International journal of research in industrial engineering, 6(2), 129–148.
[25]   Shrestha, A., & Mahmood, A. (2019). Review of deep learning algorithms and architectures. IEEE access, 7, 53040–53065.
[26]   Sachan, A., & Richariya, V. (2013). A survey on recommender systems based on collaborative filtering technique. International journal of innovations in engineering and technology (IJIET), 2(2), 8–14.
[27]   Subha, V. S., & Dhanalakshmi, P. (2020). Some similarity measures of rough interval Pythagorean fuzzy sets. Journal of fuzzy extension and applications, 1(4), 304–313.
[28]   Lee, W. P., & Ma, C. Y. (2016). Enhancing collaborative recommendation performance by combining user preference and trust-distrust propagation in social networks. Knowledge-based systems, 106, 125–134.
[29]   Amirkhani, D., & Bastanfard, A. (2021). An objective method to evaluate exemplar-based inpainted images quality using Jaccard index. Multimedia tools and applications, 80(17), 26199–26212.
[30]   Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms [presentation]. Proceedings of the 10th international conference on world wide web (pp. 285–295). https://dl.acm.org/doi/abs/10.1145/371920.372071
[31]   Pindyck, R. S., Rubinfeld, D. L., Pindyck, R. S., & Rubinfeld, D. L. (1998). Econometric models and economic forecasts (Vol. 4). Irwin/McGraw-Hill Boston.
[32]   Sheugh, L., & Alizadeh, S. H. (2015). A note on pearson correlation coefficient as a metric of similarity in recommender system. 2015 AI & robotics (IRANOPEN) (pp. 1-6). IEEE.
[33]   Nourahmadi, M., & Sadeqi, H. (2021). A Clustering of Investors’ Behavior According to Their Financial, Behavioral, and Demographic Characteristics (an Application of K-means Algorithm). Innovation management and operational strategies, 2(2), 180–194.
[34]   Chen, R., Hua, Q., Chang, Y. S., Wang, B., Zhang, L., & Kong, X. (2018). A survey of collaborative filtering-based recommender systems: From traditional methods to hybrid methods based on social networks. IEEE access, 6, 64301–64320.
[35]   Herlocker, J., Konstan, J. A., & Riedl, J. (2002). An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms. Information retrieval, 5, 287–310.
[36]   Alabdulrahman, R., & Viktor, H. (2021). Catering for unique tastes: Targeting grey-sheep users recommender systems through one-class machine learning. Expert systems with applications, 166, 114061. https://doi.org/10.1016/j.eswa.2020.114061
[37]   Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems survey. Knowledge-based systems, 46, 109–132.
[38]   Zhang, F., Qi, S., Liu, Q., Mao, M., & Zeng, A. (2020). Alleviating the data sparsity problem of recommender systems by clustering nodes in bipartite networks. Expert systems with applications, 149, 113346. https://doi.org/10.1016/j.eswa.2020.113346
[39]   Feng, C., Liang, J., Song, P., & Wang, Z. (2020). A fusion collaborative filtering method for sparse data in recommender systems. Information sciences, 521, 365–379.
[40]   RahmatAbadi, A. F., & Alizadeh, S. H. (2018). Effect of distrust propagation to enhance the performance of trust based recommender systems. 2018 9th conference on artificial intelligence and robotics and 2nd Asia-Pacific international symposium (pp. 1-6). IEEE.
[41]   Jakomin, M., Bosnić, Z., & Curk, T. (2020). Simultaneous incremental matrix factorization for streaming recommender systems. Expert systems with applications, 160, 113685. https://doi.org/10.1016/j.eswa.2020.113685
[42]   Natarajan, S., Vairavasundaram, S., Natarajan, S., & Gandomi, A. H. (2020). Resolving data sparsity and cold start problem in collaborative filtering recommender system using linked open data. Expert systems with applications, 149, 113248. https://doi.org/10.1016/j.eswa.2020.113248
[43]   Zheng, Y., Agnani, M., & Singh, M. (2017). Identification of grey sheep users by histogram intersection in recommender systems. Advanced data mining and applications: 13th international conference, ADMA 2017 (pp. 148-161). Springer International Publishing.
[44]   Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., & Sartin, M. (1999). Combing content-based and collaborative filters in an online newspaper [presentation]. Proc. of workshop on recommender systems-implementation and evaluation. https://core.ac.uk/download/pdf/47187477.pdf
[45]   Ghazanfar, M. A., & Prügel-Bennett, A. (2014). Leveraging clustering approaches to solve the gray-sheep users problem in recommender systems. Expert systems with applications, 41(7), 3261–3275.
[46]   Feng, X., Zhang, H., Ren, Y., Shang, P., Zhu, Y., Liang, Y., … Xu, D. (2019). The deep learning--based recommender system “Pubmender” for choosing a biomedical publication venue: Development and validation study. Journal of medical internet research, 21(5), e12957. https://www.jmir.org/2019/5/e12957/
[47]   Salakhutdinov, R., Mnih, A., & Hinton, G. (2007). Restricted boltzmann machines for collaborative filtering [presentation]. Proceedings of the 24th international conference on machine learning (pp. 791–798). https://dl.acm.org/doi/abs/10.1145/1273496.1273596
[48]   Louppe, G. (2010). Collaborative filtering: Scalable approaches using restricted Boltzmann machines. https://hdl.handle.net/2268/74400
[49]   Georgiev, K., & Nakov, P. (2013). A non-iid framework for collaborative filtering with restricted boltzmann machines. International conference on machine learning (pp. 1148-1156). PMLR.
[50]   Liu, X., Ouyang, Y., Rong, W., & Xiong, Z. (2015). Item category aware conditional restricted boltzmann machine based recommendation. Neural Information processing: 22nd international conference, ICONIP 2015 (pp. 609-616). Springer International Publishing.
[51]   Zheng, Y., Tang, B., Ding, W., & Zhou, H. (2016). A neural autoregressive approach to collaborative filtering. International conference on machine learning (pp. 764-773). PMLR.
[52]   Jia, X., Li, X., Li, K., Gopalakrishnan, V., Xun, G., & Zhang, A. (2016). Collaborative restricted Boltzmann machine for social event recommendation. 2016 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM) (pp. 402-405). IEEE.
[53]   Du, Y., Yao, C., Huo, S., & Liu, J. (2017). A new item-based deep network structure using a restricted Boltzmann machine for collaborative filtering. Frontiers of information technology & electronic engineering, 18(5), 658–666.
[54]   Wu, X., Yuan, X., Duan, C., & Wu, J. (2019). A novel collaborative filtering algorithm of machine learning by integrating restricted Boltzmann machine and trust information. Neural computing and applications, 31(9), 4685–4692.
[55]   Zhang, G., Liu, Y., & Jin, X. (2020). A survey of autoencoder-based recommender systems. Frontiers of computer science, 14, 430–450.
[56]   Ouyang, Y., Liu, W., Rong, W., & Xiong, Z. (2014). Autoencoder-based collaborative filtering. Neural Information Processing: 21st International Conference, ICONIP 2014 (pp. 284-291). Springer International Publishing.
[57]   Li, S., Kawale, J., & Fu, Y. (2015). Deep collaborative filtering via marginalized denoising auto-encoder [presentation]. Proceedings of the 24th acm international on conference on information and knowledge management (pp. 811–820). https://dl.acm.org/doi/abs/10.1145/2806416.2806527
[58]   Sedhain, S., Menon, A. K., Sanner, S., & Xie, L. (2015). Autorec: autoencoders meet collaborative filtering [presentation]. Proceedings of the 24th international conference on world wide web (pp. 111–112). https://dl.acm.org/doi/abs/10.1145/2740908.2742726
[59]   Strub, F., Mary, J., & Philippe, P. (2015). Collaborative filtering with stacked denoising autoencoders and sparse inputs [presentation]. NIPS workshop on machine learning for ecommerce. https://inria.hal.science/hal-01256422/
[60]   Wang, H., Wang, N., & Yeung, D. Y. (2015). Collaborative deep learning for recommender systems [presentation]. Proceedings of the 21th acm sigkdd international conference on knowledge discovery and data mining (pp. 1235–1244). https://dl.acm.org/doi/abs/10.1145/2783258.2783273
[61]   Wang, H., Shi, X., & Yeung, D. Y. (2016). Collaborative recurrent autoencoder: Recommend while learning to fill in the blanks. Advances in neural information processing systems, 29. https://proceedings.neurips.cc/paper/2016/hash/0266e33d3f546cb5436a10798e657d97-Abstract.html
[62]   Ying, H., Chen, L., Xiong, Y., & Wu, J. (2016). Collaborative deep ranking: A hybrid pair-wise recommendation algorithm with implicit feedback. Pacific-asia conference on knowledge discovery and data mining (pp. 555-567). Springer, Cham.
[63]   Wei, J., He, J., Chen, K., Zhou, Y., & Tang, Z. (2016). Collaborative filtering and deep learning based hybrid recommendation for cold start problem. 2016 IEEE 14th international conference on dependable, autonomic and secure computing (pp. 874-877). IEEE.
[64]   Wei, J., He, J., Chen, K., Zhou, Y., & Tang, Z. (2017). Collaborative filtering and deep learning based recommendation system for cold start items. Expert systems with applications, 69, 29–39.
[65]   Suzuki, Y., & Ozaki, T. (2017). Stacked denoising autoencoder-based deep collaborative filtering using the change of similarity. 2017 31st International conference on advanced information networking and applications workshops (WAINA) (pp. 498-502). IEEE.
[66]   Li, X., & She, J. (2017). Collaborative variational autoencoder for recommender systems [presentation]. Proceedings of the 23rd acm sigkdd international conference on knowledge discovery and data mining (pp. 305–314). https://dl.acm.org/doi/abs/10.1145/3097983.3098077
[67]   Liang, D., Krishnan, R. G., Hoffman, M. D., & Jebara, T. (2018). Variational autoencoders for collaborative filtering [presentation]. Proceedings of the 2018 world wide web conference (pp. 689–698). https://dl.acm.org/doi/abs/10.1145/3178876.3186150
[68]   Li, T., Ma, Y., Xu, J., Stenger, B., Liu, C., & Hirate, Y. (2018). Deep heterogeneous autoencoders for collaborative filtering. 2018 IEEE international conference on data mining (ICDM) (pp. 1164-1169). IEEE.
[69]   Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735–1780.
[70]   Ko, Y. J., Maystre, L., & Grossglauser, M. (2016). Collaborative recurrent neural networks for dynamic recommender systems [presentation]. Asian conference on machine learning (pp. 366–381). https://proceedings.mlr.press/v63/ko101.html
[71]   Esfandiari, N., & Bastanfard, A. (2020). Improving accuracy of pedestrian detection using convolutional neural networks. 2020 6th Iranian conference on signal processing and intelligent systems (ICSPIS) (pp. 1-6). IEEE.
[72]   Sadr, H., Pedram, M. M., & Teshnehlab, M. (2021). Convolutional neural network equipped with attention mechanism and transfer learning for enhancing performance of sentiment analysis. Journal of AI and data mining, 9(2), 141–151.
[73]   Goodfellow, I., Bengio, Y., & Courville, A. (2016). Convolutional networks. In Deep learning (Vol. 2016, pp. 330-372). Cambridge, MA, USA: MIT press.
[74]   Zhang, F., Yuan, N. J., Lian, D., Xie, X., & Ma, W. Y. (2016). Collaborative knowledge base embedding for recommender systems [presentation]. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 353–362). https://dl.acm.org/doi/abs/10.1145/2939672.2939673
[75]   Low, Y. H., Yap, W. S., & Tee, Y. K. (2019). Convolutional neural network-based collaborative filtering for recommendation systems. Robot intelligence technology and applications: 6th international conference, RiTA 2018 (pp. 117-131). Springer Singapore..
[76]   Lee, J., Abu-El-Haija, S., Varadarajan, B., & Natsev, A. (2018). Collaborative deep metric learning for video understanding [presentation]. Proceedings of the 24th acm sigkdd international conference on knowledge discovery \& data mining (pp. 481–490). https://dl.acm.org/doi/abs/10.1145/3219819.3219856
[77]   He, X., Du, X., Wang, X., Tian, F., Tang, J., & Chua, T. S. (2018). Outer product-based neural collaborative filtering. https://doi.org/10.48550/arXiv.1808.03912
[78]   Rao Mangalore, K. K., Pradeep, N., Rajpal, B., Prasad, N., & Shastri, R. (2021). A survey on the techniques applied to the recognition and conversion of Indian sign language. Journal of applied research on industrial engineering, 8(4), 399–411.
[79]   Alizadeh, S. H. (2018). A hybrid recommender system using multi layer perceptron neural network [presentation]. 2018 8th conference of AI & robotics and 10th robocup Iranopen international symposium (Iranopen) (pp. 7–13). https://ieeexplore.ieee.org/abstract/document/8406624
[80]   He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T.-S. (2017). Neural collaborative filtering [presentation]. Proceedings of the 26th international conference on world wide web (pp. 173–182). https://doi.org/10.1145/3038912.3052569
[81]   Hinton, G. E. (2009). Deep belief networks. Scholarpedia, 4(5), 5947. http://dx.doi.org/10.4249/scholarpedia.5947
[82] Ouhbi, B., Frikh, B., Zemmouri, E., & Abbad, A. (2018). Deep learning based recommender systems. 2018 IEEE 5th international congress on information science and technology (CIST) (pp. 161-166). IEEE.
[83]   Zhao, C., Shi, J., Jiang, T., Zhao, J., & Chen, J. (2016). Application of deep belief nets for collaborative filtering. 2016 16th international symposium on communications and information technologies (ISCIT) (pp. 201-205). IEEE.
[84]   Xu, C., Feng, J., Zhao, P., Zhuang, F., Wang, D., Liu, Y., & Sheng, V. S. (2021). Long-and short-term self-attention network for sequential recommendation. Neurocomputing, 423, 580–589.
[85]   Zheng, L., Lu, C. T., He, L., Xie, S., He, H., Li, C., ... & Philip, S. Y. (2019). Mars: Memory attention-aware recommender system. 2019 IEEE international conference on data science and advanced analytics (DSAA) (pp. 11-20). IEEE.
[86]   Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. https://doi.org/10.48550/arXiv.1409.0473
[87]   Tay, Y., Anh Tuan, L., & Hui, S. C. (2018). Latent relational metric learning via memory-based attention for collaborative ranking [presentation]. Proceedings of the 2018 world wide web conference (pp. 729–739). https://dl.acm.org/doi/abs/10.1145/3178876.3186154
[88]   Jhamb, Y., Ebesu, T., & Fang, Y. (2018). Attentive contextual denoising autoencoder for recommendation [presentation]. Proceedings of the 2018 acm sigir international conference on theory of information retrieval (pp. 27–34). https://dl.acm.org/doi/abs/10.1145/3234944.3234956
[89]   Li, Y., Wang, Q., Zhang, J., Hu, L., & Ouyang, W. (2021). The theoretical research of generative adversarial networks: an overview. Neurocomputing, 435, 26–41.
[90]   Tong, Y., Luo, Y., Zhang, Z., Sadiq, S., & Cui, P. (2019). Collaborative generative adversarial network for recommendation systems. 2019 IEEE 35th international conference on data engineering workshops (ICDEW) (pp. 161-168). IEEE.
[91]   Harper, F. M., & Konstan, J. A. (2015). The movielens datasets: History and context. ACM transactions on interactive intelligent systems (TIIS), 5(4), 1–19.
[92]   Unger, M., Bar, A., Shapira, B., & Rokach, L. (2016). Towards latent context-aware recommendation systems. Knowledge-based systems, 104, 165–178.
[93]   Liu, J. Y. (2018). A survey of deep learning approaches for recommendation systems [presentation]. Journal of physics: conference series (Vol. 1087, p. 62022). 10.1088/1742-6596/1087/6/062022
[94]   Shin, D., Cetintas, S., Lee, K. C., & Dhillon, I. S. (2015). Tumblr blog recommendation with boosted inductive matrix completion [presentation]. Proceedings of the 24th ACM international on conference on information and knowledge management (pp. 203–212). https://dl.acm.org/doi/abs/10.1145/2806416.2806578
[95]   Alabdulrahman, R. (2020). Towards personalized recommendation systems: domain-driven machine learning techniques and frameworks (Ph.D Dissertation, Université d'Ottawa/University of Ottawa). https://ruor.uottawa.ca/handle/10393/41012