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Abstract 

   

1 | Introduction  

In this paper, a meticulous presentation is begun with an inverse problem arising in the heat equation, 

which aims to determine the function and control parameter  in the following form [1] 

for         , where and represent space and time variables, respectively;   

with initial condition 

and boundary conditions 
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In this article, a mathematical model of the inverse problem is considered. Based on this model a formulation of inverse 

problem for heat equation is proposed. Shifted Chebyshev Tau (SCT) method is suggested to solve the inverse problem. 

The aim of this determined effort is to identify unknown function and unknown control parameter of the mathematical 

model. In order to achieve highly accurate solution to this problem, the operational matrix of shifted Chebyshev 

polynomials is investigated in conjunction with tau scheme. To demonstrate the validity and applicability of the developed 

scheme, numerical example is presented. 
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and the energy condition 

where                 are given functions. 

Determination of an unknown control parameter is one of the hottest topics in inverse problems. There 

are many papers studying this type of equation [1]-[8]. Previously mentioned equation arise in many fields 

of science and engineering such as chemical diffusion, heat conduction processes, population dynamics, 

thermoelasticity, medical science, electrochemistry and control theory [9]-[15]. For example, microwave 

heat process used in various applications in industry, can be seen in ceramics and in food processing where 

the external energy is supplied to the target at a controlled level by the microwave-generating equipment. 

This can correspond to source term     in Eq. (1), where   is proportional to power of external 

energy source and    is local conversion rate of microwave energy [12]. 

The energy Condition (1) is applied when the value of the control parameter    cannot be obtained using 

classical boundary conditions (which is divided into three phases: 1) neumann, 2) dirichlet, and 3) robin). 

Such type of condition can model various physical phenomena in context of heat transfer, life science and 

etc. [1], [2], [5], [6], [16], [17], [18]. The existence, uniqueness and continuous dependence of the solution 

upon the date for this problem are demonstrated in [1] under the following assumptions: 

Approximation and numerical solution of an inverse heat equation by control parameter are discussed in 

many papers, such as Boundary element method [8], finite volume element method [19], Generalized 

Fourier method [12], radial basis function collocation method [20], collocation method [21], Sinc-

collocation method [17] and [6] third order compact Runge–Kutta method [8] and other mthods [3], [7],  

[21]-[27], must be used. This paper presents a simple and efficient algorithm for finding an approximate 

solution of Eq. (1) under the Conditions (2) to (4) and the energy Condition (5). Instead, an algorithm which 

is called Shifted Chebyshev Tau (SCT), is proposed.  

The main aim of this research is to use SCT method to solve an inverse heat Eq. (5). Shifted Chebyshev 

polynomials of the first kind are put into practice to approximate the solution of the equation as a base of 

the tau method which is based on the shifted Chebyshev operational matrices of derivative and integration. 

The main advantage of this method is based upon reducing the PDE into a system of algebraic equation 

in the coefficient expansion of the solution. Numerical example, which confirm the accuracy of this 

method, is presented.  

The presentation of this paper is as follows: a pair of transformations is brought to change the structure 

of the Eqs. (1) to (5), then highlighting some necessary definitions and matrix formulation of Shifted 

Chebyshev polynomials, and construct its operational matrices of derivative and integral. In Section 3, the 

presented SCT method is used to find the approximate solution of the problem. As a result, a set of 

algebraic equations is formed and the solution of the considered problem is introduced. In Section 4, we 

 
 

        (5) 

        
 for         ,                       

   
 

      ,         ,     ,

  and  

                  

                 
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discussed an error bound. Numerical results in Section 5 is given to show the efficiency of the proposed 

method. Finally, a brief conclusion is drawn in Section 6. 

2 | Preparation and Foundation 

At first, we that the pair of transformations constructed in follow: 

 

 

The Problems (1) to (5) will become [5]: 

 

Subject to 

 

 

 

and 

 

Obviously, if we have   and   then by using Eqs. (8) to (12),    and   can be found as: 

 

 

In this transformation, the source parameter disappeared, so we can solve the Eqs. (8) to (12). 

2.1 | Basic Definitions and Matrix Formulation 

In this section, some fundamental definitions are given and to introduce the necessary notation, also 

matrix formulation of Shifted Chebyshev polynomial of the first kind which will be used throughout the 

paper. 

The shifted Chebyshev polynomials are generated from the following three-term recurrence relation: 

Definition 1. Let   imply the shifted Chebyshev polynomial of the order j then    can be 

formulated as [22] and [25]. 

      
   (6) 

       (7) 

          (8) 

       (9) 

                     (10) 

                     (11) 

 
 

          (12) 

 
 
 

      (13) 

 
 
 


    (14) 

        

      

 
   

 
 (15) 



457 

 

A
 m

e
th

o
d

 b
a
se

d
 o

n
 t

h
e
 S

C
T

 t
o

 s
o

lv
e
 t

h
e
 i

n
ve

rs
e
 p

ro
b

le
m

 f
o

r 
h

e
a
t 

e
q

u
a
ti

o
n

 

 

where       and     . The orthogonality condition is: 

where the weight function 

and 

Definition 2. Let   be function defined for     and then expanded in the terms of 

the shifted Chebyshev polynomial as [22] and [24]: 

If the infinite series in Eq. (20) is truncated, then the function   can be approximated as: 

where the shifted Chebyshev vectors   and  f and the matrix  are given as:  

Here, the shifted Chebyshev coefficient matrix   is given by 

We approximate functions     and    by using the shifted Chebyshev operational matrix 

follow as: 

   
 
   





 
 


   (16) 

        (17) 

  


 (18) 


 

 





    (19) 

     
 

 

  (20) 

         
 

 f  (21) 

       

       

 
 

 
 

 
 
 

  
 
 
  

 
(22) 

               (23) 
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where  is an unknown        matrix,  and are known       matrices as: 

 

 

 

where 

 

and 

 

 

2.2 | Operational Matrices of Derivative and Integral 

In this section, Shifted Chebyshev Vectors are used and so as its operational matrices of derivative and 

integral to solve inverse heat problem of the form Eqs. (8) to (12). 

Theorem 1. The derivative of the shifted Chebyshev vector  f  may be expressed by [1], [2], [4], 

[24]. 

where 
 
  is the        operational matrix of derivative and given by 

 

 

 

where     , see [4] and [24]. 

Corollary 1. Using Eq. (28), the operational matrix for the nth derivative can be stated as [2], [3], [25]. 

where  is the nth power of matrix   . So we have 

     

         

       
 











 







f

f

f

 (24) 

 
 
 
 
 
 
 
 


 
 
 
 
 
 
 
 

 (25) 

               (26) 

         (27) 

     
f

f  (28) 

 

 
 

 



 







   

   (29) 

      


  (30) 
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Theorem 2. The integration of    may be written as [2], [3], [25]. 

where  is the        shifted Chebyshev operational matrix of integration and is given by 

where  and obtained using the following formula: 

Obviously similar to Eq. (32) we have 

where  is the        shifted Chebyshev operational matrix of integration and is defined similar 

to Eq. (33). 

3 | Shifted Chebyshev Tau Method 

In this part, SCT method is applicable to solve the inverse problem for heat Eqs. (8) to (12). 

Integrating Eq. (8) from  to  and using Eq. (9), we have 

Using Eq. (24), Corollary 1 and Theorem 2 we obtain 

     (31) 

      (32) 

 

 

 
 
 
 
 
 

  
 
 
 
 
 
  

 (33) 

 
    



   

 

    
  
  
    



 

 










 (34) 

     f f  (35) 

                  (36) 
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The function    may be expanded in terms of   shifted Chebyshev series as (see [3] and [24]). 

 

where     is an unknown vector.  

Now, using Eqs. (19), (30) and (38) we have 

 

Let us set 

 

where is an       matrix. To find  , we rewrite Eq. (40) (see [2] and [3]) in the form 

Multiplying both sides of Eq. (41) by      ,   and integrating from  to  yields 

Byusing Eq. (42) and employing the orthogonality relation Eq. (8) gives: 

or equivalently 

 

 

 

Employing Eqs. (32), (39) and (40) can be written as: 

 

 

Applying Eqs. (21), (24), (37) and (44) the residual   for Eq. (36) can be written as: 

Employing standard tau method, generate       linear algebraic equations using the following 

algebraic equations: 

Also, by substituting Eqs. (24) and (38) in Eqs. (10) and (11) we get 

   
 

   
 

        
  
 

 
f

f  (37) 

       


   (38) 

                 
   f  (39) 

       (40) 

     
 

    (41) 

             
 

  

  

(42) 

       


    

       


     (43) 

           f  (44) 

         
 

f   

            (45) 
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And applying Eqs. (24) and (35) in Eq. (12) we have  

Eqs. (46) to (47) are collocated at   points. Here, the roots of  
are used as a collocation 

points. Eqs. (45) to (47) yields a set of         algebraic equations which can be solved for 

  and  . Consequently    given in Eq. (21) and  

given in Eq. (38) can be calculated. Finally using Eqs. (13) and (14),    and    can be found. 

4 | Error Bound 

In this section, an upper bound of the absolute errors will be given by using Lagrange interpolation 

polynomials. Our aim is to obtain an analytic expression for the error of the best approximation of a 

smooth function    and source function   by them expansion in terms of shifted Chebyshev 

polynomials.                                                                                                                                                  

Theorem 3. If             is a sufficiently smooth function and    is the 

interpolating polynomial for   at points    where  ,   are the roots of the    

in  
  and ,    are the roots of the   in  

  , then the error bound is presented as 

follows: 

Proof: Let us define the error function     , then by similar procedures as in [26], we have 

where      and    . Therefore 

Assume that there are constants ,  and  , such that 

                          

                         

(46) 

          (47) 

   
       

   



       
       
       

   
   

 
 

   
 
 

 
 

 
 

 
   

   

 

  
 

   

 
       

   
 

   
   

 (48) 

   
 

 
   

 

 

 

 
   



 

  

 

 

 

   
   

  

   

   

 (49) 
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Let us use the one-to-one mapping     between the intervals     and  
 

to deduce and 

also taking into account the estimates for Chebyshev interpolation nodes, then we obtain: 

 

 

Now, by replacing Eqs. (50) and (51) in Eq. (49), yields the following desired result: 

 

 

 

 

or equivalently 

Therefore, an upper bound of the absolute errors is obtained for the approximate and exact solutions.                                                                                                                                                         

Remark 1. In the special case if   and   we have  

Let 

So that we may write 

Hence, show that 

 

 








 

 








 

  

 




 
 

(50) 

   

 

              

       

  

   
     
   

 


(51) 

 

 







 

 

  

 




 
 

(52) 

   
       

   

   
   

   
 (53) 

   
    

 
    
  
 

 (54) 

  
  


 (55) 

   
  

 


 (56) 

   
  

 
  
 
 

 (57) 
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Theorem 4. Let    



 , be the shifted chebyshev functions expansion of the real 

sufficiently smooth function   and there is a real number such that 

Moreover, if    


 be an approximation for the shifted chebyshev functions   , then 

there are  and such that 

Proof: To prove Eq. (59), we write 

Satisfies the triangle inequality 

The right-hand inequality in Eq. (61) write as follow: 

where 

 

Moreover 

where 

By summing relation Eqs. (62) and (63) upper-bound in Theorem 4 the following relation is created: 

 

   
 




 


 (58) 

   
 





 
    
 
 

 (59) 

                 (60) 

                 (61) 

           
 

 
 

 





 

 

  
                         

     
   

 



 (62) 

          

         

   

   



 

  

  
    
    

    
     
        

      
          

           



 

  

 (63) 



 
  
 
 
   

   
 





 
    
 
 
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This completes the proof. 

5 | Numerical Results 

In this section, numerical experiment is chosen to illustrate the efficiency and performance of the SCT 

method for solving Eq. (1) with Conditions (1) to (4) and energy Condition (5). In this case, the exact 

solution of the problem is known. The accuracy of our approach is estimated by the following error 

functions:  

Example 1. Considers (1) to (5) with the given data: 

 

 

 

 

 

 

 

 

For which the exact solution is [27] 

and 

 

In Table 1, we display error function     , using the proposed method at t = 0.25 with m 

= n = 4, 6, 8. Also, the results obtained for      are listed in Table 2. In Fig. 1, the space-time 

graph of exact solution    and time graph of   are plotted. In Fig. 2 and Fig. 3 graph of the 

absolute error    for x=0.1 and x=0.9 with various value of m=n and      for t=0.1 

and t=0.5 with various value of m are shown respectively. Fig. 4 and Fig. 5 Graph of the absolute error 

for    with m=n=4, 6, 8 and      for m=n=4, 6, 8 obtained. 

 

 

 

            

           
 
 
   

   
   
         

  

 

        

 

 

   

 

 

 

    

       
 

   

 

  

         

      
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 Table 1. Error function      with t = 0.25. 

 

 

 

 

 

  

Table 2. Error function     . 

 

 

 

 

 

 

 

Fig. 1. The space-time graph of exact solution u(x,t) (left) and time graph of   (right). 

 

 

 

 
 Error  

 

x 
   

0.1 -57.33× 10   -61.88× 10  -82.25× 10  

0.2 -54.85× 10  -97.52 × 10  -102.50 × 10  

0.3 -51.15× 10  -71.44× 10  -105.64× 10  

0.4 -56.99× 10  -61.56× 10  -81.87× 10  

0.5 -45.74× 10  -53.95× 10  -66.68× 10  

0.6 -42.31× 10  -64.01× 10  -83.54× 10  

0.7 -41.89× 10  -61.99× 10  -82.15× 10  

0.8 -55.49× 10  -71.78× 10  -95.47× 10  

 
 Error  

 

t 
   

0.05 -32.29× 10   
-55.76× 10 

-76.99× 10 

0.1 -42.60 × 10 
-64.33× 10 

-81.34× 10 

0.15 -33.21× 10 
-54.81× 10 

-72.57× 10 

0.2 -48.10 × 10 
-51.81× 10 

-72.07× 10 

0.25 -33.37× 10 
-42.12 × 10 

-63.92 × 10 

0.3 -31.09× 10 
-61.99× 10 

-81.67× 10 

0.35 -38.69× 10 
-59.08× 10 

-79.77× 10 

0.4 -33.04× 10 
-69.05× 10 

-73.93× 10 

0.45 -34.08× 10 
-59.14× 10 

-53.01× 10 

0.5 -34.12 × 10 
-59.84× 10 

-53.76× 10 



 

 

466 

A
k

b
a
rp

o
u

r 
e
t 

a
l.

|
J.

 A
p

p
l.

 R
e
s.

 I
n

d
. 

E
n

g
. 

10
(3

) 
(2

0
2
3
) 

4
5
4
-4

7
1

 

 

Fig. 2. Graph of the absolute error u(x, 0.025) for x=0.1 and x=0.9 with 

various value of m=n. 

 Fig. 3. Plot of |pm(t) – p(t)| for t=0.1 and t=0.5 with various value of m. 

 

Fig. 4. Graph of the absolute error for u(x, 0.25) with m=n=4, 6, 8. 
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Fig. 5. Plot of |pm(t) – p(t)| with m=4, 6, 8. 

Example 2. We consider the second inverse Problems (1) to (5) with; 

For which the exact solution is [17]: 

and 

In Table 3, we display error function     , using the proposed method at t = 0. 5 with m = 

n = 4, 6, 8. Also, the results obtained for      are listed in Table 4. In Fig. 6, the space-time graph 

of exact solution    and time graph of   are plotted. In Fig. 7 and Fig. 8 Graph of the absolute 

error    for x=0.1 and x=0.9 with various value of m=n and      for t=0.1 and t=1 

with various value of m are shown respectively. Fig. 9 and Fig. 10 graph of the absolute error for    

with m=n=4, 6, 8 and      for m=n=4, 6, 8 obtained. 

 

 
 
     
      

   
   
     
 



 



 



 

  

   

 

 

 

  



  

          

      
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Table 3. Error function |um,n (x,t) – u(x,t)| with t = 0.5.  

 

 

 

 

 

 

 

Table 4. Error function|pm(t) – p(t)| . 

 

 

 

 

 

 

 

 

Fig. 6. The space-time graph of exact solution u(x,t) (left) and time 

graph of p(t) (right). 

 

 

  Error  
 

x 
   

0.1 -41.49× 10   -63.82 × 10  -84.58× 10  

0.2 -59.83× 10  -81.53× 10  -105.1× 10  

0.3 -57.38× 10  -79.23× 10  -93.69× 10  

0.4 -41.07× 10  -62.38× 10  -82.86× 10  

0.5 -42.22 × 10  -51.53× 10  -62.59× 10  

0.6 -52.17× 10  -73.77× 10  -93.32 × 10  

0.7 -5-8.76× 10  -7-9.21× 10  -9-9.95× 10  

0.8 -6-8.44× 10  -8-2.74× 10  -10-8.41× 10  

0.9 -5-9.25× 10  -6-2.22× 10  -8-7.77× 10  

 
 Error  

 

t    

0.1 -47.48× 10   
-51.17× 10  

-72.24× 10  

0.2 -43.80 × 10   
-87.47× 10  

-92.49× 10  

0.3 -43.73× 10   
-64.48× 10  

-81.79× 10  

0.4 -43.39× 10   
-54.20 × 10  

-71.44× 10  

0.5 -31.48× 10  
-57.43× 10  

-81.26× 10  

0.6 -43.04× 10  
-65.80 × 10  

-81.19× 10  

0.7 -44.27× 10  
-63.49× 10  

-84.48× 10  

0.8 -54.12 × 10  
-71.34× 10  

-94.11× 10  

0.9 -44.14× 10  
-51.49× 10  

-75.81× 10  

1 -44.84× 10  
-51.38× 10  

-74.53× 10  
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 Fig. 7. Graph of the absolute error u(x, 0.5) for x=0.1 and x=0.9 with 

various value of m=n. 

Fig. 8. Plot of |pm(t) – p(t)| for t=0.1 and t=1 with various value of m. 

Fig. 9. Graph of the absolute error for u(x, 0.5) with m=n=4, 6, 8. 
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Fig. 10. Plot of |pm(t) – p(t)| with m=4, 6, 8. 

The obtained results from Tables 1 to 4 showed that this approach can solve the problem effectively. 

The described computational method produces very accurate results even when employing a small 

number of collocation points. And also, Figs. 2 to 5 and Figs. 7 to 10 show the reduction in the error for 

the function u(x,t) and control parameter p(t) by increasing the value of m, n. 

6 | Conclusion 

In this study, the inverse problem for heat equation is discussed. The SCT method is presented to solve 

the equation. The numerical approach is to expand the unknown function and unknown control 

parameter in terms of the shifted chebyshev of the first kind and the tau method so that it reduces the 

problem into a system of algebraic equation. The obtained results showed that this approach can solve 

the problem effectively. The new described computational technique produces very accurate results even 

when a small number of collocation points are employed. 
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