Document Type : Research Paper

Authors

Department of Biomedical Engineering, Faculty of Health, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.

Abstract

In recent years, the use of intelligent methods for automatic detection of sleep stages in medical applications to increase diagnostic accuracy and reduce the workload of physicians in analyzing sleep data by visual inspection is one of the important issues. The most important step for the automatic classification of sleep stages is the extraction of useful features. In this paper, an EEG-based algorithm for automatic detection of sleep stages is presented using features extracted from the recurrence plot and artificial neural network. Due to the non-stationary of the EEG signal, the recurrence plot was used in this paper for nonlinear analysis and extraction of signal features. Various extracted features have different numerical ranges. Normalization was performed to prevent the undesirable effects of large values of data. As all normalized features could not correctly classify different stages of sleep, effective features were selected. The results of this paper show the selected features and the Multi-Layer Perceptron (MLP) neural network able to achieve the values of 98.54 ± 1.88%, 99.03 ± 1.43%, and 98.32 ± 2.11%, respectively, for specificity, sensitivity, and accuracy between the two types of sleep, i.e., Non-Rapid Eye Movement (Non-REM) and Rapid Eye Movement (REM). Also, the results show that the selection of Pz-Oz channel compared to Fpz-Cz channel leads us to a higher percentage for the separation of stages I-IV, awake, while the separation of REM stage using Fpz-Cz channel is better. The results show that the proposed method has a higher success rate in classifying sleep stages than previous studies. The proposed method could well identify and distinguish all stages of sleep at an acceptable level. In addition to saving time, automatic analysis of sleep stages can help better and more accurate diagnosis and reduce physicians' workload in analyzing sleep data through visual inspection.

Keywords

Main Subjects

  1. Aboalayon, K. A., & Faezipour, M. (2014). Multi-class SVM based on sleep stage identification using EEG signal. 2014 IEEE healthcare innovation conference (HIC)(pp. 181-184). IEEE. DOI: 1109/HIC.2014.7038904
  2. Hassan, A. R., & Bhuiyan, M. I. H. (2016). Automatic sleep scoring using statistical features in the EMD domain and ensemble methods. Biocybernetics and biomedical engineering36(1), 248-255. https://doi.org/10.1016/j.bbe.2015.11.001
  3. Strine, T. W., & Chapman, D. P. (2005). Associations of frequent sleep insufficiency with health-related quality of life and health behaviors. Sleep medicine6(1), 23-27. https://doi.org/10.1016/j.sleep.2004.06.003
  4. Huang, C. S., Lin, C. L., Yang, W. Y., Ko, L. W., Liu, S. Y., & Lin, C. T. (2013). Applying the fuzzy c-means based dimension reduction to improve the sleep classification system. 2013 IEEE international conference on fuzzy systems (FUZZ-IEEE)(pp. 1-5). IEEE. DOI: 1109/FUZZ-IEEE.2013.6622495
  5. Hassan, A. R., Bashar, S. K., & Bhuiyan, M. I. H. (2015). On the classification of sleep states by means of statistical and spectral features from single channel electroencephalogram. 2015 international conference on advances in computing, communications and informatics (ICACCI)(pp. 2238-2243). IEEE. DOI: 1109/ICACCI.2015.7275950
  6. Hassan, A. R., & Bhuiyan, M. I. H. (2016). Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating. Biomedical signal processing and control24, 1-10. https://doi.org/10.1016/j.bspc.2015.09.002
  7. Hsu, Y. L., Yang, Y. T., Wang, J. S., & Hsu, C. Y. (2013). Automatic sleep stage recurrent neural classifier using energy features of EEG signals. Neurocomputing104, 105-114. https://doi.org/10.1016/j.neucom.2012.11.003
  8. Güneş, S., Polat, K., & Yosunkaya, Ş. (2010). Efficient sleep stage recognition system based on EEG signal using k-means clustering based feature weighting. Expert systems with applications37(12), 7922-7928. https://doi.org/10.1016/j.eswa.2010.04.043
  9. Zoubek, L., Charbonnier, S., Lesecq, S., Buguet, A., & Chapotot, F. (2007). Feature selection for sleep/wake stages classification using data driven methods. Biomedical signal processing and control2(3), 171-179. https://doi.org/10.1016/j.bspc.2007.05.005
  10. Sousa, T., Cruz, A., Khalighi, S., Pires, G., & Nunes, U. (2015). A two-step automatic sleep stage classification method with dubious range detection. Computers in biology and medicine59, 42-53. https://doi.org/10.1016/j.compbiomed.2015.01.017
  11. Xiao, M., Yan, H., Song, J., Yang, Y., & Yang, X. (2013). Sleep stages classification based on heart rate variability and random forest. Biomedical signal processing and control8(6), 624-633. https://doi.org/10.1016/j.bspc.2013.06.001
  12. Rechtschaffen, A., & Kales, A. (1969). A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Arch gen psychiatry, 20(2), 246-247. https://doi.org/10.1001/archpsyc.1969.01740140118016
  13. Doroshenkov, L. G., Konyshev, V. A., & Selishchev, S. V. (2007). Classification of human sleep stages based on EEG processing using hidden Markov models. Biomedical engineering41(1), 25-28. DOI:1007/s10527-007-0006-5
  14. Koley, B., & Dey, D. (2012). An ensemble system for automatic sleep stage classification using single channel EEG signal. Computers in biology and medicine42(12), 1186-1195. https://doi.org/10.1016/j.compbiomed.2012.09.012
  15. Şen, B., Peker, M., Çavuşoğlu, A., & Çelebi, F. V. (2014). A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms. Journal of medical systems38(3), 1-21. https://doi.org/10.1007/s10916-014-0018-0
  16. Phan, H., Do, Q., Do, T. L., & Vu, D. L. (2013). Metric learning for automatic sleep stage classification. 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC)(pp. 5025-5028). IEEE. DOI: 1109/EMBC.2013.6610677
  17. Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent neural networks. International conference on machine learning(pp. 1310-1318). PMLR.
  18. Hassan, A. R., & Subasi, A. (2017). A decision support system for automated identification of sleep stages from single-channel EEG signals. Knowledge-based systems128, 115-124. https://doi.org/10.1016/j.knosys.2017.05.005
  19. Surantha, N., Lesmana, T. F., & Isa, S. M. (2021). Sleep stage classification using extreme learning machine and particle swarm optimization for healthcare big data. Journal of big data8(1), 1-17. https://doi.org/10.1186/s40537-020-00406-6
  20. Rahimi, A., Safari, A., & Mohebbi, M. (2019). Sleep stage classification based on ECG-derived respiration and heart rate variability of single-lead ECG signal. 2019 26th national and 4th international Iranian conference on biomedical engineering (ICBME)(pp. 158-163). IEEE. DOI: 1109/ICBME49163.2019.9030391
  21. Tăutan, A. M., Rossi, A. C., de Francisco, R., & Ionescu, B. (2020). Automatic sleep stage detection: a study on the influence of various PSG input signals. 2020 42nd annual international conference of the ieee engineering in medicine & biology society (EMBC)(pp. 5330-5334). IEEE. DOI: 1109/EMBC44109.2020.9175628
  22. Sharma, M., Tiwari, J., & Acharya, U. R. (2021). Automatic sleep-stage scoring in healthy and sleep disorder patients using optimal wavelet filter bank technique with EEG signals. International journal of environmental research and public health18(6), 3087. https://doi.org/10.3390/ijerph18063087
  23. Schinkel, S., Marwan, N., & Kurths, J. (2009). Brain signal analysis based on recurrences. Journal of physiology-paris103(6), 315-323. https://doi.org/10.1016/j.jphysparis.2009.05.007
  24. Koebbe, M., & Mayer-Kress, G. (1992). Use of recurrence plots in the analysis of time-series data. In Santa Fe institute studies in the sciences of complexity-proceedings volume-(Vol. 12, pp. 361-361). Addison-Wesley Publishing Co.             
  25. MarwanN, W. (2002). Recur rencePlotBased MeasuresofComplexityandIts Applicationto HeartRate Variability Data. PhysicalReviewE66(2), 702. https://doi.org/10.1103/PhysRevE.66.026702
  26. Eeklnann, J. P., Karmphorst, S. O., & Rulle, D. (1987). Recurrence plot of dynamical systems.  Lett4, 973-977.
  27. Talebi, N., & Nasrabadi, A. M. (2010). Recurrence plots for identifying memory components in single-trial EEGs. International conference on brain informatics(pp. 124-132). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15314-3_12
  28. Kantz, H., & Schreiber, T. (1997). Nonlinear time series analysis. Cambridge University.
    https://doi.org/10.1017/CBO9780511755798
  29. Radojicic, I., Mandic, D., & Vulic, D. (2001). On the presence of deterministic chaos in HRV signals. Computers in cardiology 2001. Vol. 28 (Cat. No. 01CH37287)(pp. 465-468). IEEE. DOI: 1109/CIC.2001.977693
  30. Marwan, N., Romano, M. C., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics reports438(5-6), 237-329. https://doi.org/10.1016/j.physrep.2006.11.001
  31. Moridani, M. K., Setarehdan, S. K., Nasrabadi, A. M., & Hajinasrollah, E. (2015). Analysis of heart rate variability as a predictor of mortality in cardiovascular patients of intensive care unit. Biocybernetics and biomedical engineering35(4), 217-226. https://doi.org/10.1016/j.bbe.2015.05.004
  32. Gao, J., & Cai, H. (2000). On the structures and quantification of recurrence plots. Physics letters A270(1-2), 75-87. https://doi.org/10.1016/S0375-9601(00)00304-2
  33. Kurt, I., Ture, M., & Kurum, A. T. (2008). Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease. Expert systems with applications34(1), 366-374. https://doi.org/10.1016/j.eswa.2006.09.004
  34. Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., ... & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation101(23), e215-e220. https://doi.org/10.1161/01.CIR.101.23.e215
  35. Ebrahimi, F., Mikaeili, M., Estrada, E., & Nazeran, H. (2008). Automatic sleep stage classification based on EEG signals by using neural networks and wavelet packet coefficients. 2008 30th annual international conference of the IEEE engineering in medicine and biology society(pp. 1151-1154). IEEE. DOI: 1109/IEMBS.2008.4649365
  36. Li, Y., Yingle, F., Gu, L., & Qinye, T. (2009). Sleep stage classification based on EEG Hilbert-Huang transform. 2009 4th IEEE conference on industrial electronics and applications(pp. 3676-3681). IEEE. DOI: 1109/ICIEA.2009.5138842
  37. Vatankhah, M., Akbarzadeh-T, M. R., & Moghimi, A. (2010). An intelligent system for diagnosing sleep stages using wavelet coefficients. The 2010 international joint conference on neural networks (IJCNN)(pp. 1-5). IEEE. DOI: 1109/IJCNN.2010.5596732
  38. Motamedi-Fakhr, S., Moshrefi-Torbati, M., Hill, M., Hill, C. M., & White, P. R. (2014). Signal processing techniques applied to human sleep EEG signals—a review. Biomedical signal processing and control10, 21-33. https://doi.org/10.1016/j.bspc.2013.12.003
  39. Rodríguez-Sotelo, J. L., Osorio-Forero, A., Jiménez-Rodríguez, A., Cuesta-Frau, D., Cirugeda-Roldán, E., & Peluffo, D. (2014). Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques. Entropy16(12), 6573-6589. https://doi.org/10.3390/e16126573
  40. Theodoridis, S., Pikrakis, A., Koutroumbas, K., & Cavouras, D. (2010). Introduction to pattern recognition: a matlab approach. Academic Press. https://www.mathworks.com/academia/books/introduction-to-pattern-recognition-theodoridis.html
  41. Aboalayon, K. A. I., Faezipour, M., Almuhammadi, W. S., & Moslehpour, S. (2016). Sleep stage classification using EEG signal analysis: a comprehensive survey and new investigation. Entropy18(9), 272. https://doi.org/10.3390/e18090272
  42. Behbahani, S., & Moridani, M. K. (2015). Non-linear Poincaré analysis of respiratory efforts in sleep apnea. Bratislavske lekarske listy116(7), 426-432. DOI: 4149/bll_2015_081
  43. Umoh, U., Udoh, S., Abayomi, A., & Abdulzeez, A. (2021). Interval type-2 fuzzy logic system for remote vital signs monitoring and shock level prediction. Journal of fuzzy extension and applications2(1), 41-68. http://www.journal-fea.com/article_126568.html
  44. Kane, L., Sidibe, H., Kane, S., Bado, H., Konate, M., Diawara, D., & Diabate, L. (2021). A simplified new approach for solving fully fuzzy transportation problems with involving triangular fuzzy numbers. Journal of fuzzy extension and applications2(1), 89-105. http://www.journal-fea.com/article_128837.html
  45. Rayappan, P., & Krishnaswamy, M. (2020). Some similarity measures of spherical fuzzy sets based on the Euclidean distance and their application in medical diagnosis. Journal of fuzzy extension and applications1(3), 244-251. http://www.journal-fea.com/article_119345.html
  46. Zhu, J., Chen, N., & Xing, E. P. (2014). Bayesian inference with posterior regularization and applications to infinite latent SVMs. The journal of machine learning research15(1), 1799-1847.
  47. Obayya, M., & Abou-Chadi, F. E. Z. (2014). Automatic classification of sleep stages using EEG records based on Fuzzy c-means (FCM) algorithm. 2014 31st national radio science conference (NRSC)(pp. 265-272). IEEE.
  48. Jain, N., Sharma, A. S., Zelenyi, L. M., & Malova, H. V. (2012). Electron scale structures of thin current sheets in magnetic reconnection. In Annales geophysicae(Vol. 30, No. 4, pp. 661-666). Copernicus GmbH.