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Abstract 

 

1 | Introduction  

With more than 50% bearings are the most frequent cause of failures in electrical machines [1]. 

Current research pays attention mainly to vibration sensor data analysis, which limits the use of the 

systems since these sensors usually must be installed as additional components on the motors. 

Therefore, in the last decade, research was carried out on using motor internal data for fault detection. 

Focus hereby was on the phase current data, since these signals are available for most motors ex 

works. While vibration signals can be efficiently analyzed via frequency analysis, phase current data 

does not provide such meaningful fault indicators for real damages [2]. Also, phase current signals 

are stronger subjected to the influence of motor parameters, such as rotational shaft frequency 

variations, than vibration signals. This hardens the working condition transfer which is of great 

interest for real-world use cases. To still perform reliable predictions based on the phase current data, 

meticulous coordination of all involved hyperparameters, for data pre-processing as well as the 

classification algorithm, must be ensured.  
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Therefore, in our research, we propose a fault detection framework with automated hyperparameter 

selection. For this purpose, task-independent methods are bundled with expert-driven methods related to 

the task of bearing fault detection. In contrast to existing research, our approach considers both, the 

pipeline performance on unchanged working conditions as well as a working condition transfer 

performance without the need to re-adjust any pipeline hyperparameters after the training. 

1.1 | Motivation of Phase-Current Based Bearing Fault Detection 

Mostly six reasons for damage to bearing components exist. These are a misalignment between the shaft 

and periphery (called eccentricity), overloads to the shaft, resonance vibrations due to lose mounted parts, 

insufficient greasing, low lubrication quality, and overheating. The current state of research mostly 

considers explicit single-point bearing faults: defects in the raceways of the inner or outer ring as well as 

damages to the rolling elements or the cage. For these types of damages, correlations between damage and 

frequency components, so-called Ball Pass Frequencies (BPFs) exist for vibration as well as current-based 

data [3]. BPFs are sideband frequencies around the harmonics of the drives supply frequency whose 

amplitudes increase with progressing damage. The authors in [4] made use of the BPFs to analyze the 

frequency spectrum, using wavelet packet decomposition. Their approach outperformed the performance 

of Fourier-based techniques. Besides the use of Motor Current Signature Analysis (MCSA) based methods, 

past research also applied data-driven or learning techniques to analyze the BPF-related fault indicators. In 

[5] the frequency information was pre-processed using a wavelet packet transform. The so extracted 

information was then forwarded to a 1d Convolutional Neural Network (CNN) for feature extraction and 

classification. However, the experimental evaluation of the approach is incomplete since the influence of 

varying loads is not investigated. However, this causes a covariate shift which in turn can significantly 

influence the model performances [2]. Existing research on phase-current based bearing fault detection 

primarily focuses on BPF-based fault indicators. Nevertheless, the presence of these BPFs as fault 

indicators depends on some pre-conditions which are uncommon in real-world applications [6]. Thus, the 

existence of BPFs is only validated for the mentioned single-point fault types. However, in practice, most 

faults belong to the class general roughness, which bundles a wide variety of damages of all bearing parts, 

including multi-point damages [2], [7]. 

1.2 | Data-Driven Bearing Fault Detection 

Phase current data is of lower focus in research compared to vibration data. The authors in [8] considered 

the phase-current based BPFs for extracting fault-indicating features. The approach in [9] used procedures 

of the so-called MCSA to classify the energy of individual fault indicators derived from the spectral range. 

Several deep learning approaches are limited to vibration data only. Thus, in [10], a neural network based 

on convolution layers was proposed to detect bearing faults of vibration signals corrupted with noise to 

simulate industrial applications. Random sampling was applied in [11] for more robustness on noise 

disturbances. To further increase the model’s robustness on data acquired under rough environments, the 

bundling of multiple sensor sources is applied to achieve more stable prediction performances [12]. 

A major requirement for fault detection solutions with real-world applicability is the ability to abstract 

variations of the motor working condition parameters like speed and radial forces. In data science 

nomenclature this is referred to as covariate shift and describes the challenge that the feature spaces of the 

training data (called source) differ from the feature representation of the test data (referred to as target 

domain). Related work frequently considers this working condition task using deep neural networks. To 

do this, a supervised classification branch is trained on the source data, while a second branch is fed with 

the unsupervised target domain data. The overall loss function considers both, the loss of the classification 

stage as well as the so-called domain discrepancy, which enforces an alignment of the feature distributions 

of both domains. The frequency domain features of vibration signals have been enforced to a common 

feature space in [13] by use of a domain adaptation model. The authors in [14] go one step further and do 

not only abstract working condition changes but also different motor types. However, the domain 
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discrepancy reduction approaches require a fine-tuning of the model hyperparameters when new 

working condition data is available. 

1.3 | Contribution and Originality 

In related work, some assumptions are made, which are not given in real-world application scenarios. A 

key pre-requisite of most approaches is that the damages are of single point type without any deviations 

from the expected norm, like repetitions or multiple damage locations. To fulfill these requirements, the 

bearings are prepared artificially, e.g., with boreholes. The meaningful BPF features can only be extracted 

for these types of damages, which in turn do not match the damages that occur in real-world application 

[2]. Another common assumption relates to the working condition transfer strategy, considering the 

data of both domains to reduce feature discrepancies. For this, the label spaces of both domains must 

be equal. This case is unlikely to occur in industrial use cases since it means that a motor would break 

down exactly during the data acquisition [15]. 

Our research proposes a fault detection framework to overcome some of the drawbacks by generalizing 

the prediction task. The idea of the framework is to make use of general signal processing and 

manipulation knowledge as well as existing domain expertise. Hereby, a toolbox-like fundus of data 

operations and transformations is created which is chained to a full stack data science pipeline, 

represented as a Directed Acyclic Graph (DAG). The pipeline includes data pre-processing, feature 

extraction, and optimization as well as classification. To avoid possible biases like the BPF dependency, 

the selection of the pipeline transformation steps as well as their hyperparameter selection, is done in an 

automated manner using genetic optimization. 

2 | The Proposed Fault Detection Framework 

The selection of the model hyperparameters to reach an optimal performance is the main goal of each 

data-driven approach. For this purpose, the so-called Automated Machine Learning (AutoML) 

fundamentals are utilized in the scope of the proposed fault detection framework. By this, the bias due 

to human-induced mis parameterization should be reduced by means of automated parameterization. 

The remaining human-induced bias is limited to the definition of the initial search space which is 

optimized during a genetic optimization. 

2.1 | Encapsulating the Data Science Workflow 

For Condition-Based Maintenance (CBM) systems, the application of automated hyperparameter 

optimization is currently still rarely used. However, some research yielded promising results and 

outperformed the baseline performance of models with an a priori hyperparameter definition [16], [17]. 

However, unlike existing approaches, the proposed framework optimizes the hyperparameter of all 

operations used in the data science stack instead of restricting hyperparameter selection to the 

classification level only. The framework uses chained methods, bundled in groups, to create the fault 

detection pipeline (DAG). Fig. 1 shows the five groups and some of the methods, hereinafter referred 

to as transformers, assigned to them: 

I. Data source preprocessing: manipulations on the raw data based on domain expert-driven 

transformers. 

II. General preprocessing: performs general transformation on the time series signals like filtering and 

data augmentation. 

III. Representation domain transformation: transforms the time series signal presentation to alternative 

representation domains like time-frequency or image domain. 

IV. Feature calculation: extracts a set of statistical features and selects an optimized subset. 

V. Classification: select a hyperparameter-optimized classification algorithm to solve the prediction task. 
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Fig. 1. Proposed fault detection pipeline as a modular toolbox for a directed acyclic execution. 

2.2 | Pipeline Transformers 

One advantage of the automated transformer selection is its task-independent and generic structure. This 

means that methods from past projects can be re-used and evaluated for their suitability in the current task. 

This leads to a steadily growing bundling of expert-driven approaches for the respective task, as well as 

general procedures. Selected transformers are introduced in the following: 

Data source preprocessing: a task-specific method, which was developed for the concrete challenge of 

the working condition transfer is the so-called Rotational Shaft Frequency Resampling (RSFR). It aims to 

reduce the discrepancy between samples of different rotational speeds by down sampling to a (fictitious) 

pseudo rotational speed. The pseudocode of the RSFR algorithm is shown in Algorithm 1. 

Algorithm 1. Algorithm of the rotational shaft frequency resampling procedure. 

 

 

 

 

 

 

 

The term 𝑛𝑜𝑠𝑐
𝑆/𝑇 specifies the number of oscillations to select from the original signal (source/target) to form 

the support points for the interpolation, to reach the number of oscillations according to the requested 

pseudo speed. 

General preprocessing: Due to the often-small number of available samples, the fault detection pipeline 

also includes a data augmentation stage by chunking the full-length samples X in Ns samples of length s 

according to Eq. (1) as follows: 

Algorithm 1 RSFR 

Require: 𝑋𝑆×𝑂, Input: 𝑆 samples with 𝑂 observations each 

1:     𝑀 ← 𝑋 

2:    Calculate 𝑓𝑝𝑠 =
𝑓𝑟⋅𝑛poppairs 

2⋅𝜋
 

3:    Calculate 𝑛𝑜𝑠𝑐 =
1

𝑓𝑆
⋅ 𝑙𝑒𝑛⁡(𝑋) ⋅ 𝑓𝑝𝑠 

4:    Decompose 𝑋 into interpolation support vectors 

5:    for each interp_vector do 

6:           Interpolate to 𝑛𝑜𝑠𝑐 =
𝑙𝑒𝑛⁡(𝑋)⋅𝑛𝑜𝑠𝑐

𝑇

𝑛𝑜𝑠𝑐
𝑆  observations 

7:           Update 𝑀 with the new interpolation vector 

8:    end for 

Ensure: 𝑀, Transformed 𝑆∗ samples with 𝑂 observations 



 

 

510 

W
a
g

n
e
r 

e
t 

a
l.

|
 J

. 
A

p
p

l.
 R

e
s.

 I
n

d
. 

E
n

g
. 

10
(4

) 
(2

0
2
3
) 

5
0
6
-5

17
 

 

 

To further increase the extent of augmentation, an overlapping w can be applied for the training samples 

as well. For image-like data representations, augmentation strategies like rotation, flipping, and 

cropping/zooming are applied. 

Representation domain transform: transforming the raw time series signals to additional 

representation domains like frequency or time-frequency domain, can improve the selection of reliable 

fault indicators [18], [19]. The proposed framework, therefore, transforms the raw signals to frequently 

used representation domains, like the Fast Fourier Transform (FFT), the Power Spectral Density (PSD), 

and the Wavelet domain. In addition, image representations are also created from the time series data. 

In total three methods are applied for image translation: recurrence plots [20] as well as Gramian angular 

fields and Markov transition fields [21]. 

Feature calculation: the proposed framework relies on a feature extraction strategy based on statistical 

characteristics. The full-size feature set 𝜒𝑛 = {𝑥1, … , 𝑥𝑛 } bundles the 𝑛 = 24 initial features x ∈ R which 

were found to be suitable for fault detection on rotating machinery in related work [7], [22], [23]. An 

optional dimensionality reduction by selecting the most significant features can be performed within the 

pipeline optimization. For this, the results of multiple feature selection strategies like Principal 

Component Analysis (PCA) [24] and mRMR [25] are compared. Besides the feature selection, further 

pre-processing steps, including scaling and low-variance cleaning, are performed during the feature set 

optimization to increase the chances of success of the subsequent classification. 

Classification algorithm: within the scope of the classification stage, the pipeline optimization aims to 

approximate a prediction 𝐹̂(𝑥) to achieve a minimal expected error rate 𝔼𝑥,𝑦 on unseen samples. The 

proposed framework performs the classifier hyperparameter search within the pipeline optimization, 

which is not the case in related research [16], [17]. For the experimental results, mostly the Gradient 

Boosting (GB) algorithm was used. We selected this type of algorithm since it was applied in related 

work on bearing fault detection tasks with promising results [26]. Nevertheless, other algorithms can 

also be integrated into the pipeline, as it is shown in the later sections. 

2.3 | Genetic Hyperparameter Optimization 

The fault detection pipeline is represented as an DAG of the transformers. Each transformer has at least 

one hyperparameter, namely for its activation. In terms of genetic optimization, the set of all possible 

solutions is represented as search space 𝒳 , while each solution x, referred to as chromosome, is 

composed of n genes (g): 𝓍 = {𝑔1, 𝑔2, … , 𝑔𝑛}  ⊆ 𝒳 . The fitness function f to be minimized evaluates the 

suitability of each solution 𝑉 = 𝑚𝑖𝑛⁡(𝑓(𝑔1, 𝑔2, … , 𝑔𝑛)). The genetic optimization was already successfully 

applied in related work on rotating machinery fault diagnosis [27]. For detailed information on genetic 

optimization itself, we refer to further literature [28], [29]. A solution candidate 𝑠𝑖 is a chain of 

transformers (represented as genes) shown in Eq. (2) for an exemplary pipeline using an SVM classifier. 

The genes 𝑔28 and 𝑔29 represent the regularization parameter C and the kernel type. 

Solution candidates can be of varying complexity. Therefore, the applied genetic optimization works in 

a multi-objective way by taking into account the aforementioned fitness objective as well as the pipeline 

cost. We refer to costs as the duration of the optimization. The optimal solution is searched by use of 

the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [30]. 

𝑁𝑆 = [
𝑙𝑒𝑛(𝑋) − 𝑤

𝑠
+ 1]. (1) 

si = [ g1⏞
Sensor Transform

, g2⏞
Augmentation

, g3⏞
Freq.  Domain

 ,   g4, g6, . . . , g27⏞                

Feat.  Vectors

,    g28, g29⏞      ]

SVM

. 
(2) 
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2.4 | Solution Selection Strategy 

To select the final solution candidate for pipeline deployment, the optimizations are performed in a 5-fold 

Cross-Validation (CV) with 3 repeats. The folds are grouped by the serial numbers of the used examinee 

motor instances in a non-overlapping manner. The goal of the framework is to abstract the pipeline 

hyperparameters from the motor instances as well as their operational parameters. To ensure this, testing 

takes furthermore place on an independent holdout set. For investigations on the pipeline robustness on 

working-condition induced covariate shifts, this holdout set is also evaluated on a target working condition. 

It’s worth mentioning that the proposed evaluation strategy differs from related works in terms of transfer 

studies. Pipelines are selected solely based on the CV results. Target data is only used for transfer 

performance evaluation to indicate the expected pipeline performance on unknown working conditions. 

3 | Evaluation of a Real-World Use Case 

To prove that the framework is suitable for data-driven bearing fault detection, experimental studies are 

presented in this chapter. The goal is to validate the contributions of the research mentioned in the 

introduction as well as to prove how our work can improve missings in the current state of research. 

3.1 | Dataset 

The data acquisition of the examinee motors was performed on a test rig, which was developed with the 

focus on real-world application conditions: different radial forces were applied to the motors at different 

speeds to simulate a belt operation. The radial forces were applied to the motor shaft end by a pneumatic 

cylinder. Each combination of speed/radial force is further referred to as working condition. For the 

transfer robustness, data from 4 working conditions were acquired. The dataset contains data from 22 

Permanent Magnet Synchronous Motors (PMSMs) that had proven bearing damage due to long-term 

operation. The damages (in literature referred to as general roughness) ranged from damages at the treats 

and rolling elements, to broken cages and other parts. The running lifetime of the motors ranged from 3 

to 12 years (with continuous maintenance). The examinees were of different motor series with different 

bearing sizes and types, to evaluate the generalization of the fault detection pipelines. Data was acquired 

with a sampling frequency of 8KHz and a period length of 782ms per measurement. Only standard industry 

components from the manufacturer Bosch Rexroth were used to ensure that the data acquisition procedure 

is applicable to other plants as well. 

3.2 | Baseline Results and Motivation 

Due to the wide range of application scenarios in which PMSMs are used, a major requirement is the 

robustness of the fault detection solution to working condition variations. Table 1 shows the intrinsic 

transfer performance of a pipeline without any pre-processing steps for optimizing the transfer robustness 

applied. The raw phase current data was augmented by splitting each sample into multiple windows of 

1024 observations each without overlapping. Both, the spectral domain data calculated using the FFT, as 

well as the time series windows, were used to extract the 24 features each. The features were normalized 

between 0 and 1 and classified using a gradient-boosting classifier. 

Table 1. Baseline and intrinsic pipeline transfer performance. 

 

 

  

The source baseline results advocate the general feasibility of the phase current based bearing fault 

detection of the used dataset. However, the accuracies are significantly worse compared to the results of 

Source WC Target WC Baseline Accuracy [%] 
 Speed [rpm] Force [N] Speed [rpm] Force [N] Source Target 

1 250 0 2000 1000 73.91 59.20 
2 250 1000 2000 0 77.17 62.00 
3 2000 0 250 1000 75.43 65.80 
4 2000 1000 250 0 72.17 53.50 
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related work [7]. Applying the source pipelines on data from a different working condition resembles 

random guessed predictions due to the covariate shift between the feature spaces of both working 

condition domains. The results in Table 1 are referred to as baseline results, which are expected to be 

outperformed by applying the proposed framework. 

3.3 | Search Space Preparation 

To reduce the influence of human intervention during solution generation, the proposed framework 

automates the parameterization of the fault detection pipeline. Nevertheless, a search space must be 

defined. To limit the required system resources as well as to reduce the duration of the optimization, 

some restrictions on the search space were made in advance. Table 2 shows the transformers included 

in the pipeline optimization. For better understanding, the pipeline transformers were divided into four 

groups A − D. The resulting DAG is shown in Fig. 2. 

 

Fig. 2. DAG of the fault detection pipeline ordered by stages A to D. 

A data sample 𝑥𝑖 passes the pipeline and is finally classified by the objective function 𝑓(𝑥𝑖) of the GB 

algorithm. The dashed lines in Fig. 2 represent an omittable transformer step. The genetic optimization 

was performed with 100 generations and a population size of 10 solutions each. 

Table 2. Search space of the pipeline optimization. 
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A1 (nocch 
filter) 

a10 (filler frequeccy): 

{16.6, 133.3} 

C 

Cl (spectral 
represent. selection) 

𝐶10 (selected method): 

{FFT, PSD) 
A2 (RSFR) a20 (pseodo shaft 

frequency): {118,0} 
C2 (feature 
calculation) 

Initial 24 features ace. 
II-84 

A3 (park 
transformation) 

- C3 (feature cleaning 
by low variance) 

- 

A4 (selection 
of A1-A3) 

a40 (selected method): 

{Raw, Noch, RSFR, Park} 

C4 (feature scaling) C40 (scaling method): 
{0, … , +1,  

standardized, ZScore} 
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Table 2. Continued. 

 

3.4 | Results of the Optimized Pipelines 

The results of the pipeline optimization are shown below in Table 3. For a valid comparison with the 

baseline results, we applied the same setting (train on source, test on target data). 

Table 3. Results of the optimized pipeline. 

 

 

 

The optimized pipelines outperformed the baseline results for all settings. The highest improvement for 

the source pipeline was reached in setting 4 with an improvement of 13.6%. This setting and pipeline also 

reached the highest target transfer improvement by 34.3%. During the optimization, the pipeline results 

were continuously improved: the worst source CV accuracies for settings 1 to 4 were: 55%, 63%, 52.4% 

and 50%. The wide range between the results during the optimization advocates the proposed automatic 

optimization strategy. Reaching similar results with a priori defined hyperparameters is unlikely due to 

many combinations: only 8 of all (>100) evaluated DAGs passed the acceptance criteria of 85%. In contrast 

to related research, target data was only used for testing. The process of the pipeline selection was based 

on the source CV accuracy. The target transfer results in Table 3 outperformed the respective intrinsic 

transfer results from tab. I in all settings. The highest improvement of about 34% was achieved in setting 

4. 

3.5 | Impact of an Adjusted Search Space 

Since the search space was restricted in advance, due to resource limitations, we considered the question if 

these restrictions excluded transformers that would have significantly improved the pipeline performance. 

Likewise, however, we also considered whether the search space could have been made more efficient 

without significantly degrading the pipeline performance. Therefore, we considered adjustments to the 

following two stages: 
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A 

     
A5 (Savitky-
Golay filtet) 

a50 (window length): 

{5} 
a51 (polynomial 

order): {2,3} 

D 

D1 (gradient 
boosting 
algorithm) 

d10 (estimators): (100) 
d11 (nodes per decision tree): 

{1,2, … ,10} 
d12 (SGD 1r): 

{e−3,  e−2, e−1, 0.5, 1.0}  
d13 (min. weight of a DT 
node): {1, 2, … , 20} 

B 

BI (data 
augmentation) 

b10 (window size); 

{1024, 2048} 
b11 (overlapping):{0}  

B2 
(normalization) 

- 

B3( detrend) - 
B4 (analytical 
signal) 

- 
 

B5 (window 
multiplication) 

- 

Source WC Target WC Accuracy [%] Accuracy 
Impact [%]  Speed [rpm] Force [N] Speed [rpm] Force [N] Source Target 

1 250 0 2000 1000 86.72 87.80 +1.08 
2 250 1000 2000 0 87.78 77.20 -10.58 
3 2000 0 250 1000 87.63 83.30 -4.33 
4 2000 1000 250 0 85.83 87.80 +1.97 
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− Stage C – feature space: dimensionality reduction. 

− Stage D – classification: algorithm selection. 

For the subsequent investigations, the pre-processing pipeline from Fig. 2 was applied. Only the 

respective stage under consideration (C or D) was adjusted. 

3.5.1 | Investigations on the feature space 

The initial feature space is spanned by the 24 features, found to be suitable for bearing fault detection 

in related research. We compared four feature selection methods: PCA [24], [31], Sequential Feature 

Selection (SFS) [32], Univariate Feature Selection (UFS) and Maximum Relevance Minimal Redundance 

(mRMR) [25]. The considered methods were already applied by related research for similar bearing fault 

detection tasks. The feature selection was performed within a range of a minimum of 2 and a maximum 

of 24 selectable features. Table 4 shows the results for the 4 working condition settings. The maximum 

differences between the four methods are small and lay between 0.78% and 5.20%. As a drawback of 

the feature selection, deteriorations in the pipeline transfer performance were recognized. Compared to 

the transfer results from Table 3, the deterioration was (from setting 1 to 4): 15%, 15%, 4% and 7%. 

Summarizing, the results showed that feature selection can optimize the pipelines regarding their source 

performance. Considering transfer performances, the results indicate that a sufficient number of features 

is required to overcome the influence of the remaining domain discrepancies between the feature 

distributions. 

Table 4. Impact of feature selection on the pipeline performances. 

 

 

 

3.5.2 | Comparison of classification algorithms 

Due to its promising results in related work, we only applied the GB algorithm in the results from Table 

3. Including multiple classification algorithms within the scope of the pipeline search, significantly 

increases the overall time required for the optimization. Therefore, we compared the following six 

algorithms to verify if extensions on the classifier search spaces, could improve the results, compared to 

the pre-defined GB setting: 

− Ensembles: Random Forest (RF), GB, Extra Trees Classifier (ETC). 

− Linear models: logistic regression (log. regr.). 

− Non-parametric models: k-nearest neighbors (k-nN). 

− Neural network: Multilayer Perceptron (MLP). 

To reduce biases in the results, caused by other transformers than the classification algorithms, a fixed 

pre-processing pipeline according to Fig. 2 was applied. The genetic optimization of the classifiers was 

carried out with 100 generations with a population size of 10 solutions each. In total approx. 1000 

hyperparameter constellations per classifier were evaluated. Table 5 shows the results of the four working 

conditions. Summarizing the results, the differences between the considered classifiers (avg. 7%) are 

low. The classifier performances differentiate much more if considering the transfer settings. The GB 

and Log. Regr. algorithm gained the most stable results over all working condition settings 1 to 4. 

Nevertheless, the results of the Log. Regr. were slightly worse compared to those of the GB. Regarding 

the results from Table 3, which were created by use of the GB algorithm, considerations on several 

classification algorithms gained no improvements. Considering the influence of the extended 

classification stage on the overall optimization duration, therefore indicates that the selection of the 

Working Condition #Features Selection 
Method 

CV 
Accuracy [%] 

Max. Accuracy 
Difference [%] Speed [rpm] Radial Force [N]  

250 0 7 SFS 90.66 3.58 
 1000 12 SFS 91.90 5.20 
2000 0 17 PCA 91.82 1.72 

1000 9 SFS 91.06 0.78 
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classification algorithm does not offer great potential for significant improvements in the overall pipeline 

performances. 

 

Fig. 3. Pre-defined data transformation pipeline for the classifier comparison. 

Table 5. Classifier comparison on source domain data. 

 

4 | Conclusion 

The study on our proposed framework mainly contributes to the state of research as follows: 

− Automated creation of the fault detection pipeline to reduce human-induced biases. 

− The need for external sensors becomes obsolete due to data representation transformations and data manipulations 

on internal signals. 

− Gaining domain robust pipelines by considerations on the source domain only. 

− Evaluation of the methodology based on real-world data related to the considered application scenarios. 

Contrary to related work, the proposed framework makes use of an automated concatenation of several 

data transformations to create a fault detection pipeline. The results verified, that the pipelines created in 

an automated manner, outperformed the results of handcrafted pipelines. Due to the high number of 

hyperparameters, our approach thus can assist in making more optimal decisions while creating a fault 

detection solution. To ensure the practicability of the framework, evaluations were carried out using real-

world data instead of artificially prepared bearings. Only motor internal phase-current signals were 

considered, to overcome the drawbacks of external vibration sensors. Investigations on the transfer 

performance of the pipelines were carried out using multiple working conditions, which exceeds the scope 

of comparable research. Hereby, the target domain data was used for evaluation purposes only. This 

differentiates the presented approach from related research because no re-parameterizations are required 

if the motor working condition varies between training and inference. Future work should spend attention 

Working Conditions Classification Algorithms 
Holdout Accuracies [%] 

Max. diff. 
[%] 

Speed [rpm] Radial Force [N] RFC ETC GBC Log. Regr. k-nN MLP 

250 0 83.30 83.00 90.60 89.25 88.60 84.15 7.6 
1000 91.50 89.30 92.30 89.70 93.40 90.65 4.1 

2000 0 81.90 84.55 90.50 90.60 89.60 82.85 8.7 
1000 86.50 80.10 82.60 87.10 87.95 83.25 7.85 
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to additional motor damages like broken shafts and could take into account further sensor signals like 

temperature data. 
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