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Abstract 

The purpose of the study was to develop a framework utilizing the Constant Returns to Scale (CCR) model of Data 

Envelopment Analysis (DEA) to evaluate the performance of workers and ergonomic risk and identify their postural 

models from efficient frontiers. Surface Electromyography (EMG) data and upper limb joint angle data were collected 

from volunteers (Decision-Making Units (DMUs) to carry out the DEA analysis. The data was collected for both 

maximum voluntary isometric contractions (MVC) and simple dynamic exercises. The DEA analysis was performed 

in several phases, including problem formulation and Single-Input-Multiple-Output (SIMO) model analysis. The 

study used muscle activation levels and upper limb joint angles to evaluate the ergonomic risks and performance of 

workers and identify role models for typical workers to follow. The study found that incorporating kinematics and 

EMG data into the DEA model's CCR framework identified efficient frontiers for workers who exhibit less muscle 

activation and use optimal arm angles while performing their work. The study also showed that workers can learn 

from their role models who exhibit efficient techniques, including the appropriate arm angle for performing a 

particular task, to improve their own efficiency. By following these superior work procedures, workers can increase 

their efficiency, reduce the risk of musculoskeletal problems, and enhance their output. The study concluded that the 

DEA framework utilizing the CCR model, combined with kinematics and EMG data, can assist in determining the 

performance of workers and best practices for workers to improve their performance and reduce ergonomic risk.  
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1|Introduction    

Ergonomics is a methodology that involves creating workspaces, products, tools, and systems that meet the 

needs and capabilities of users while also taking into account their physical, biomechanical, and psychological 

abilities. When these factors are not considered, there is a risk of ergonomic hazards that can result in injuries 

for workers performing different tasks in their workplace. Data Envelopment Analysis (DEA) is a non-

parametric linear programming technique used to compare the performance of Decision-Making Units 

(DMUs) that utilize various inputs to generate multiple outputs [1]. This approach was first introduced by 

Charnes et al. [1] in 1978, and the concept of Constant Returns to Scale (CRS) was introduced. The DEA 

model assesses the efficiency of each DMU by calculating a ratio of weighted outputs to weighted inputs. The 

weights are assigned in a way that maximizes the ratio while ensuring that the total weighted inputs do not 

exceed a specific level and the total weighted outputs meet a certain minimum level. DEA has various models 

available, such as the CCR [1], BCC [2], SBM [3], and FDH [2] models. The study utilized the CCR [1] model 

DEA approach to measure the efficiency and productivity of DMUs in simple exercise processes that involve 

multiple inputs and outputs. The framework incorporated both kinematics and Electromyography (EMG) 

data to provide a comprehensive and unbiased evaluation of worker performance. Kinematics data provided 

information on the worker's movement, while EMG data assessed muscle activity and fatigue. EMG stands 

for EMG, which refers to the electrical signals generated by muscle contractions controlled by the nervous 

system. These signals are indicative of the activity of a muscle motor unit. EMG is increasingly being utilized 

in various clinical settings, engineering applications, and research labs due to its ease of use, non-invasiveness, 

and safety for patients [4]. For accurate EMG data collection, it is crucial to prepare the skin properly and 

place the electrodes correctly. This involves cleaning the skin, removing any hair, and using alcohol wipes to 

eliminate any oil, dirt, or residue. Inadequate skin preparation can result in extremely noisy and erratic signals 

from the muscles. 

Additionally, the placement of electrodes is crucial and varies depending on the muscle being targeted, with 

the ideal location being the belly of the muscle [5]. When conducting a between-subject analysis of EMG 

amplitude, it is essential to utilize post-processing techniques such as Maximal Voluntary Contraction (MVC) 

normalization [6]. This approach, which involves calculating the Root Mean Square (RMS) of the EMG 

recording, is the most commonly used method for analyzing EMG signals. It provides a standardized 

denominator for multiple data series, resulting in normalized data that facilitates comparisons between 

participants. By using this technique, researchers can ensure the validity of their findings and minimize any 

discrepancies in the data [7]. The results of MVC normalization are typically expressed as a percentage of 

MVC, which represents the maximum force that a muscle can produce during a voluntary contraction. The 

analysis of human movement through motion analysis is a vital tool that can uncover significant insights into 

the hidden patterns of motion characteristics and provide kinematic data. This technique has proven to be 

particularly valuable in diverse areas, including sports training [8] and industrial work measurement [9]. 

The study shows that the DEA approach is a valuable technique for evaluating the ergonomic risks and 

performance of workers, enabling the identification of effective and average personnel to enhance their 

abilities and improve postural stability and balance through the CCR model framework. In research, DEA 

was employed to assess EMG sensors for use in prosthetic hands and was successful in determining the most 

effective sensor. It supported the selection of the best sensor at the decision-making [10]. Researchers 

employed DEA to assess EMG-based human-machine interfaces, and they concluded that DEA was 

successful in determining the best interface for human-machine interaction [11]. DEA has gained prominence 

in the field of EMG due to its non-parametric evaluation of multiple DMUs. Recent studies demonstrate 

DEA's effectiveness in assessing various EMG-based approaches, identifying optimal techniques for feature 

extraction, and evaluating EMG sensors for applications like prosthetic hands [12]. The convex hulls 

generated by DEA offer insights into DMU efficiency and can pinpoint the root causes. This has implications 

for diverse industries, including manufacturing and healthcare [13], [14]. Additionally, DEA has been utilized 

to assess human-machine interfaces and form tolerances in manufacturing components. In terms of 
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efficiency, research suggests that optimal arm posture and reduced muscle activation lead to quicker task 

completion and fewer errors, particularly in physically demanding professions. The link between arm angle, 

muscle activation, and task efficiency underscores the importance of ergonomic design and training for 

enhanced work performance and reduced risk of fatigue and injury [15]. Efficiency in work performance can 

be improved by utilizing a combination of less muscle activation and an optimal arm angle [16]. The arm's 

angle also influences the efficiency of the task. The arm should be near the body, and the elbow should be 

bent to around 90 degrees for maximum efficiency [17]. In another study, compared to a raised arm position 

and increased muscle activity, a more neutral arm posture and lower muscle activity led to better task 

performance and lessened muscle fatigue [17]. 

To assess performance in industrial settings and identify areas for improvement, this study developed a DEA 

technique capable of generating convex hulls from both efficient and inefficient frontiers that encompass all 

observed data points. The convex hulls produced by DEA have been the subject of several research studies 

[18]. Convexity of the efficient frontier may be utilized to determine the kind of production technology, as Li 

and Reeves [19] proved by proposing a scale for measuring it. Researchers created a trustworthy system for 

assessing form tolerances, namely the straightness and flatness of manufactured components. It was 

demonstrated that the convexity of the efficient frontier may be utilized to pinpoint the sources of inefficiency 

in DMUs by studying DMUs with more convex efficient frontiers as compared to those with less convex 

efficient frontiers [20]. The application of DEA to the creation of convex hulls for portfolio selection shows 

that the convex hulls produced by DEA may be utilized to assess the performance of a stock portfolio [21], 

[22]. Efficient DMUs are those that provide, and the remaining DMUs, represented within the convex hull 

[23], are positioned between the efficient and inefficient frontiers, indicating varying levels of performance 

and efficiency. 

Additionally, benchmarking for occupational health and safety performance is crucial in industrial settings, as 

it enables the recognition of weaknesses and the development of improvement methods using DEA [24]. The 

potential implications of this study extend beyond a specific occupational setting, with the DEA approach 

serving as a powerful tool to assess ergonomic risks and improve worker performance. These findings suggest 

that the DEA approach can be leveraged to optimize worker abilities and, ultimately, promote workplace 

safety and productivity. 

2 | Problem Statements and Methods  

The DEA model is employed in this study to assess the relative efficiency of each subject's muscle movements 

across various dimensions, including energy consumption and force production. The primary objective of 

this research is to establish an innovative framework for evaluating the efficiency of muscle movements during 

different exercises (e.g., sweeping exercises). In our investigation, trial numbers are considered as inputs, and 

the two EMG values serve as outputs. Consequently, we formulate a Single-Input-Multiple-Output (SIMO) 

model from the CCR model. Each participant engaged in five exercise trials, with muscle energy utilization 

being a key metric. Efficiency is evaluated based on the SIMO model derived from the CCR model. Those 

participants exhibiting lower muscle activation across the trials are considered more efficient and are less 

prone to muscle injuries. This research contributes to advancing our understanding of muscle movement 

efficiency and its implications for injury prevention.  

The study comprises three distinct stages. The first stage involves the development of a new framework 

employing the CCR model of DEA to evaluate the efficiency of a system or process, which involves problem 

formulation and SIMO model formation. During the second stage, EMG and kinematic data will be collected 

from human participants to evaluate the efficiency of their muscle movements and arm angles during various 

exercises.  
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EMG data were collected from the subjects while performing the simple dynamic exercises (e.g., sweeping) 

and isometric Maximum Voluntary Contraction (MVC) tests. MVC results, where the subject reached the 

maximum activation level in three trials, were used as a physiological reference point to normalize the EMG 

signals. Then, each EMG signal from dynamic exercises was expressed as a percentage of MVC (% MVC). 

Furthermore, upper limb joint angles were recorded using a Vicon motion capture system with 10 cameras 

(Vicon Motion Systems, Oxford, UK). In the final stage, the EMG and kinematic data collected in the second 

stage will be utilized in the framework developed during the first stage. The DEA analysis will be carried out 

using the trial number as input and EMG and kinematic data as both outputs to assess the efficiency of the 

muscle and arm movements during the exercises. 

 

Fig. 1. Flowchart of methodology. 

2.1 | CCR Model 

The Charnes, Cooper, and Rhodes (CCR) model, also called the CRS model, is a linear programming 

technique that assesses the efficiency of DMUs like organizations, institutions, or companies. First introduced 

by Charnes, Cooper, and Rhodes in 1978, the CCR model is a non-parametric linear programming approach 

that measures efficiency [1]. DEA is a method used to determine the relative efficiency of DMUs while 

keeping either inputs or outputs constant. The CCR model is based on the concept of efficient frontiers, 

which is the best-performing DMU. There are two main models used in DEA: the input-oriented model and 

the output-oriented model. In the input-oriented model, the input variables are kept constant while the output 

variables are maximized [25]. In the output-oriented model, the output variables are kept constant while the 

input variables are minimized. According to research, individuals with the best arm angles and the least 

amount of muscle activity are more efficient. Therefore, to minimize our output, we will be using the input-

oriented model for our analysis. 

Assume that there are 'n' number of DMUs need to evaluate where each DMU consumes varying amounts 

of 'm' different inputs to produce 's' different outputs. If DMUj needs xij of input' i' to produce yrj of output' 

r', where xij > 0 and yrj > 0 and λi, λr  are the multipliers of input and output weights. For a particular DMU, 

the ratio of any single virtual output to a single virtual input provides a measure of efficiency that is a function 

of the multipliers, where the Input-oriented model is 

Objective function 

 Subject to  

2.2 | Data Collection 

Due to the time-consuming nature, finding volunteers solely for research purposes proved challenging. 

Consequently, a cohort of ten participants was recruited for data collection. This subject group, including 5 

males and 5 females with an average height of 166.65±8.35 cm, an average weight of 72.4±25.28 kg, and an 

average age of 25.5±4.8 years, were recruited from the local university community, following the Institutional 

max z = ∑ μryr0.

s

r=1

 (1) 

∑ μryrj − ∑ vixij  ≤ 0,

m

i=1
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r=1
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∑ vixi0 = 1,

m

i=1

 (3) 

μr, vi ≥ 0. (4) 
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Review Board (IRB) guidelines. For the recruitment procedure, flyers were distributed, and interested 

individuals were invited. A health survey was conducted on each participant to ensure there were no 

musculoskeletal issues that could impede their performance during the experiment. Informed consent was 

obtained from all participants prior to beginning the study after being informed about the potential risks and 

benefits. The subjects performed stretching exercises to warm up before the experiment, and alcohol wipes 

containing 62% Ethyl alcohol were used to sanitize the skin in the contact area of the EMG sensors, followed 

by hair removal using a disposable razor. Each subject wore four EMG sensors placed on the Flexor Carpi 

Radialis (FCR) and Biceps Brachii (BB) muscles connected to the Delsys Trigno Wireless system (Delsys Inc., 

Boston, MA, USA). The EMG sensors are composed of 99.9% silver, with each sensor measuring 27 mm x 

37 mm x 15 mm with an interelectrode distance of 10 mm. Data collection is conducted at a sampling 

frequency of 1926 Hz, with a gain setting of 1000, a common-mode rejection ratio greater than 80 dB, and 

an input impedance exceeding 1015 Ω. A Butterworth band-pass filter ranging from 20 to 450 Hz was 

employed to filter the EMG data digitally. The quality of the EMG signal was monitored using EMG 

WorksTM, following the manufacturer's recommended criteria, which include a baseline noise < 15 μVrms, 

signal-to-noise ratio > 1.2, and line interference < 2. EMG sensors were attached to the BB and FCR muscles 

according to SENIAM recommendations shown in Fig. 2.c [26]. Subjects were instructed to perform a forearm 

exercise to activate the BB muscle group, and a Velcro-resistant band was used to immobilize the forearm of 

the subject at an elbow joint angle of 90 in a seated position shown in Fig. 2.a  [27]. Additionally, subjects 

were instructed to perform a wrist exercise to activate the FCR muscle group. A Velcro-resistant band was 

utilized to maintain the wrist in a neutral position while the subject applied force in the direction indicated by 

the arrow in Fig. 2.b [28]. EMG data were collected from both BB and FCR muscles by using Delsys EMG 

WorksTM (Version 4.8.0). To normalize the EMG signals, each subject performed three MVCs of their 

muscles without joint movement. 1-min of rest was provided between MVC movements for muscle 

regeneration. Each MVC movement was performed for around 5 seconds. For each muscle group, the highest 

MVC value was picked from the trials and then used as a physiological reference point to express the muscle 

activation of dynamic trials as a percentage of MVC to normalize the data as follows [29]. 
 

Fig. 2. Dynamic tests are given as percentage of MVC for the software; a. MVC 

position for BB, b. MVC position for FCR, c. EMG sensor locations and body 

marker locations (anterior), d. EMG sensor locations and body marker locations 

(posterior), and e. sweeping exercise. (Arrows indicate the direction of force 

applied against the resistance.). 

 

%MVC =
iEMG

MVC
 X 100%. (5) 
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For the data collection, in addition to using EMG modules, Vicon Nexus, with the help of the MATLAB 

pipeline, captured the kinematic data while the subjects were performing both static and dynamic trials. The 

data synchronization was employed through the use of the Delsys Trigger Module and a Vicon Lock+ device. 

The Vicon motion capture system with 10 Vicon Vantage V5 cameras (Vicon Motion Systems, Oxford, UK) 

was used to track reflective markers attached to the subject's skin or clothing and capture upper limb joint 

angles. Camera data was collected at a frequency of 100 Hz. Prior to the data collection, the cameras were 

calibrated using the Vicon Active Wand across the entire laboratory volume. This procedure ensured precise 

marker tracking during both static and dynamic trials. Tight activewear was worn to minimize clothing 

movement, and 25 body markers, each with a 14mm diameter, were attached to the subject's body, as shown 

in Fig. 2.c and Fig. 2.d. Two anatomical markers were attached to the left and right medial epicondyle (LMEP 

and RMEP) during static calibration and removed for dynamic trials [31]. The static calibration trial involved 

the subject standing for a short duration of about 1 to 2 seconds, allowing the Vicon Nexus system to capture 

a static frame. Subjects performed a sweeping exercise, and each subject performed five trials, and each trial 

was performed for around 5 seconds, as shown in Fig. 2.e. 

3 | Data Processing 

The collected EMG and kinematic data were processed to extract relevant information. EMG Works Analysis 

software was used to digitally filter, full wave rectify, and smooth the EMG data, which was then normalized 

using the RMS value obtained during the MVC with a sliding window length of 250 ms and 50% overlap. 

Joint angles, velocities, and accelerations were calculated from the kinematic data using Vicon Nexus and 

MATLAB pipeline. The quality of the data was rigorously monitored during the data collection; further details 

are provided in Section 2.2. After the motion capture data was collected, gap-filling procedures were 

implemented for the collected marker data to ensure the final data quality, employing pattern fill and rigid 

body fill methods for larger gaps and spline fill for smaller gaps. The processed data was exported to an Excel 

csv file. 

3.1| Data Pre-Processing  

The collected data was pre-processed before creating the model. Each subject had at least five dynamic trials, 

and the joint angle of both elbows and EMG data were calculated from each trial. The average angles of the 

left and right arms were calculated by finding the five maximum and minimum values. Raw EMG data was 

amplitude normalized for each trial with the peak MVC value of the specific muscle group. The maximum 

percentage of work for BB and FCR muscle groups was also determined. The simplified data of ten subjects 

with their weights and heights were represented in Table 1 and then used in the CCR model to find the 

efficiency. 

Table 1. Pre-processed data for DEA analysis. 

 

  

  

  

  

  

  

  

 

4| Analysis and Result 

Muscle activation and arm angle can be used to evaluate how efficiently someone is executing a task. Most 

people perceive those who employ the least amount of muscular activation and have the best arm angles to 

DMU Trial Left Elbow 
Angle 

Right Elbow 
Angle 

Left BB 
(%) 

Left FCR 
(%) 

Right BB 
(%) 

Right 
FCR (%) 

1 5 64.16 51.97 20.62 11.82 17.02 27.95 
2 5 37.59 43.07 22.62 19.38 18.11 45.54 
3 5 44.51 46.25 19.37 14.85 6.57 15.96 
4 5 58.39 48.1 7.11 9.6 7.82 15.03 
5 5 51.8 59.81 24.48 17.91 20.88 12.19 
6 5 34.84 44.07 32.68 13.26 35.57 45.24 
7 5 57.49 65.61 39.05 49.47 28.2 44.8 
8 5 41.59 54.9 24.8 34.54 33.7 18.03 
9 5 50.1 45.39 50.79 24.69 30.18 16.29 
10 5 61.21 55.49 14.35 19.55 26.57 38.65 
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be more efficient. A higher level of production and a lower chance of injury or physical strain can result from 

optimizing these variables. The DEA analysis is performed in multiple phases: problem formulation phase 

and SIMO model analysis. Table 1 displays the data for each subject as well as the input and output of the 

DEA model. 

4.1 | Single Input Multiple Output Model Analysis 

The SIMO model is a type of DEA model that measures the relative efficiency of DMUs with respect to a 

single input and multiple outputs. In the SIMO model, each DMU takes a single input and produces multiple 

outputs. The goal of the model is to find the weights of the outputs that maximize the efficiency of each 

DMU while keeping the input constant. The efficiency of a DMU is calculated as the ratio of its weighted 

sum of outputs to the weighted sum of outputs of the most efficient DMU in the sample. 

4.1.1 | Left elbow angle and Left BB EMG data as output 

For SIMO model analysis, take the trial number as input and elbow joint angle and EMG value of the BB 

muscle group as output for the left side. As a result, the linear programming model for the first DMUs 

(subject) on output efficiency is applied by applying the data of Table 2 in Eq. (1)-(4).  

 Table 2. Single input and multiple output DEA model (Left 

Elbow Angle and BB EMG). 

 

 

 

 

 

  

 

The objective function 

 

DMU 
Input Output 

Trial Left Elbow Angle (deg) Left BB (%) 

1 5 64.16 20.62 

2 5 37.59 22.62 

3 5 44.51 19.37 

4 5 58.39 7.11 

5 5 51.8 24.48 

6 5 34.84 32.68 

7 5 57.49 39.05 

8 5 41.59 24.8 

9 5 50.1 50.79 

10 5 61.21 14.35 

max z = 64.16λ1 + 20.62 ∗ λ2 + 0 ∗ λ3.  

Subject to  

−64.16λ1 − 20.62λ2 + 5 ∗ λ3 ≥ 0,  

−37.59λ1 − 22.62λ2 + 5 ∗ λ3 ≥ 0,  

−44.51λ1 − 19.37λ2 + 5 ∗ λ3 ≥ 0,  

−58.39λ1 − 7.11λ2 + 5 ∗ λ3 ≥ 0,  

−51.80λ1 − 24.48λ2 + 5 ∗ λ3 ≥ 0,  

−34.84λ1 − 32.68λ2 + 5 ∗ λ3 ≥ 0,  

−57.49λ1 − 39.05λ2 + 5 ∗ λ3 ≥ 0,  

−41.59λ1 − 24.80λ2 + 5 ∗ λ3 ≥ 0,  

−50.10λ1 − 50.79λ2 + 5 ∗ λ3 ≥ 0,  

−61.21λ1 − 14.35λ2 + 5 ∗ λ3 ≥ 0,  

0 ∗ λ1 + 0 ∗ λ2 + 5 ∗ λ3 = 1,  

λ1, λ2, λ3 ≥ 0.  
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Results from the DEA model, using MATLAB and the fmincon function, indicate that DMU-1 operates at 

73.98% efficiency compared to the most efficient DMU while keeping its input constant. Individual 

efficiencies for each DMU were obtained through separate goal functions and constraints, with efficiencies 

ranging from 64% to 100%, as shown in Table 3. DMUs with efficiencies of 100% are considered to be 

efficient and operate at the minimum possible level, given their inputs and outputs. Individuals who use less 

muscle activation and a more optimal arm angle while performing their work tend to be more efficient [16]. 

The 2nd, 4th, and 6th subjects are the efficient ones shown in Table 3. The remaining DMUs have efficiencies 

ranging from 64.22% to 96.37%, which means they are operating at varying levels of efficiency compared to 

the most efficient DMUs. 

Table 3. Efficiency of DMUs (left elbow angle vs BB). 

DMU 1 2 3 4 5 6 7 8 9 10 

Efficiency (%) 73.98 100 96.37 100 80.26 100 64.22 90.75 69.54 84.43 

 

 

Fig. 3. Left elbow angle vs BB graphical representation. 

We could generate the graph shown in Fig. 3 for the left-hand angle and BB by graphing the data points of 

the left side from Table 2. The positions on the graph represented by DMUs 2, 4, and 6 demonstrate a level 

of performance that is superior to all other DMUs. It is possible to visualize the efficient DMUs and their 

performance scores by plotting the left-hand data and connecting the efficient points with a convex curve. 

This curve is called the efficient frontier, and DMUs that fall on this curve are considered to be 100% efficient, 

which is the red curve shown in Fig. 3. In contrast, DMUs that fall outside of the efficient frontier are 

considered inefficient. When all the DMUs are plotted on a graph, the efficient (red curve) and inefficient 

(green curve) frontiers create a convex hull that encompasses all the DMUs. It is also clear from the graphical 

depiction that every ineffective DMU may discover a role model from whom they can learn how to perform 

more effectively without considerable ergonomic risk.  

From Fig. 3, if we draw a straight line from the basepoint through the DMU-03, we can see that the efficient 

frontiers convex curve at a specific point, and from that point of intersection, we can say that DMU-02 and 

DMU-04 are close to DMU-03. But as the DMU-02 is the closest one, this is the role model for DMU-03. 

Similarly, for DMU-09, DMU-06 is the role model. By drawing a straight line through all other DMUs, we 

can conclude which efficient DMU is the role model for which inefficient DMU.  

4.1.2 | Right elbow angle and BB EMG data as output 

For SIMO model analysis, take trail number as input and elbow joint angle and EMG value of the biceps 

muscle group as output for the right side. 

As a result, the linear programming model for the first DMUs (subject) on output efficiency is applied by 

applying the data of Table 4 in Eq. (1)-(4). 
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Table 4. Single input and multiple output DEA model (right 

elbow angle and BB EMG). 

DMU 
Input Output 

Trial Right Elbow Angle Right BB 

1 5 51.97 17.02 

2 5 43.07 18.11 

3 5 46.25 6.57 

4 5 48.1 7.82 

5 5 59.81 20.88 

6 5 44.07 35.57 

7 5 65.61 28.2 

8 5 54.9 33.7 

9 5 45.39 30.18 

10 5 55.49 26.57 

 

The objective function 

DEA can evaluate DMUs, and applying DEA equations in MATLAB with the fmincon function allows for 

efficiency determination. DMUs, in this case, had efficiencies ranging from 60% to 100%, with DMUs 2 and 

3 being most efficient at 100%. DMU-1 was 84.82% efficient, and the remaining DMUs had efficiencies 

ranging from 65.65% to 97.73%, as shown in Table 5. 

 

Table 5. Efficiency of DMUs (right elbow angle vs BB). 

 

 

We could generate the graph shown in Fig. 4 for the right-hand angle and BB by graphing the data points of 

the left side from Table 4. The positions on the graph represented by DMUs 2 and 3 demonstrate a level of 

performance that uses less muscle activation and a more optimal arm angle that is superior to all other DMUs 

and forms a convex curve, which is the red curve shown in Fig. 4. This curve is called the efficient frontier, 

and DMUs that fall on this curve are 100% efficient. All other points falling above the curve, like the previous 

one, are considered inefficient. When all the DMUs are plotted on a graph, the efficient (red curve) and 

inefficient (green curve) frontiers create a convex hull that encompasses all the DMUs. Drawing a straight 

line from the basepoint through DMU-01 in Fig. 4 allows us to identify the intersection point with the efficient 

frontier curve, indicating that DMU-02 and DMU-03 are close to DMU-01. DMU-02 is the closest and, 

max z = 51.97λ1 + 17.02 ∗ λ2 + 0 ∗ λ3. (5) 

Subject to  

−51.97λ1 − 17.02λ2 + 5 ∗ λ3 ≥ 0,  

−43.07λ1 − 18.11λ2 + 5 ∗ λ3 ≥ 0,  

−46.25λ1 − 6.57λ2 + 5 ∗ λ3 ≥ 0,  

−48.1λ1 − 7.82λ2 + 5 ∗ λ3 ≥ 0,  

−59.81λ1 − 20.88λ2 + 5 ∗ λ3 ≥ 0,  

−44.07λ1 − 35.57λ2 + 5 ∗ λ3 ≥ 0,  

−65.61λ1 − 28.2λ2 + 5 ∗ λ3 ≥ 0,  

−54.9λ1 − 33.7λ2 + 5 ∗ λ3 ≥ 0,  

−45.39λ1 − 30.18λ2 + 5 ∗ λ3 ≥ 0,  

−55.49λ1 − 26.57λ2 + 5 ∗ λ3 ≥ 0,  

0 ∗ λ1 + 0 ∗ λ2 + 5 ∗ λ3 = 1,  

λ1, λ2, λ3 ≥ 0.  

DMU 1 2 3 4 5 6 7 8 9 10 

Efficiency (%) 84.82 100 100 95.63 73.30 97.73 65.65 78.45 94.89 77.62 
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therefore, serves as the role model for DMU-01. Similarly, drawing lines through other DMUs can help 

identify which efficient DMU serves as a role model for each inefficient DMU. 

 

Fig. 4. Right elbow angle vs BB graphical representation. 

By altering the output, we can identify the efficient and non-efficient frontiers in every case of left and right 

hand, such as Angle & FCR as output, BB & FCR as output, and Angle, BB & FCR as output. This process 

remains consistent for all input and output levels. 

All inefficient individuals from the SIMO model may learn how to become more efficient from their closest 

role model, including the direction or angle they should move their arm when performing a certain job to 

avoid any job-related muscle problems. By adopting better work techniques that minimize muscle activation 

and optimize arm angle, workers can improve their efficiency, reduce the risk of musculoskeletal disorders, 

and increase productivity. 

Optimizing work methods, especially in worker arm usage, significantly improves efficiency and productivity. 

Adopting superior work strategies learned from a role model minimizes muscle activation and optimizes arm 

angles. This not only enhances efficiency but also reduces the risk of musculoskeletal issues. Learning from a 

role model is a valuable approach to improving overall job performance while prioritizing health and safety 

in the workplace. 

5 | Discussion 

SIMO models result in efficient and inefficient frontiers, creating a convex hull for all DMUs. Efficient 

workers use optimal arm angles and exhibit less muscle activation, leading to higher efficiency. Workers can 

learn from role models to improve their techniques and efficiency, which reduces the risk of musculoskeletal 

problems and enhances output. Superior work procedures that limit muscle activation and optimize arm angle 

can increase worker efficiency. Optimizing work methods can increase productivity and efficiency in every 

job and profession. One area that can be improved is worker arm usage while carrying out their duties. By 

using superior work strategies, workers can improve their productivity, decrease their chance of developing 

musculoskeletal illnesses, and increase their efficiency. Poor work practices over time can result in muscular 

aches, strain, and injury, which can reduce output and be uncomfortable. By learning from a role model, 

workers can improve their work habits and increase their productivity and safety. Using the right technique 

can help employees avoid putting undue pressure on their muscles and joints, which lowers their chance of 

suffering from illnesses such as tendinitis, carpal tunnel syndrome, and tennis elbow. Overall, workers must 

prioritize their health and safety by using the right work practices, which can improve their overall job 

performance. 

Although the current DEA offers promising results in the field of ergonomics, we recognize several 

limitations in our study. Variability in participant performance of static MVC movements and dynamic 
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exercises, as well as in trial conditions, may introduce bias into the data collection. Additionally, some of our 

subjects had no prior experience with motion capture systems, which might affect the generalizability of our 

results. Furthermore, in future studies, we plan to apply our DEA method to a variety of dynamic tasks and 

with larger sample sizes to validate further and extend our findings. 

6 | Conclusions 

DEA can be used to evaluate the effectiveness and efficiency of DMUs, including individual workers, based 

on ergonomic risk and performance. Incorporating kinematics and EMG data into the DEA framework can 

provide a more thorough and impartial evaluation of worker performance. In the context of worker health 

and safety, an innovative framework leveraging the CCR model of DEA can evaluate ergonomic risk and 

performance. This approach categorizes employees into efficient and average frontiers, identifying role 

models for improvement. To enhance worker performance evaluation, kinematics data, measuring body 

component motions during job activities, can be incorporated alongside EMG data. This comprehensive 

approach distinguishes between efficient and struggling employees, allowing the DEA model to identify best 

practices and role models for others to follow. Muscle activation, indicating the level of muscular contraction 

needed for a task, is a key factor affecting energy expenditure and efficiency. Optimal arm angles can also 

improve productivity by minimizing unnecessary movements. By identifying best practices and role models 

for workers to follow, they can increase their efficiency and output while reducing the risk of musculoskeletal 

problems. For further studies, we can 1) explore the potential of Vicon Motion Capture in analyzing and 

identifying specific ergonomic advantages in various industries, including healthcare, construction, and 

manufacturing 2) extend the use of DEA beyond the supply chain and facility design to assess and improve 

organizational performance in other areas, such as marketing, finance, and human resources and 3) explore 

the potential of the DEA method in identifying and addressing other musculoskeletal problems and 

investigate the effectiveness of interventions aimed at improving employee performance and reducing the 

risk of injury. 
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