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Abstract 

 

Mixed-model assembly is a particular set of production lines assembling a family of product models with similar 

specifications. Designing paced assembly lines faces two primary problems: balancing and sequencing. The balancing 

quality is closely associated with the described production sequence. Although these two are problems of one 

assembly method, they do not occur simultaneously; balancing poses a problem during the line designing, whereas 

sequencing becomes problematic at the fluctuating demand of markets. The present research presents a balancing 

and sequencing problem and the proper times to set up the machines between tasks. Unlike a majority of published 

studies, this paper contains two successive tasks' setup times in dynamic periods, in which periods also impact the 

flowing period. A mathematical is described with a number of objective functions, reducing the inappropriate 

assembly line sequence, reducing setup cost, and reducing the inappropriate product balance and the impact of this 

situation on incomplete tasks. Thus, the literature has presented several metaheuristic algorithms to solve the 

problems nearly optimally. This study uses a multi-objective particle swarm optimization algorithm, a suitable 

approach, to create models and solutions. Various problems are designed in different sizes and compared, and the 

decision variable sensitivity is investigated to prepare managerial intuitions. The findings propose that the presented 

algorithm can solve the research problems more efficiently. 

Keywords: balancing, sequencing, setup time, MOAs. 
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1|Introduction    

An assembly line, a mass production process, includes a continuous movement of units through the sequences 

or workstations. A variety of products determine the various groups of assembly lines, such as the mixed-

model assembly line (MMAL), which is applied in an assembly line [1]. In this type, the similarity among the 

product models is high enough such that the setup times between successive stations are negligible from one 

product model to another [2], thus simultaneously assembling different models to the line per sequence. This 

method needs no extra setup times and answers the diverse needs of customers. Therefore, this increases line 

flexibility, which plays a vital role in the system's promotion. Increased flexibility is considerably important in 

the highly competitive industrial production environment to fulfil customers' requests [3]. Two primary 

problems took place in the MMAL, disregarding the line shape. Line balancing, the first problem, alludes to 

the practical allocating of tasks to sequences so that some function calculations are optimized to match the 

priority relations between the tasks. The aim of model sequencing, the second problem, is to select the product 

arrangement and move it into the assembly line, where various models will be manufactured [4]. 

In the present study, we have weighed the two notions; thus, we identify the product sequence and line 

balancing. The paper simultaneously studies some objectives, such as reducing the inappropriate assembly 

line sequence, the entire setup cost, the inappropriate product balance and its impacts on incomplete works. 

We tackle the combination of product mix sequencing and assembly line balancing. Both problems suggest 

special time scaling, as assembly line planning is a multiple months to years decision, whereas sequencing 

might be specified daily or weekly. To acquire the Pareto solution, an ameliorated algorithm, multi-objective 

particle swarm optimization (MOPSO), is proposed in the MMALs’ simultaneous sequencing and balancing, 

and subsequently, a comparison is performed between the presented model and two multi-objective 

algorithms (MOAs). The suggested algorithm presents a new solution demonstration method, which can 

efficiently be applied to the concurrent sequencing and balancing MMALs. As far as the authors are aware, 

no research has been conducted to solve the problem of the MMAL balancing and sequencing regarding the 

suggested algorithm and setup times between the products. This paper provides the first effort to bridge this 

research gap. The next sections of the study are arranged as follows. The related literature is defined in section 

2, illustrating the problem and explaining a mathematical model presented in section 3. The problem-solving 

and numerical instances are allocated to section 4; the last part, the conclusion, is in section 5. 

2| Literature review  

The MMAL-related literature is categorized into three domains: some investigations study different models 

sequencing in the assembly lines. Researchers have regarded the problems of the assembly line sequencing by 

MMAL sequencing. The studies primarily specified an appropriate sequence for various models to maximize 

line application. Kinable, Cire, and van Hoeve [5] optimized the sequencing problems through a new method 

by evaluating the task location in the order and then determining the setup times between the tasks. A 

mathematical model was proposed by Nazar and Pillai [6], finding sequences able to minimize the zero idle 

time constraints, satisfying the capacity for the machine and production rate variation. Defersha and 

Mohebalizadehgashti [7] regarded a mixed-integer linear programming mathematical model using the genetic 

algorithm for sequencing and balancing problems concurrently. To specify the optimum product sequence to 

magnify client satisfaction, Rabbani, Heidari, and Farrokhi-Asl [8] suggested two MOAs. Several research 

articles have noted the sequencing problem of MMAL regarding a make-to-order environment. For example, 

Minner and Öner-Közen [9] have designed a precedence sequencing problem, where customers can specify 

the time extent needed for accomplishing their needs, as the decision process of Markov. The fuzzy approach 

application has also been considered in papers about sequencing problems, including manufacturing systems 

[10], supplier selection [11][12], and Decision-Making problems [13].  

Several studies, such as Boysen and Betts, have regarded the line's balancing and design and several objectives, 

including cycle time. [14][15]. Salveson was the first scientist to model a single-model assembly line balancing 
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problem (SMALBP) [16]. Subsequently, researchers studied the SMALBP and proposed multiple-solving 

approaches and mathematical models[17]. For instance, Fathi et al. reduced the workstation number in the 

SMALBP for U-shape and straight lines, compared some heuristics to discover solutions, and presented a 

comparative assessment[18]. It is improper to provide every model with an assembly line; therefore, 

manufacturers assemble a product set on mix-model assembly lines [19]. Akpınar et al. presented an accurate 

solution algorithm for a balancing problem of the setup assembly line according to the Benders 

decomposition algorithm. They compared his result and a mixed-integer linear technique [20]. Baykasoglu 

and Akpınar proposed a mixed-integer linear type programming model considering sequence-dependent 

setup times and zoning limitations [21]. Fleszar studied the MMAL balancing problem and proposed mixed-

integer linear programming for it, in which each workstation has a limited approachability window, and merely 

a part of a workpiece is accessible [22].  

Other published studies have regarded product model sequencing and line balancing together [23][24][25][26] 

to reduce favourable objective performances. Logically, we can assign each class to an MMAL problem. 

Basically, considering the problems of sequencing and balancing, the best approach is to consider them 

together. In this way, the line planner regards both problems simultaneously, which is more realistic. Thus, 

we prefer to regard both aspects by studying the articles that have tried to solve both problems. Thomopoulos 

presents a process where a single-model line balancing approach is adapted to mixed-model plans. He 

suggested a sequencing technique to specify the arrangement where models should move down the line [27]. 

Cao and Ma proposed a model for sequencing and balancing problems. They developed the related 

mathematical formula regarding two feasibly main objectives: reducing the entire over and idle time and 

maintaining a fixed rate of part application. For sequencing MMAL, they used a multi-objective genetic 

algorithm [28]. Merengo et al. proposed novel balancing and production sequencing methodologies that seek 

some usual goals: reducing the imperfect job rate or the possibility of blocking/starvation incidences and 

minimizing jobs in the process [29]. A researcher, Miltenburg, investigated mixed-model lines in time systems 

only, designed the joint problem, and then proposed a solution algorithm for practical size examples [30]. 

 Keun Kim et al. described a novel evolutionary technique. Their goal was to tackle sequencing and balancing 

problems in MMAL. They proposed a novel genetic procedure, an endosymbiotic evolutionary algorithm, to 

untangle both problems [31]. Mendes et al. suggested a simulated annealing meta-heuristic to obtain line 

configurations. This configuration would have the least workstations and a smooth workload balance among 

the workstations [32]. Van Hop explained a fuzzy heuristic to unravel the problem elicited from the mixed 

precedence constraints and aggregating fuzzy numbers. The approach was generally planned to use a varying-

section exchange approach and sequence the jobs in order. Afterwards, according to the fuzzy numbers, tasks 

were assigned to workstations considering technological constraints and the extent of cycle time [33]. 

Manavizadeh et al. [34] regarded three purposes: reducing cycle times, overloading work and wastages, and 

sequencing and balancing problems. Kucukkoc and Zhang [35] investigated the sequencing and balancing 

problems in the parallel assembly line, which has multi-line stations, making the task allocation more 

complicated and pliable, and proposed a heuristic solution technique for the problem. To reduce the station 

numbers, Hamzadayi and Yildiz [36] investigated the Type-I assembly line sequencing and balancing problem, 

which was different from most related research having fixed stations. Lian et al. [37] added the independent 

country to ameliorate the colonial competitive algorithm (CCA); the improved CCA exhibits great problem-

solving capability. Faccio, Gamberi, and Bortolini [38] described a hierarchical sequencing and balancing 

system for paced MMALs to hamper excess work. The technique applies "jolly operators" to supplement a 

flexible workforce, balancing the overload of workstations.  

Liao et al. developed an unpaced synchronous transfer conception in a mixed-model two-sided assembly line 

balancing and sequencing problem. An improved genetic algorithm with suitable solution representation is 

proposed to solve the problem. The findings show that the presented algorithm can solve the research 

problems more efficiently than other algorithms [27]. Meng et al. considered preventive maintenance 

scenarios in robust mixed-model assembly line balancing and sequencing problems to minimize the 

makespan. They solved and compared various problems of different sizes with a robust mathematical model 
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and a multi-objective cooperative differential evolution algorithm. The results show the efficiency of the 

proposed model [39]. A disassembly line balancing and sequencing problem was modelled by Edis et al. to 

maximize final profits and minimize processing times. They developed a mixed-integer programming model 

with valid inequalities to meet an optimal sequence of tasks and optimal assignment of tasks to workstations. 

The findings show that the approach reaches a near-optimal solution with small optimality gaps [40]. To 

quantify the model, Zeng et al. considered a sequencing and balancing problem in a multi-objective robotic 

disassembly line. The model was solved with a proposed genetic simulated annealing algorithm to minimize 

the number of tool replacements, maximize total profit, and minimize energy consumption in the disassembly 

line. The proposed algorithm was compared with some metaheuristics approaches, and the results show the 

superiority of the presented approach [41]. 

Chawasemerwa et al. developed a model for a short period to increase flexibility in time scheduling. They 

considered a flexible working environment and improved system management quality and customer 

satisfaction [42]. Shahvaroughi Farahani et al. predicted stock price trends by considering some influencing 

factors. The model analyzed the relationship between some indicators to enhance stock price prediction. They 

solved the model with a Neural Network that operated better in stock price prediction accuracy than other 

algorithms [43]. Ejlali et al. developed a multi-objective model for a three-level relief cycle logistics in an 

uncertain environment. Some factors, such as vehicle routing and inventory transfer, were considered in the 

presented article. The particle swarm optimization algorithm was applied to solve the model, which decreased 

the time to reach an optimal solution [44]. 

Overall, the literature reviews show significant attention to solving the sequencing and balancing problems in 

MMAL with different solution algorithms. The present research presents a balancing and sequencing problem 

and the proper times to set up the machines between tasks. To acquire the Pareto solution, an ameliorated 

algorithm, multi-objective particle swarm optimization, is proposed, and subsequently, a comparison is 

performed between the presented model and two multi-objective algorithms. The suggested algorithm 

presents a new solution-demonstration method, which can be applied to the concurrent sequencing and 

balancing MMALs efficiently. Table 1 summarizes some notable papers in the literature review by considering 

the problem type, objectives, and setup time to show the contribution of the research. 

.  

Table 1. An overview of approaches to MMAL problems in the literature 

Publication Problems  Objectives  
Setup Time 

YES NO 

Kinable, Cire, and van 
Hoeve [5] 

Sequencing Reducing the entire over and idle time *  

Mendes et al. [33] 
Sequencing and 
balancing 

Smooth workload balance among the workstations  * 

Manavizadeh et al. [35] 
Sequencing and 
balancing 

Reduction of cycle times, the overload of work, and wastages  * 

Akpınar et al. [21] balancing Reduced number of workstations  *  

Defersha and 
Mohebalizadeh gashti [7] 

Sequencing and 
balancing 

Magnifying client satisfaction  * 

Fathi et al.  [19] balancing Reduced number of workstations   * 

Hamzadayi and Yildiz [37] 
Sequencing and 
balancing 

reduce the station numbers  * 

Nazar and Pillai [6] sequencing minimize the zero idle time constraints  * 

Merengo et al. [30] 
Sequencing and 
balancing 

reducing the imperfect jobs and minimizing jobs in the 
process 

 * 

Baykasoglu and Akpınar 
[22] 

balancing Minimizing setup times *  

Thomopoulos [28] 
Sequencing and 
balancing 

Reducing the entire over and idle time and maintaining a 
fixed rate of part application 

 * 
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Meng et al. [41] 
Sequencing and 
balancing 

Minimize the makespan  * 

The proposed model 
Sequencing and 
balancing 

Reducing the inappropriate assembly lines sequence, 
reducing setup cost, and reducing the inappropriate product 
balance 

*  

 

As far as the authors are aware, no research has been conducted to solve the problem of the MMAL balancing 

and sequencing regarding the suggested algorithm and setup times between the products. This paper provides 

the first effort to bridge this research gap.  

3| Problem definition and mathematical model 

We tackle the combination of product mix sequencing and assembly line balancing. Both problems suggest 

special time scaling, as the assembly line planning is a multiple months to years decision, whereas the 

sequencing might be specified daily or weekly. To acquire the Pareto solution, an ameliorated algorithm, 

multi-objective particle swarm optimization (MOPSO), is proposed in the MMALs’ simultaneous sequencing 

and balancing, and subsequently, a comparison is performed between the presented model and two multi-

objective algorithms (MOAs). The suggested algorithm presents a new solution-demonstration method, 

which can be applied to the concurrent sequencing and balancing MMALs efficiently. Unlike the majority of 

published studies, this paper contains two successive tasks' setup times in dynamic periods, in which periods 

also impact the flowing period. 

Various identical models are available in each period, and it is better to allocate to their serial places; thus, 

each will be produced as per their serial relevance. Various tasks are actually available, and it is better to 

allocate them to workstations based on the serial position, depending on the workstation. Such a situation 

needs a setup time to be defined between a number of tasks they are performing inside a workstation 

successively and without pause. This paper proposes the problem assumptions, describes parameters and 

variables, and suggests a mathematical model. The assumptions of the problem are mentioned here: 

 Associating a model type with each cycle time. 

 Supposing a total precedence diagram for models. 

 Supposing the setup times between models as negligible. 

 A fixed-rate releasing of the products to the conveyor. 

 Ignoring operator walks time. 

 Knowing the number of workstations. 

 Assuming that the stations are all closed. 

 Knowing each product's task performance times. 

 Considering work utility, customer cost, and operator's idle time cost. 

 

3.1| Model formulation 

The first step's applied notation for the problem formulation is as follows: 

Models' number  M   

Models' index   , , 1,2,...,m n k M
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Model m's number of tasks  
mT

 

Tasks' index   1,2,.., mt T
 

Model m's required cycle time  
mC

  

Stations' number  J   

Stations' index   1,2,.., Jj
  

Total products number    

1

M

m

m

I d



  

Position Index in total products  1,2,..,i I
  

The station j's line length  
jL
  

Model m's demand  
md

  

Model m's completion time at station j 
mjt

  

Conveyor speed 
cv
  

Task j's set of immediate predecessors  
tpre
 

Products' launch interval to the line 
 

Processing time of model m's task at workstation j 
tmjt

 

if ith and i + 1th products in a sequence are model m and n

 
imnZ

  

if ith product in a sequence is model m  imy
 

Setup cost at station j for models m and n 
jmnS

  

if task i of model j is assigned to station k  tmjx
  

Idle operators' time cost (per unit time) 
IdlC

 

Utility customer work cost (per unit time) 
UC

 

starting position of product i at station j  ijZ
 

Utility worker for product i in a sequence at station j  ijU
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Decision variables 

 

1 if ith and i + 1th products in a sequence are model m and n

0 otherwise
imnZ


 
   

1 if ith product in a sequence is model m

0 otherwise
imy


 
  

1 if task i of model j is assigned to station k

0 otherwise
tmjx


 
  

 

Multi-objective modelling  

Here, we propose a mathematical model for the described problem: 

 

 

(1) 

   

  

1 1 1 1 1 1

1 1 1

1 min * *s

2 min max 0, * t *x
m

I J J I M M

u ij imn jmn

i j j i m n

T M J

Idl tmj tmj m

t m j

z C U Z

z C C

     

  

 
  

 

   
   

   

 


 

(2) 

1

I

im m

i

y d m


 
 

(3) 

1

1
M

im

m

y i


 
 

(4) 

1

1 , 1,2,..,T
J

tmj m

j

x m t


  
 

(5) 
1

1 1

1,2,..., 1,
M M

imn i nk

m k

z z i I n

 

    
 

(6) 
1

1 1

M M

imn nk

m k

z z n
 

  
 

(7) 

1 1

* * , 1,2,..,T ,
J J

hmj tmj m t

j j

j x j x m t h pre
 

    
 

(8) 

1 1

1

1,2,..., 1
j

j l

l

Z L j J



  
 

(9) 

1

1

* * 1,2,.., 1, 1,2,...,
M

i j ij c im mj ij

m

Z Z v y t U i I j J



 
       

 

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(10) 

1 1

1
M M

imn

m n

z i
 

 
 

(11) 

1 1

M M

imn m

i n

z d m
 

 
 

(12) 

1 1

* *

1,2,.., 1, 1,2,...,

jM

ij c im mj l

m l
ij

c

Z v y t L

U i I j J
v

 

 
  

    
 

 

(13) 1

1 1

* * *

1,2,...,

jM

Ij c Im mj l c

m l

Ij
c

Z v y t L v

U j J
v




 

  
    

   

 

 

(14)  0,1 ,imy i m 
 

(15)  0,1 , , 1,2,..,Ttmj mx m j t  
 

(16)  0,1 ,m,nimnz i 
 

The sequence and balance can induce incomplete and independent tasks in each approach. The first sentence 

of the first function reduces the inappropriate assembly line sequence and its impact on unfinished tasks. The 

second term reduces the sum of setup costs. The second objective function decreases the inappropriate 

products' balance and its effects on incomplete tasks. The satisfaction of each model's request is guaranteed 

by Constraint (2). Constraint (3) indicates that precisely one product can be allocated for each position of 

each sequence, and Constraint (4) implies one station allocated to each task. 

 Constraints (5-6) guarantee maintaining the product sequence from one cycle to another. Constraint set (7) 

is the preferred constraint, considering the priority relation among each model's tasks. Constraint (8) imposes 

that the action for every cycle's first product must begin at the station's left border. Constraint (9) describes 

the worker's beginning position for the product i +1 in a sequence. Constraint (10), a group of position 

constraints, explains that precisely one product should fill every position in each sequence. Constraint (11) 

enforces that all the requests regarding MPS as the limitation should be answered. Constraint (12) shows the 

efficient time of the worker for product i in a sequence at station j, and constraint (13) shows the efficient 

time of the worker for end product i in a sequence at this station. Finally, Constraints (14-16) describe all 

binary decision variables. 

4| Problem unravelling and numerical examples 

Regarding the MMAL sequencing and balancing problems as NP-hard, more complicated models might be 

considered NP-hard [41], and subsequently, researchers have used MOAs to unravel the problem. 

The multi-objective problem (MOP) usually has inconsistent objectives in various calculation units. Thus, no 

single solution is accessible to ameliorate each objective concurrently [45]. An MOPSO algorithm is applied 

to unravel this MOP.  

4.1| MOPSO Algorithm 

The MOPSO algorithm is an important amelioration approach for multi-objective optimization problems. 

This approach characteristically provides robust and measurable solutions. While moving along the search 

space, the swarm, the population of particles, has been set to the start point with accidental positions and 

velocities. Generations have been updated to discover optimal solutions by applying a swarm. An operator 

In 
Pres

s



Tanhaie| J. Appl. Res. Ind. Eng. X(x) (xx) x-x 

 

9 

containing social and local elements to obtain the velocity of motions. MOPSO can use the Pareto dominance 

relation to assess the solutions' advantages and choose the foremost leaders, afterwards kept in an external 

restricted archive containing top non-dominated solutions accomplished to date. The calculation is as follows: 

 
(t 1) (t) (t 1)y y v   

                                                                              (17) 

 1 1 2 2(t 1) (t) (C ) (p (t) (t)) (C ) (rep (t) x(t))best hv v b y b          
     (18) 

where (t)y  and (t)v  are, respectively, the present particle i's position and velocity. 

 b1 and b2 define uniform random numbers between [0, 1], specifying the finest location for the particle in 

each repeat. C1 and C2 stand for personal and global learning coefficients.   is the inertia weight that controls 

the former velocity's impact on the present velocity. 
p (t)best  shows the particle i's best experience. 

rep (t)h  

defines the finest particle put forward from the repository given by a global neighbourhood. 

 Fig. 1 shows the conformation of the basic MOPSO. 

 

Generate initial particles with random 

positions and velocities

Initialize an external archive

Evaluate the fitness of each particle

Select leader of the archive

Update positions and velocities

update an external archive

start

Reach to stop condition

End

yes

No
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  Fig. 1. MOPSO conformation 

 

 1 2 1 2, 4b b b b    (19) 

 1 2b b b   (20) 

 
22

2
2

b b
b

   


 (21) 

 1 1C b  (22) 

 2 2C b  (23) 

 (t 1) (t) (t 1)y y v     (24) 

 
1 1 2 2(t 1) (t) (C ) (p (t) (t)) (C ) (rep (t) (t))best hv v b y b y            (25) 

 min max(t) min(max( (t), (t) ), (t) )y y y y  (26) 

 max max(t) min(max( (t) (t) ), (t) )v v v v   (27) 

  

where max(t)y and min(t)y do not permit to leave the practical solution, and max(t)v is applied to restrict the 

velocity. 

4.2| Initialization 

As the primary population, a presentation of practical solutions that define problem-specific features must be 

proposed in the first step. The present study suggests MOPSO in which each proposed solution includes 

three parts. The first part shows the task sequence, the second part shows the task allocation in the assembly 

line, and the third part describes the model sequence. The solution is represented below. 

The task sequence: the string representation is largely applied for MMAL sequencing problems. We require a 

technique that modifies the continuous space to a discrete one to apply a PSO algorithm fundamentally for 

continuous space. Therefore, we select a solution representation equal to the total tasks in the problem and 

allocate a range of [0, 1] numbers randomly to each element. Afterwards, the tasks are arranged from small 

to large based on the corresponding number's value in the solution.  

Task allocation in the assembly line: the task allocation vector has J elements, where the jth element defines 

the number of tasks allocated to station j. 

Model sequencing: every component of a model sequence vector correlates with a model. The model 

sequence means the elements' permutation in this vector. 
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An example with 16 tasks, 4 stations, 3 models, and MPS = ABCC is depicted in Fig. 2. 

Random numbers 
0.22 0.43 0.74 0.69 0.21 0.93 0.35 0.48 0.18 0.05 0.78 0.46 0.36 0.62 0.83 0.29 

Tasks sequencing 
4 8 13 12 3 16 6 10 2 1 14 9 7 11 15 5 

Task assignment 4 3 4 5 

Model sequencing A B C C 

Fig. 1. Solution representation 

4.3| Computational results  

The trials of this study are coded in MATLAB R2013b and run on Intel CORE i7 2.30 GHz on a private 

computer with 6 GB RAM. oded in MATLAB 13.0 and run on a private computer with Intel (R) Core (TM) 

2 Duo CPU T9550 @ 2.67GHz and 4GB of memory. 

4.3.1 | Parameter Setting 

The finest choice for factors and the parameters set plainly escalates the study procedure. Subsequently, the 

finest tuning value (Table 2) for a parameter's set was chosen by performing vast trials before running MOA 

techniques, including NSGA-II, multi-objective, MOPSO, and colony optimization (MOACO).  

 

Table 2. Parameter setting of each algorithm 

Parameter setting NSGA-II MOACO 

Population size 310 - 

Number of generations 40 - 

Cross-over (Probability) 0.83 - 

Mutation (Probability) 0.17 - 

Number of ants - 115 

Pheromone evaporation coefficient ρ - 0.04 

 

In this study, the presented MOPSO has applied the Taguchi approach to choose the finest parameters. The 

Minitab software was used to design the tests, and the outcomes of each parameter were inspected in four 

levels. The multi-objective plan improvement might be simplified through the Taguchi approach, which might 

provide extra programming pliability for a number of usages. Taguchi may reduce the number of tests [46]; 

this might be affirmed by concerning two main implements of the signal-to-noise ratio (S/N) and the 

orthogonal array (OA), as shown in Eq. (28) [47]. 

2

2
( ) ratio 10 log( )

S y

N s
 

 (28) 

where y shows the average response and 
2s  indicates the response variance for the sample. Then, the 

analysis of data was done using a graphical Taguchi method. Each level's mean S/N ratios are shown in Fig. 

3. 
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Fig. 3. The mean S/N ratio plot 

According to Fig. 3, the average S/N ratios analysis might assist in selecting the proper parameter amounts 

with superior outcomes. The best level for the factors becomes 1, 3, 2, and 4, respectively. 

4.3.2 |. Small-Sized Problems 

In this part, a test is performed by applying a number of small test problems, which are self-made. Tables 3 

and 4 represent MPS and other input data related to small test problems.  

Table 3. Small-size test problems (models) 

TP MPS Number of total products Number of models  No. of feasible solutions 

1 (3,1) 4 2  4 

2 (2,2) 4 2  6 

3 (1,2,3) 6 3  60 

4 (4,2,2) 8 3  420 

5 (3,3,2) 8 3  560 

6 (3,1,4) 8 3  280 

7 (2,2,4) 8 3  310 

8 (3,1,5) 9 3  475 
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Table 4. Small-size test problems (Priorities) 

Problem 1 Problem 2 

Models 1 2 Priorities   Models  1 2 Priorities   

Tasks Tasks 

1 4 1 -  1 6 4 -  

2 1 - -  2 3 - -  

3 - 2 1,2  3 - - 2  

4 2 - 3  4 4 5 3  

5 3 1 3,4  5 - 3 3,4  

     6 2 6 3,5  

     7 6 4 6  

     8 5 3 7  

Problem 3 Problem 4 

Models 1 2 3 Priorities Models  1 2 3 Priorities 

Tasks 

Tasks 

     1 

 

7 

 

5 

 

2 

 

- 

1 6 4 3 - 

2 4 - 4 - 2 4 5 7 - 

3 5 8 5 2 3 3 - 4 - 

4 7 2 3 3 4 - 3 5 1,3 

5 2 - 6 3,4 5 - 7 8 4 

6 - 7 7 - 6 5 8 5 - 

7 7 4 - 3,5 7 2 3 - 4,5 

8 8 5 2 7 8 7 4 - - 

9 - - - 8 9 - - - 7,8 

10 9 3 5 9 10 9 - 5 5 

     11 - 4 8 7,10 

     12 5 6 7 8,11 

 

Applying the GAMS software, the problems are unravelled, and a comparison is made between the outcomes 

and the MOPSO method's results in Table 5 to accredit the improved algorithm. Based on the outcomes, the 

solutions attained by applying the MOPSO algorithm are aligned with the GAMS software's solutions. 

 

 Table 5. A comparison between MOPSO and GAMS in small-sized problems 

TP MPS Approach Run Time(sec) Z1             Z2 GAP1           GAP2 

1 (3,1) 
MOPSO 6.092 674 395 

0 0.106 
Gams 5.170 674 357 

2 (2,2) MOPSO 9.426 754 430 0 0.069 
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  Gams 7.817 754 402 

3 (1,2,3) 
MOPSO 10.433 986 548 

0.027 0.053 
Gams 13.092 960 520 

4 (4,2,2) 
MOPSO 14.328 1120 741 

0.027 0.061 
Gams 21.872 1090 698 

5 (3,3,2) 
MOPSO 16.392 1256 730 

0.044 0.089 
Gams 23.970 1203 670 

6 (3,1,4) 
MOPSO 14.826 1390 816 

0.045 0.046 
Gams 19.377 1329 780 

7 (2,2,4) 
MOPSO 17.164 1428 877 

0.029 0.082 
Gams 25.754 1387 810 

8 (3,1,5) 
MOPSO 20.086 1432 901 

0.024 0.041 
Gams 28.754 1398 865 

 

4.3.3 | Large-Sized Problems 

A number of large-sized problems were designed and unravelled by the improved MOPSO and other MOA 

approaches. Table 6 represents MPS and some practical solutions for each experiment problem. 

Table 6. Large-size test problems 

TP MPS 
Number of total 

products 
Number of total 

products 
Number of 

models 
Number of feasible 

solutions 

1 (5,4,2,4,5) 20 20 5 1.4666e+11 

2 (3,5,2,4,6) 20 20 5 9.7773e+10 

3 (3,5,3,6,5,2) 24 24 6 8.3115e+14 

4 (4,3,6,2,7,2) 24 24 6 2.9684e+14 

5 (4,6,5,4,3,2,4) 28 28 7 2.1272e+19 

6 (5,1,4,3,6,5,4) 28 28 7 8.5089e+18 

7 (3,8,4,3,3,2,3,4) 30 30 8 4.4064e+21 

8 (1,3,4,2,4,6,3,7) 30 
30 8 1.7626e+21 

 

 

Some self-made large-sized experiment problems are solved using the presented MOPSO. A comparison is 

performed between run time results and the Cplex solver. As represented by the tests in Table 7, the accurate 

approach generates reasonable solutions for problems with small sizes; however, it was unable to solve large-

sized problems in a proper time. 

Table 7. Experimental results (TP: test problem, NT: number of tasks) 

  Cplex solver Proposed MOPSO NSGA-|| MOACO 

TP NT 
Run time (s) Time (s) 

%(time) from 

optimal 

%(solution) from 

MOPSO 

%(solution)  

from MOPSO 

1 5 3.940 5.161 0 0 0 

2 8 25.307 41.962 3.5 0 0 

3 10 60.397 49.205 2.5 0 2 
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4 12 217.974 93.492 4.2 5 4 

5 18 >3700s 398.693 - 6 7 

6 20 >3700s 737.47 - 8 5 

7 25 >7300 1073.086 - 2 3 

8 30 >7300s 1387.026 - 4 8 

9 35 >11000s 1843.943 - 9 7 

10 40 >11000s 2640.982 - 4 3 

11 40 >11000s 299,946 - 7 5 

12 45 >11000s 378,647 - 9 6 

 

Table 7 compares the optimality gap and the problem's computational time. A main difficult aspect of the 

Cplex solver is its inability to solve large-sized problems in a proper time. The gap percentage from optimal 

solutions is altered from 0 to 4.2 in the MOPSO algorithm. Considering the run times, the outcomes attained 

from MOPSO are proportionately better in the near-optimal solution than the MOACO and NSGA-II. 

4.3.4 | Sensitivity analysis 

Changes in the values of the objective functions are investigated by selecting and analyzing one of the 

parameters that affect the objective function. The selected parameter is changed to examine the sensitivity of 

the problem to it. In this model, the conveyor speed parameter has been selected because this parameter has 

a great impact on determining the overload. This sensitivity analysis has been performed on the objective 

functions. Due to the multi-objective nature of the model, the change of the mentioned values is compared 

to the change of a Pareto point and is examined in one problem, shown in Table 8 and Fig. 4. 

  

Table 8. Changes in the objective functions in relation to the conveyor speed parameter 

Number Changes  Objective function 2 Objective function 1 

1 0.8 453 1021 

2 0.9 497 969 

3 1 511 943 

4 1.1 543 896 
5 1.2 597 832 

 

 

Fig 4. Changes in the objective functions in relation to the conveyor speed parameter 
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  For these alternatives, different points are obtained, as shown in Fig. 5, which are not superior to each other, 

and it is the management that decides on this increase or decrease. However, it seems that increasing the 

speed will help more in cost management. 

 

Fig 5. Alternatives obtained by the sensitivity analysis 

 

4.3.5 | Comparison between MOAs 

This part utilizes four main comparison metrics to compare the performance of MOAs for the problems with 

large sizes that were produced. 

Spacing metric: shows the equal dispensation of the solutions in the Pareto front by Eq. (29) [48]. 
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  (29) 

  indicates the distance between point i, and the closest point of the Pareto front represents the average of    

n represents the Pareto optimal solutions' number. 

The number of Pareto solutions: This function metric is surveyed as the non-dominated solutions quantity 

that each algorithm might obtain. Computation outcomes of the spacing metric and Pareto solutions' number 

are demonstrated in Table 9 and Fig. 6 

  

Table 9. Comparison metrics (S, NS) 

 MOPSO MOACO NSGA-II 

TP S NPS S NPS S NPS 

1 4.33 79 5.72 76 6.21 79 
2 5.25 85 5.95 84 5.73 81 
3 6.40 74 6.46 68 6.73 73 
4 5.57 92 7.38 89 7.91 91 
5 5.93 80 6.33 74 7.74 78 
6 6.59 101 6.98 94 6.36 96 
7 7.38 69 8.16 63 9.06 66 
8 7.71 90 8.30 80 8.38 83 
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Fig. 6. The number of Pareto solutions 

 

According to the findings, the improved MOPSO algorithm shows a superior function because of the lower 

value, demonstrating more equal solutions divided in the Pareto front. Due to the number of Pareto solutions, 

the improved MOPSO functions superiorly and converges more toward the Pareto-optimal Frontier than the 

other algorithms. 

Diversification metric: Eq. (30) calculates this metric to specify the solution set distribution [49]. 

 
1

max
n

i i

i

D x y


 
 (30) 

 

where n represents the solutions' number and indicates the distance between solutions. 

Error Ratio: When the Pareto-optimal solutions are identified, this metric calculates the approach's 

nonconvergence toward the Pareto-optimal frontier through Eq. (31) [50]. 

 

1

n

i

i

e

E
n




 (31) 

In this equation, n shows the Pareto-optimal solutions' number and, if the solution i indicates the Pareto-

optimal frontier' member f and otherwise. The computation outcomes of the diversification metric and the 

Error Ratio are demonstrated in Table 10 and Fig. 7. 

Table 10. Comparison metrics (D, ER) 

 MOPSO MOACO NSGA-II 

TP D ER D ER D ER 

1 14.75 0.1159 12.35 0.2303 10.96 0.1935 

2 19.97 0.0905 14.96 .0 1208 13.63 .0 1373 

3 16.27 .0 1457 13.64 .0 2274 14.88 0.1925 

0
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  4 20.88 .0 2120 18.63 .0 2368 14.63 .0 2243 

5 10.82 0.1839 10.04 0.2502 10.74 0.2607 

6 21.34 .0 1504 17.63 .0 1537 16.86 .0 1574 

7 18.96 0.1614 14.83 0.1921 12.37 .0 2513 

8 17.05 .0 1757 13.28 .0 2176 13.69 .0 2364 

 

 

Fig. 7. The diversification metric 

 

According to the error ratio and diversification metric, the improved MOPSO algorithm functions better and 

converges better than the other algorithms. Thus, based on the outcomes attained from comparison metrics 

and experiment problems, this algorithm is the proper approach for this problem. 

5| Conclusion  

In the present paper, we studied the tasks balancing in each station and concurrent model sequencing in a 

dynamic environment, where all periods impact their subsequent period. Sequence and balance can induce an 

incomplete and independent task in each process. We reduced the work overload generated due to the line 

balance and product sequence. With attention to the presented model, decision-makers do not remark any 

priority in sequencing and balancing problems separately; therefore, the model was presented by evaluating 

both problems to reach the best composition of the sequence of models and the balance of the tasks in 

workstations. Moreover, reducing the setup times between two subsequent tasks was more applicable.  

The MOPSO algorithm's efficacy suggested for unravelling the MMAL balancing and sequencing problem 

was studied by unravelling a number of small-sized problems through the GAMS software and performing a 

comparison between the findings. Usually, the outcomes of both approaches were aligned. Finally, we applied 

the presented MOPSO and other MOA approaches to answer several produced experiment problems in large 

sizes. The Taguchi approach was then applied to adjust the values of all algorithms' parameters. Lastly, the 

MOPSO algorithm was chosen as the problem's most proper approach based on the computational outcomes 

and a number of comparison metrics, such as the error ratio, amount of Pareto solutions, and diversity. A 

main difficult aspect of the Cplex solver is its inability to solve large-sized problems in a proper time. The gap 

percentage from optimal solutions in developed problems is altered from 0 to 4.2 in the MOPSO algorithm. 

Considering the run times, the outcomes attained from the MOPSO are proportionately better in near-
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optimal solutions than the MOACO and NSGA-II. The problem's extension to several fields regarding other 

lines or other assumptions containing zoning constraints might be possible in the future. Moreover, proposing 

a novel method of accurate approach might be profitably suggested for the sequencing and balancing 

problem. 
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