Shortest Path Problem in Network with Type-2 Triangular Fuzzy Arc Length

Document Type: Research Paper

Authors

Department of Mathematics, National Institute of Technology Jamshedpur, Jharkhand 831014,India

Abstract

In traditional shortest path problem it is always determined that the parameters (Time, Cost and Distance etc.) are fixed between different nodes. But in real life situations where uncertain parameters exist, parameters are considered as fuzzy numbers. In this paper, we  explained the application scope of the given fuzzy ranking function. Using this method we can determine both the fuzzy shortest path and fuzzy shortest Distance from origin to Destination.

Keywords

Main Subjects


[1] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.

[2] Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management science, 17(4), B-141.

[3] Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning—I. Information sciences, 8(3), 199-249.

[4] Zimmermann, H. J. (2011). Fuzzy set theory—and its applications. Springer Science & Business Media. [5] Sheikhi, H. (2012). A novel approach for solving fuzzy multi-objective zero-one linear programming problems. International Journal of Research in Industrial Engineering, 1(1), 42-63.

[6] Rajabi, F., Najafi, S. E., Keshteli, M. H., & Zavardehi, S. M. A. (2013). Solving fuzzy step fixed charge transportation problems via metaheuristics. International Journal of Research in Industrial Engineering, 2(3), 24-34.

[7] Bezdek, J. C. (2013). Pattern recognition with fuzzy objective function algorithms. Springer Science & Business Media.

[8] Najafi, H. S., & Edalatpanah, S. A. (2013). A note on “A new method for solving fully fuzzy linear programming problems”. Applied Mathematical Modelling, 37(14), 7865- 7867.

[9] Zamani, S., Farughi, H., & Soolaki, M. (2013). Contractor selection using fuzzy hybrid AHP-VIKOR. International Journal of Research in Industrial Engineering, 2(4), 26-40.

[10] Shamooshaki, M. M., Hosseinzadeh, A., & Edalatpanah, S. A. (2014). A new method for solving fully fuzzy linear programming with LR-type fuzzy numbers. International Journal of Data Envelopment Analysis and Operations Research, 1(3), 53-55.

[11] Torabi, N., Najafi, E. (2015). New model for ranking based on sum weights disparity index in data envelopment analysis in fuzzy condition. Journal of Applied Research on Industrial Engineering, 2(2), 111-119.

[12] Shamooshaki, M. M., Hosseinzadeh, A., and Edalatpanah, S. A. (2015). A new method for solving fully fuzzy linear programming problems by using the lexicography method. Applied and Computational Mathematics, 1, 53-55.

[13] Najafi, H. S., Edalatpanah, S. A., & Dutta, H. (2016). A nonlinear model for fully fuzzy linear programming with fully unrestricted variables and parameters. Alexandria Engineering Journal, 55(3), 2589-2595.

[14] Oztaysi, B., Onar, S. C., Kahraman, C., & Yavuz, M. (2017). Multi-criteria alternativefuel technology selection using interval-valued intuitionistic fuzzy sets. Transportation Research Part D: Transport and Environment, 53, 128-148. 

[15] Kauffman, A., & Gupta, M. M. (1985). Introduction to fuzzy arithmetic, theory and application. New York, Van Nostrand Reinhold.

[16] Dinagar, D. S., & Latha, K. (2013). Some types of type-2 triangular fuzzy matrices. International Journal of Pure and Applied Mathematics, 82(1), 21-32.

[17] Dubois, D. J. (1980). Fuzzy sets and systems: theory and applications (Vol. 144). Academic press.

[18] Klein C.M. (1991). Fuzzy shortest paths. Fuzzy Sets and Systems, 39, 27-41.

[19] Lin, K. C., & Chern, M. S. (1993). The fuzzy shortest path problem and its most vital arcs. Fuzzy Sets and Systems, 58(3), 343-353.

[20] Li, Y., Gen, M., & Ida, K. (1996). Solving fuzzy shortest path problems by neural networks. Computers & industrial engineering, 31(3), 861-865.

[21] Chuang, T. N., & Kung, J. Y. (2005). A new approach for the fuzzy shortest path problem. Computational Intelligence for Modelling and Prediction, 2, 89-100.

[22] Yu, J. R., & Wei, T. H. (2007). Solving the fuzzy shortest path problem by using a linear multiple objective programming. Journal of the Chinese Institute of Industrial Engineers, 24(5), 360-365.

[23] Mahdavi, I., Nourifar, R., Heidarzade, A., & Amiri, N. M. (2009). A dynamic programming approach for finding shortest chains in a fuzzy network. Applied Soft Computing, 9(2), 503-511.

[24] Zhang, Y., Zhang, Z., Deng, Y., & Mahadevan, S. (2013). A biologically inspired solution for fuzzy shortest path problems. Applied Soft Computing, 13(5), 2356-2363.

[25] Jain R. (1976). Decision-making in the presence of fuzzy variables. IIIE Transactions on Systems, Man and Cybernetics, 6, 698-703.

[26] Abbasbandy, S., & Hajjari, T. (2009). A new approach for ranking of trapezoidal fuzzy numbers. Computers & Mathematics with Applications, 57(3), 413-419.

[27] Anusuya, V., & Sathya, R. (2013). Type-2 fuzzy shortest path. International Journal of fuzzy mathematical Archive, 2, 36-42.

[28] Malini, P., & Ananthanarayanan, M. (2016). Solving fuzzy transportation problem using ranking of octagonal fuzzy numbers. International Journal of Pure and Applied Mathematics, 110(2), 275-282.

[29] Dinagar, D. S., & Latha, K. (2013). Some types of type-2 triangular fuzzy matrices. International Journal of Pure and Applied Mathematics, 82(1), 21-32.