
 

 

 

 

 

1. Introduction 

In this paper, we deal with a Quadratic Programming problem. The classical Quadratic Programming 

problem is the problem of finding the minimum or maximum values of a quadratic function under 

constraints that are represented by linear inequality or equations. It’s a mathematical modeling 

technique designed to optimize the usage of limited recourses. It led to a number of interesting 

applications and the development of numerous useful results [9, 10]. In 2000, Beck and Teboulle 

considered nonconvex quadratic optimization problems with binary constraints and established a 

necessary global optimality condition for it [2]. They also presented an approach, which uses elementary 

arguments based on convex duality. In 2007, Jeyakumar et al. examined how global optimality of non-

convex constrained optimization problems is related to Lagrange multiplier conditions [11]. In addition, 

they established Lagrange multiplier conditions for global optimality of general quadratic minimization 

problems with quadratic constraints. Xia obtained new sufficient optimality conditions for the 

nonconvex quadratic optimization problems with binary constraints by exploring local optimality 

conditions in 2009 [21]. In 2010, Glover et al. described a Diversification-Driven Tabu Search 

algorithm for solving unconstrained binary quadratic problems [8]. Also, Yang and Ruan presented a 

canonical duality theory for solving quadratic minimization problems subjected to either box or integer 

constraints [6]. In 2012, Sun et al. investigated the duality gap between the binary quadratic 

optimization problem and its semidefinite programming relaxation [17]. Frasch et al. addressed the 
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ubiquitous case in 2015 where the quadratic programming problems are strictly convex. The authors 

proposed a dual Newton strategy that exploits the block-bandedness similarly to an interior-point 

method [5]. Quadratic programming problem is mostly used in real problems. So the ambiguity and 

uncertainty are mostly presented in such optimization problems. Hence, the applicable tool fuzzy set 

theory is used to model these uncertainties in mathematical form. Fuzzy mathematical programming 

problems were quite studied in the specialized literature [3, 4, 12, 19, 20]. Also. fuzzy quadratic 

programming problem became interests of many researchers, and many studies were happened in this 

field. Abbasi Molai studied the quadratic programming problem with fuzzy relation inequality 

constraints in 2012 [16]. In 2014, Kochenberger et al. studied the unconstrained binary quadratic 

programming problem [13]. At this year, Gill and Wong studied active-set method for a generic 

quadratic programming problem with both equality and inequality constraints [7]. Also, Abbasi Molai 

studied the minimization problem of a quadratic objective function with the max-product fuzzy relation 

inequality constraints [15]. They use some properties of  𝑛 × 𝑛 real symmetric indefinite matrices, 

Cholesky’s decomposition, and the least square technique to solve this problem. In 2017, Takapoui et 

al. proposed a fast optimization algorithm for approximately minimizing convex quadratic functions 

over the intersection of affine and separable constraints [18].  

This paper is organized in six sections. In the next section, quadratic programming problem is defined. 

In Section 3, some necessary notations and definitions of fuzzy set theory and fuzzy arithmetic are 

given. In Section 4, fuzzy quadratic programming problem is defined in the first subsection, the solution 

method of solving this fuzzy quadratic programming problem is focused in the second subsection, and 

in the third subsection, we extend this idea for generalizing fuzzy quadratic programming problem. In 

Section 5, some numerical examples are presented to illustrate how to apply the contribution of this 

paper for solving such quadratic programming problems. Finally, we conclude in Section 6. 

2. Quadratic Programming 

The most typical quadratic programming problem is defined as follows [1]: 

Min𝑍 =∑𝑐𝑗𝑥𝑗

𝑛

𝑗=1

+
1

2
∑∑𝑞𝑖𝑗𝑥𝑖𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

𝑠. 𝑡. {
∑𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖

𝑛

𝑗=1

, 𝑖 ∈ 𝑁𝑚

𝑥𝑗 ≥ 0

 , 

(1) 

where  𝑐 = (𝑐1, 𝑐2, … , 𝑐𝑛) and 𝑏𝑇 = (𝑏1, 𝑏2, … , 𝑏𝑚) are called cost vector and  right-hand side vector. 𝑥 =

(𝑥1, 𝑥2, … , 𝑥𝑛)
𝑇 is a vector of variables. Also, 𝐴 = [𝑎𝑖𝑗]𝑚×𝑛,   𝑖 ∈ 𝑁𝑚 and 𝑗 ∈ 𝑁𝑛, is called a constraint 

matrix and 𝑄 = [𝑞𝑖𝑗]𝑚×𝑛 is called the matrix of quadratic form where 𝑖 ∈ 𝑁𝑛 and 𝑗 ∈ 𝑁𝑛. Using this 

notation, the problem can be modeled in matrix form as follows: 

Min  𝑍 = 𝑐𝑥 +
1

2
𝑥𝑇𝑄𝑥 

𝑠. 𝑡. {
𝐴𝑥 ≤ 𝑏
𝑥 ≥ 0

 . 
(2) 

In this paper, the matrix 𝑄 = [𝑞
𝑖𝑗
]
𝑚×𝑛

, 𝑖 ∈ 𝑁𝑚 and 𝑗 ∈ 𝑁𝑛 is considered symmetric and positive semi-

definite. Several studies have developed efficient and effective algorithms for solving quadratic 

programming when the value assigned to each parameter is a known constant. However, quadratic 

programming models usually are formulated to find some future course of action so the parameter 
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values used would be based on a prediction of future conditions, which inevitably involves some degree 

of uncertainty.  

3. Fuzzy Numbers and Fuzzy Arithmetic 

In this section some necessary definitions of fuzzy set theory which is taken from [9] are taken. 

Definition 3.1: Let 𝑹 be the real line, then a fuzzy set �̃� in 𝑹 is defined to be a set of ordered pairs �̃� =

{(𝑥, 𝜇𝐴(𝑥))|𝑥 ∈ 𝑹}, where 𝜇𝐴(𝑥) is called the membership function for the fuzzy set. The membership 

function maps each element of 𝑹 to a membership value between 0 and 1. 

Definition 3.2: The support of a fuzzy set  �̃�, is defined as fallow:  

𝑠𝑢𝑝𝑝(�̃�) = {𝑥 ∈ 𝑹|𝜇𝐴(𝑥) > 0} . 

Definition 3.3: The core of a fuzzy set is the set of all points 𝑥 in 𝑹 witch 𝜇𝐴(𝑥) = 1.   

Definition 3.4: A fuzzy set �̃� is called normal if its core is nonempty. In other words, there is at least 

one point 𝑥𝜖𝑹 with 𝜇𝐴(𝑥) = 1.    

Definition 3.5: The 𝛼–cut or 𝛼–level set of a fuzzy set is a crisp set defined as follows:  

𝐴𝛼 = {𝑥 ∈ 𝑹|𝜇𝐴(𝑥) > 𝛼}. 

Definition 3.6: A fuzzy set �̃� on 𝑹 is convex, if for any 𝑥, 𝑦𝜖𝑹 and 𝜆 ∈ [0,1], we have 

𝜇𝐴(𝜆𝑥 + (1 − 𝜆)𝑦) ≥ 𝑚𝑖𝑛{𝜇𝐴(𝑥), 𝜇𝐴(𝑦)} . 

Definition 3.7: A fuzzy number �̃� is a fuzzy set on the real line that satisfies the condition of normality 

and convexity. 

Definition 3.8: A fuzzy number �̃� on 𝑹 is said to be triangular fuzzy number, if there exist real numbers 

and 𝑙, 𝑟 ≥ 0 such that 

�̃�(𝑥) = {

𝑥

𝑙
+

𝑙−𝑠

𝑙
,    𝑥 ∈ [𝑠 − 𝑙, 𝑠]

−𝑥

𝑟
+

𝑠+𝑟

𝑟
, 𝑥 ∈ [𝑠, 𝑠 + 𝑟]

0,                                    𝑜. 𝑤.

 . 

We denote a triangular fuzzy number �̃� by three real numbers 𝑠, 𝑙 and 𝑟 as = 〈𝑠, 𝑙, 𝑟〉 whose meaning are 

defined in Fig. 1. We also denote the set of all triangular fuzzy numbers with F(R). 
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Fig. 1. Triangular Fuzzy Number.  

Definition 3.9: Let �̃� = 〈𝑠𝑎 , 𝑙𝑎 , 𝑟𝑎〉 and �̃� = 〈𝑠𝑏 , 𝑙𝑏 , 𝑟𝑏〉 be two triangular numbers and 𝑥𝜖𝑹. Summation 

and multiplication of fuzzy numbers are defined as [22]: 

𝑥�̃� = {
〈𝑥𝑠𝑎 , 𝑥𝑙𝑎 , 𝑥𝑟𝑎〉,   𝑥 ≥ 0

〈𝑥𝑠𝑎 , −𝑥𝑟𝑎 , −𝑥𝑙𝑎〉,   𝑥 < 0
 

�̃� + �̃� = 〈𝑠𝑎 + 𝑠𝑏 , 𝑙𝑎 + 𝑙𝑏 , 𝑟𝑎 + 𝑟𝑏〉 

�̃� − �̃� = 〈𝑠𝑎 − 𝑠𝑏 , 𝑙𝑎 − 𝑟𝑏 , 𝑟𝑎 − 𝑙𝑏〉 

�̃� ≤ �̃� if and only if 𝑠𝑎 ≤ 𝑠𝑏 , 𝑠𝑎 − 𝑙𝑎 ≤ 𝑠𝑏 − 𝑙𝑏 , 𝑠𝑎 + 𝑟𝑎 ≤ 𝑠𝑏 + 𝑟𝑏  

Definition 3.10: We let 0̃ = (0,0,0) as a zero triangular fuzzy number. 

Remark 3.1: �̃� ≥ 0̃ if and only if  𝑠𝑎 ≥ 0 , 𝑠𝑎 − 𝑙𝑎 ≥ 0, 𝑠𝑎 + 𝑟𝑎 ≥ 0. 

Remark 3.2: �̃� ≤ �̃� if and only if −�̃� ≥ −�̃�. 

4. Fuzzy Quadratic Programming 

Consider the conventional quadratic programming problem (1). If some or all of the parameters were 

fuzzy numbers, the problem turns into the fuzzy quadratic programming problem. The most general 

type of this programming problem is formulated as follows: 

Min 𝑍 =∑�̃�𝑗�̃�𝑗

𝑛

𝑗=1

+
1

2
∑∑�̃�𝑖𝑗�̃�𝑖�̃�𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

𝑠. 𝑡. {
∑�̃�𝑖𝑗�̃�𝑗

𝑛

𝑗=1

≤ �̃�𝑖 ,   𝑖 ∈ 𝑁𝑚,

�̃� ≥ 0                                 

 

(3) 

where �̃�𝑖𝑗 , �̃�𝑖 , �̃�𝑗  and �̃�𝑖𝑗  are fuzzy numbers, and �̃�𝑗  are variables whose states are fuzzy numbers 

(𝑖 ∈ 𝑁𝑚, 𝑗 ∈ 𝑁𝑛). The operations of addition and multiplication are operations of fuzzy arithmetic. Here 

instead of discussing this general type, we consider two special cases of fuzzy quadratic programming 

problem as follows: 

1. The quadratic programming problem that only the right-hand side parameters and constraint 

coefficient are triangular fuzzy numbers. 

𝑠 − 𝑙 𝑠 𝑠 + 𝑟

𝑙 𝑟

1
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Min  𝑍 =∑𝑐𝑗𝑥𝑗

𝑛

𝑗=1

+
1

2
∑∑𝑞𝑖𝑗𝑥𝑖𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

𝑠. 𝑡. {
∑�̃�𝑖𝑗𝑥𝑗

𝑛

𝑗=1

≤ �̃�𝑖 ,   𝑖 ∈ 𝑁𝑚.

𝑥 ≥ 0                                

 

(4) 

 

 

2. A more general fuzzy quadratic programming problem in which the cost coefficient, the matrix 

of the quadratic form, constraint coefficient, and right-hand side parameters are all triangular 

fuzzy numbers. 

Min  𝑍 =∑�̃�𝑗𝑥𝑗

𝑛

𝑗=1

+
1

2
∑∑�̃�𝑖𝑗𝑥𝑖𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

𝑠. 𝑡. {
∑�̃�𝑖𝑗𝑥𝑗

𝑛

𝑗=1

≤ �̃�𝑖 ,   𝑖 ∈ 𝑁𝑚.

𝑥 ≥ 0                                 

 

(5) 

 

 

In the following, a solving method for model (4) is represented. In addition, this method is extended to 

a more general fuzzy quadratic problem (5). 

4.1. Quadratic Programming with Fuzziness in Relations 

Consider the quadratic programming problem (4.2). Let �̃�𝑖𝑗 = 〈𝑎𝑖𝑗 , 𝑙𝑖𝑗 , 𝑟𝑖𝑗〉  and �̃�𝑖 = 〈𝑏𝑖, 𝑢𝑖, 𝑣𝑖〉  be 

triangular fuzzy numbers. According to Definition 3.8, the fuzzy quadratic programming (4.2) is 

rewritten as follows: 

Min  𝑍 =∑𝑐𝑗𝑥𝑗

𝑛

𝑗=1

+
1

2
∑∑𝑞𝑖𝑗𝑥𝑖𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

𝑠. 𝑡. {
∑〈𝑎𝑖𝑗 , 𝑙𝑖𝑗 , 𝑟𝑖𝑗〉𝑥𝑗

𝑛

𝑗=1

≤ 〈𝑏𝑖 , 𝑢𝑖 , 𝑣𝑖〉,   𝑖 ∈ 𝑁𝑚.

𝑥𝑗 ≥ 0,   𝑗 ∈ 𝑁𝑛                                            

 
 (6) 

Using the operations of fuzzy numbers, any fuzzy constraint ∑ 〈𝑎𝑖𝑗 , 𝑙𝑖𝑗 , 𝑟𝑖𝑗〉𝑥𝑗
𝑛
𝑗=1 ≤ 〈𝑏𝑖 , 𝑢𝑖, 𝑣𝑖〉,   𝑖 ∈ 𝑁𝑚 can 

be transformed to the three crisp constraint as follows:  

{
 
 
 
 

 
 
 
 ∑𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

≤ 𝑏𝑖                                        

∑(𝑎𝑖𝑗 − 𝑙𝑖𝑗)

𝑛

𝑗=1

𝑥𝑗 ≤ 𝑏𝑖 − 𝑢𝑖                 

 ∑(𝑎𝑖𝑗 + 𝑟𝑖𝑗)

𝑛

𝑗=1

𝑥𝑗 ≤ 𝑏𝑖 + 𝑣𝑖 ,   𝑖 ∈ 𝑁𝑚

        

Substituting these relations in Eq. (6), the fuzzy quadratic programming (4) is converted to the following 

conventional quadratic programing:        
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min 𝑧 =∑𝑐𝑗𝑥𝑗

𝑛

𝑗=1

+
1

2
∑∑𝑞𝑖𝑗𝑥𝑖𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

                            

𝑠. 𝑡.

{
 
 
 
 

 
 
 
 ∑𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

≤ 𝑏𝑖 ,   𝑖 ∈ 𝑁𝑚                        

∑(𝑎𝑖𝑗 − 𝑙𝑖𝑗)

𝑛

𝑗=1

𝑥𝑗 ≤ 𝑏𝑖 − 𝑢𝑖 ,    𝑖 ∈ 𝑁𝑚

∑(𝑎𝑖𝑗 + 𝑟𝑖𝑗)

𝑛

𝑗=1

𝑥𝑗 ≤ 𝑏𝑖 + 𝑣𝑖 ,   𝑖 ∈ 𝑁𝑚

𝑥𝑗 ≥ 0,   𝑗 ∈ 𝑁𝑛                                     

 . 

 (7) 

As it is clear, all numbers are involved in resent programming problem are real numbers. Hence, this 

classical quadratic programming problem can be easily solved using existing methods. 

4.2. Fully Fuzzy Quadratic programming problem 

In this section, we generalize above method to a more general fuzzy quadratic programming problem 

in which the cost coefficient, the matrix of quadratic form, constraint coefficient, and right-hand side 

parameters are all triangular fuzzy numbers. 

Min  𝑍 =∑�̃�𝑗𝑥𝑗

𝑛

𝑗=1

+
1

2
∑∑�̃�𝑖𝑗𝑥𝑖𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

𝑠. 𝑡. {
∑�̃�𝑖𝑗𝑥𝑗

𝑛

𝑗=1

≤ �̃�𝑖 ,   𝑖 ∈ 𝑁𝑚.

𝑥 ≥ 0                                 

 

 (8) 

 

 

As it mentioned before, any triangular fuzzy number �̃� can be represented as �̃� = 〈𝑠, 𝑙, 𝑟〉 where 𝑠, 𝑙 and 

𝑟 are three real numbers. Using this representation, Problem (8) can then be rewritten as follows: 

Min  𝑍 =∑〈𝑐𝑗 , 𝑝𝑗 , 𝑡𝑗〉𝑥𝑗

𝑛

𝑗=1

+
1

2
∑∑〈𝑞𝑖𝑗 , 𝑠𝑖𝑗 , 𝑤𝑖𝑗〉𝑥𝑖𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

𝑠. 𝑡. {
∑〈𝑎𝑖𝑗 , 𝑙𝑖𝑗 , 𝑟𝑖𝑗〉𝑥𝑗

𝑛

𝑗=1

≤ 〈𝑏𝑖 , 𝑢𝑖 , 𝑣𝑖〉,   𝑖 ∈ 𝑁𝑚 ,

𝑥𝑗 ≥ 0,   𝑖 ∈ 𝑁𝑚                                           

 

(9) 

 

where for all 𝑖 ∈ 𝑁𝑚  and 𝑗 ∈ 𝑁𝑛 , �̃�𝑖𝑗 = 〈𝑞𝑖𝑗, 𝑠𝑖𝑗 , 𝑤𝑖𝑗〉, �̃�𝑖𝑗 = 〈𝑎𝑖𝑗 , 𝑙𝑖𝑗 , 𝑟𝑖𝑗〉, �̃�𝑗 = 〈𝑐𝑗 , 𝑝𝑗 , 𝑡𝑗〉 and �̃�𝑖 = 〈𝑏𝑖 , 𝑢𝑖 , 𝑣𝑖〉 

are all triangular fuzzy numbers. Summation and multiplication are operations on fuzzy numbers, and 

≤ is the partial order, which is defined in Section 3. Then, the problem (9) can be rewritten as: 
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Min𝑍 =∑〈𝑐𝑗 , 𝑝𝑗 , 𝑡𝑗〉𝑥𝑗

𝑛

𝑗=1

+
1

2
∑∑〈𝑞𝑖𝑗 , 𝑠𝑖𝑗 , 𝑤𝑖𝑗〉𝑥𝑖𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

𝑠. 𝑡.

{
 
 
 
 

 
 
 
 ∑𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

≤ 𝑏𝑖 ,   𝑖 ∈ 𝑁𝑚,                           

∑(𝑎𝑖𝑗 − 𝑙𝑖𝑗)𝑥𝑗

𝑛

𝑗=1

≤ (𝑏𝑖 − 𝑢𝑖),   𝑖 ∈ 𝑁𝑚 

∑(𝑎𝑖𝑗 + 𝑟𝑖𝑗)𝑥𝑗

𝑛

𝑗=1

≤ (𝑏𝑖 + 𝑣𝑖),   𝑖 ∈ 𝑁𝑚

𝑥 ≥ 0                                                         

 

 (10) 

 

In the above optimization problem since the coefficients of the objective function are still fuzzy 

numbers, the optimal solution and so the derived objective value are fuzzy numbers as well. Without 

loss of generality, let 𝜇�̃�𝑗 and 𝜇�̃�𝑖𝑗, denote the membership function of �̃�𝑗 and �̃�𝑖𝑗 , respectively: 

𝜇𝐶𝑗 = {(𝐶𝑗, 𝜇𝐶𝑗(𝐶𝑗)) |𝐶𝑗 ∈ 𝑆(�̃�𝑗)} 

μ�̃�ij = {(𝑞𝑖𝑗 , μ�̃�ij(𝑞𝑖𝑗))| 𝑞𝑖𝑗 ∈ 𝑆(�̃�𝑖𝑗)} , 

where 𝑆(�̃�𝑗) and 𝑆(�̃�𝑖𝑗) are support sets of �̃�𝑗 and �̃�𝑖𝑗, respectively. In this paper, we are interested in 

deriving the membership function of the objective value �̃�. Since �̃� is a fuzzy number rather than a crisp 

number, we apply Zadeh’s extension principle to transform the problem into a family of conventional 

quadratic programs to solve. Based on the extension principle, the membership function 𝜇𝑧, can be 

defined as: 

sup
𝑎,𝑏,𝑐

𝑀𝑖𝑛 {μ�̃�ij , 𝜇𝐶𝑗 ,   ∀𝑖, 𝑗|𝑧 = 𝑍(𝑎, 𝑏, 𝑐, 𝑞)}, (11) 

where 𝑍(𝑎, 𝑏, 𝑐, 𝑞) is the function of the conventional quadratic program that is defined in Model (1). 

Intuitively, to find the membership function 𝜇𝑧, it is sufficient to find the right shape function and the 

left shape function of 𝜇𝑧, which is equivalent to find the upper bound of the objective value 𝑧𝛼
𝑢 and the 

lower bound of the objective 𝑧𝛼
𝑙  at specific 𝛼 level. Since 𝑧𝛼

𝑢 is the maximum of 𝑍(𝑎, 𝑏, 𝑐) and 𝑧𝛼
𝑙  is the 

minimum of 𝑍(𝑎, 𝑏, 𝑐), they can be expressed as: 

𝑍𝛼
𝑢 = 𝑀𝑎𝑥 {𝑍(𝑎, 𝑏, 𝑐, 𝑞) |

(�̃�𝑖𝑗)𝛼
𝑙
≤ 𝑞𝑖𝑗 ≤ (�̃�𝑖𝑗)𝛼

𝑢
, (�̃�𝑗)𝛼

𝑙
≤ 𝑐𝑗 ≤ (�̃�𝑗)𝛼

𝑢
,

  ∀𝑖, 𝑗
} 

 

(12) 

𝑍𝛼
𝑙 = 𝑀𝑖𝑛 {𝑍(𝑎, 𝑏, 𝑐, 𝑞) |

(�̃�𝑖𝑗)𝛼
𝑙
≤ 𝑞𝑖𝑗 ≤ (�̃�𝑖𝑗)𝛼

𝑢
, (�̃�𝑗)𝛼

𝑙
≤ 𝑐𝑗 ≤ (�̃�𝑗)𝛼

𝑢
,

  ∀𝑖, 𝑗
}.  

(13) 

Clearly, different values of 𝑞𝑖𝑗 and 𝑐𝑗  produce different objective values. To find the interval of the 

objective value at specific 𝛼 value, it is sufficient to find the upper bound and lower bound of the 

objective values of (4.7). From (4.9), the values of 𝑞𝑖𝑗 and 𝑐𝑗, that attain the largest value for 𝑧𝛼
𝑢, can be 

determined from the following two-level mathematical programming model: 
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Max   

𝑍𝛼
𝑢 = (�̃�𝑖𝑗)𝛼

𝑙
≤ 𝑞𝑖𝑗

≤ (�̃�𝑖𝑗)𝛼
𝑢

 

        (�̃�𝑗)𝛼
𝑙
≤ 𝑐𝑗 ≤ (�̃�𝑗)𝛼

𝑢
 

∀𝑖, 𝑗 

Min  𝑍 =∑𝑐𝑗𝑥𝑗

𝑛

𝑗=1

+
1

2
∑∑𝑞𝑖𝑗𝑥𝑖𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

𝑠. 𝑡.

{
 
 
 
 

 
 
 
 ∑𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

≤ 𝑏𝑖 ,   𝑖 ∈ 𝑁𝑚                         

∑(𝑎𝑖𝑗 − 𝑙𝑖𝑗)𝑥𝑗

𝑛

𝑗=1

≤ (𝑏𝑖 − 𝑢𝑖), 𝑖 ∈ 𝑁𝑚

∑(𝑎𝑖𝑗 + 𝑟𝑖𝑗)𝑥𝑗

𝑛

𝑗=1

≤ (𝑏𝑖 + 𝑣𝑖), 𝑖 ∈ 𝑁𝑚

𝑥 ≥ 0                                                        

 

 

(14) 

The objective value 𝑧𝛼
𝑢, is the upper bound of the objective values for model (10). By the same token, 

to find the values of 𝑞𝑖𝑗 and 𝑐𝑗 that produce the smallest objective value 𝑧𝛼
𝑙 , a two-level mathematical 

program is formulated by replacing the outer-level program of Model (14) from ‘‘𝑀𝑖𝑛’’ to ‘‘𝑀𝑎𝑥’’: 

 

          Min   

𝑍𝛼
𝑙 = (�̃�𝑖𝑗)𝛼

𝑙
≤ 𝑞𝑖𝑗 ≤ (�̃�𝑖𝑗)𝛼

𝑢
 

        (�̃�𝑗)𝛼
𝑙
≤ 𝑐𝑗 ≤ (�̃�𝑗)𝛼

𝑢
 

        ∀𝑖, 𝑗 

Min  𝑍 =∑𝑐𝑗𝑥𝑗

𝑛

𝑗=1

+
1

2
∑∑𝑞𝑖𝑗𝑥𝑖𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

𝑠. 𝑡.

{
 
 
 
 

 
 
 
 

  

∑𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

≤ 𝑏𝑖 , 𝑖 ∈ 𝑁𝑚

∑(𝑎𝑖𝑗 − 𝑙𝑖𝑗)𝑥𝑗

𝑛

𝑗=1

≤ (𝑏𝑖 − 𝑢𝑖), 𝑖 ∈ 𝑁𝑚

∑(𝑎𝑖𝑗 + 𝑟𝑖𝑗)𝑥𝑗

𝑛

𝑗=1

≤ (𝑏𝑖 + 𝑣𝑖), 𝑖 ∈ 𝑁𝑚

𝑥 ≥ 0                                                        

 

 

(15) 

 

Clearly, for any 𝑥𝑖 , 𝑥𝑗 ≥ 0 we have: 

(�̃�𝑖𝑗)𝛼
𝑙
𝑥𝑖𝑥𝑗 ≤ 𝑞𝑖𝑗𝑥𝑖𝑥𝑗 ≤ (�̃�𝑖𝑗)𝛼

𝑢
𝑥𝑖𝑥𝑗  

(�̃�𝑗)𝛼
𝑙
𝑥𝑗 ≤ 𝑐𝑗𝑥𝑗 ≤ (�̃�𝑗)𝛼

𝑢
𝑥𝑗 . 

In other words, we have: 

∑(�̃�𝑗)𝛼
𝑙
𝑥𝑗

𝑛

𝑗=1

+
1

2
∑∑(�̃�𝑖𝑗)𝛼

𝑙
𝑥𝑖𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

≤∑𝑐𝑗𝑥𝑗

𝑛

𝑗=1

+
1

2
∑∑𝑞𝑖𝑗𝑥𝑖𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

≤∑(�̃�𝑗)𝛼
𝑢
𝑥𝑗

𝑛

𝑗=1

+
1

2
∑∑(�̃�𝑖𝑗)𝛼

𝑢
𝑥𝑖𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

To derive the maximum objective value in (14), the parameters 𝑞𝑖𝑗 and 𝑐𝑗 must set to their upper bounds 

(�̃�𝑖𝑗)𝛼
𝑢
 and (�̃�𝑗)𝛼

𝑢
. Simultaneously, to search for the minimum objective value in (15), we need to set all 

𝑞𝑖𝑗 and 𝑐𝑗 to their lower bounds (�̃�𝑖𝑗)𝛼
𝑙
 and (�̃�𝑗)𝛼

𝑙
 , respectively at the same time. Models (14) and (15) 

can be respectively reformulated as: 
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𝑍𝛼
𝑢 = Min  𝑍 =∑(�̃�𝑗)𝛼

𝑢
𝑥𝑗

𝑛

𝑗=1

+
1

2
∑∑(�̃�𝑖𝑗)𝛼

𝑢
𝑥𝑖𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

                  

𝑠. 𝑡.

{
 
 
 
 

 
 
 
 ∑𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

≤ 𝑏𝑖 ,   𝑖 ∈ 𝑁𝑚                           

∑(𝑎𝑖𝑗 − 𝑙𝑖𝑗)𝑥𝑗

𝑛

𝑗=1

≤ (𝑏𝑖 − 𝑢𝑖),   𝑖 ∈ 𝑁𝑚

∑(𝑎𝑖𝑗 + 𝑟𝑖𝑗)𝑥𝑗

𝑛

𝑗=1

≤ (𝑏𝑖 + 𝑣𝑖),   𝑖 ∈ 𝑁𝑚

𝑥 ≥ 0,                                                        

 

  (16) 

𝑍𝛼
𝑙 = Min  𝑍 =∑(�̃�𝑗)𝛼

𝑙
𝑥𝑗

𝑛

𝑗=1

+
1

2
∑∑(�̃�𝑖𝑗)𝛼

𝑙
𝑥𝑖𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

                  

𝑠. 𝑡.

{
 
 
 
 

 
 
 
 ∑𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

≤ 𝑏𝑖 ,   𝑖 ∈ 𝑁𝑚                           

∑(𝑎𝑖𝑗 − 𝑙𝑖𝑗)𝑥𝑗

𝑛

𝑗=1

≤ (𝑏𝑖 − 𝑢𝑖),   𝑖 ∈ 𝑁𝑚

∑(𝑎𝑖𝑗 + 𝑟𝑖𝑗)𝑥𝑗

𝑛

𝑗=1

≤ (𝑏𝑖 + 𝑣𝑖),   𝑖 ∈ 𝑁𝑚

𝑥 ≥ 0,                                                        

.  (17) 

These are pairs of one-level mathematical programs that clearly express the bounds of the objective 

values at a specific 𝛼  value. In these conventional quadratic programming problems, the objective 

functions are convex functions and constraints are linear. Therefore, the derived objective values are 

global optimum solutions. The optimal solutions 𝑍𝛼
𝑙  and 𝑍𝛼

𝑢 are the lower bound and the upper bound of 

the objective values of the fuzzy quadratic programming problems, respectively. 𝑍𝛼
𝑙  and 𝑍𝛼

𝑢 together 

constitute the interval [𝑍𝛼
𝑙  , 𝑍𝛼

𝑢] that the objective values of the fuzzy quadratic program lie. In the next 

section, by using two numerical examples we illustrate the utility of this paper.   

5. Numerical Examples 

In this section, the applicability of our proposed method is demonstrated by solving two numerical 

examples. 

Example 1: In the following, a quadratic programming problem is considered in which the constraint 

coefficient and the right-hand sides parameters are triangular fuzzy parameters: 

𝑀𝑖𝑛 𝑍 = 2𝑥1 + 𝑥2 + 2𝑥1
2 + 𝑥1𝑥2 + 2𝑥2

2 

𝑠. 𝑡. {

〈6,2,1.5〉𝑥1 + 〈8,2.5,1〉𝑥2 ≤ 〈5,1,0.5〉

〈5,1,1〉𝑥1 + 〈2,0.5,1〉𝑥2 ≤ 〈7,2,1.5〉    
𝑥1, 𝑥2 ≥ 0                                                 

 
(18) 

According to proposed approach in Section 4, the above quadratic programming problem can be 

transform in to fallowing form: 
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𝑀𝑖𝑛 𝑍 = 2𝑥1 + 𝑥2 + 2𝑥1
2 + 𝑥1𝑥2 + 2𝑥2

2 

𝑠. 𝑡.

{
  
 

  
 
6𝑥1 + 8𝑥2 ≤ 5       
5𝑥1 + 2𝑥2 ≤ 7       
4𝑥1 + 5.5𝑥2 ≤ 4    
7.5𝑥1 + 9𝑥2 ≤ 5.5
4𝑥1 + 1.5𝑥2 ≤ 5   
6𝑥1 + 3𝑥2 ≤ 8.5   
𝑥1, 𝑥2 ≥ 0              

 (19) 

where parameter values are all known constant. Thus, this model is a conventional quadratic 

programming problem. By solving this problem with SQP algorithm, the global optimum solution is 

obtained as: 

𝑥1 = 0,   𝑥2 = 0. 

The value of the objective function is also achieved  𝑍∗ = 0. 

Example 2: Now suppose a quadratic programming problem with fuzzy objective function and fuzzy 

constraints as follows:   

Min𝑍 = 〈−5,1,1〉𝑥1 + 〈1.5,0.5,0.5〉𝑥2 +
1

2
(〈6,2,2〉𝑥1

2 + 〈−4,2,2〉𝑥1𝑥2 + 〈4,2,2〉𝑥2
2) 

         𝑠. 𝑡. {

1𝑥1 + 〈1,0.5,0.5〉𝑥2 ≤ 〈2,1,1〉         
〈2,1,1〉𝑥1 + 〈−1,1,0.5〉𝑥2 ≤ 〈4,1,1〉
𝑥1, 𝑥2 ≥ 0                                             

 (20) 

According to Models (16) and (17), the upper and lower bounds of 𝑍 at possibility level 𝛼 can be solved 

as: 

𝑍𝛼
𝑢 = Min  (−4 − 𝛼)𝑥1 + (2 −

𝛼

2
)𝑥2 + (4 − 𝛼)𝑥1

2 + (−𝛼 − 1)𝑥1𝑥2 

                   +(3 − 𝛼)𝑥2
2 

𝑠. 𝑡.

{
  
 

  
 
𝑥1 + 𝑥2 ≤ 2        
𝑥1 + 0.5𝑥2 ≤ 1  
𝑥1 + 1.5𝑥2 ≤ 3  
2𝑥1 − 𝑥2 ≤ 4      
𝑥1 − 2𝑥2 ≤ 3      
3𝑥1 − 0.5𝑥2 ≤ 5
𝑥1, 𝑥2 ≥ 0            

 

(21) 

𝑍𝛼
𝑙 = min  (𝛼 − 6)𝑥1 + (1 +

𝛼

2
)𝑥2 + (2 + 𝛼)𝑥1

2 + (𝛼 − 3)𝑥1𝑥2 

                     +(1 + 𝛼)𝑥2
2 

𝑠. 𝑡.

{
  
 

  
 
𝑥1 + 𝑥2 ≤ 2        
𝑥1 + 0.5𝑥2 ≤ 1  
𝑥1 + 1.5𝑥2 ≤ 3  
2𝑥1 − 𝑥2 ≤ 4     
𝑥1 − 2𝑥2 ≤ 3     
3𝑥1 − 0.5𝑥2 ≤ 5
𝑥1, 𝑥2 ≥ 0            

 

(22) 

These two models are pairs of traditional quadratic programs. Table 1 lists the 𝛼-cuts of the objective 

value at six distinct 𝛼 values: 0, 0.2, …, 1.  
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                      Table 1. Lists the α-cuts of the objective value.  

 

 

 

Thus, the optimal objective value is equivalent to: 

 

 

 

 

 

 

Fig. 2. Optimal objective value. 

 6. Conclusion 

 Quadratic programming problem is an important field in operation research and is mostly used to 

optimizing real words problems. In this paper, we considered a special class of quadratic programming 

problem with fuzziness in constraints coefficients. In addition, we considered all fuzzy numbers in 

triangular form. Then, we presented a new method using fuzzy operations to solve the mentioned 

problem. Finally, by combining our idea with Liu’s method, we extended our method for solving a more 

general quadratic programming problem with fuzziness in both constraints and objective function 

coefficients. We tried to extend this method to situations where parameters are trapezoidal or LR fuzzy 

numbers. Also, we hope to extend our presented method for problems with fuzzy parameters and fuzzy 

variables.  
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