Design and analysis of computer experiments using polynomial regression and Latin hypercube sampling in optimal design of PID controller

Document Type: Research Paper


Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Putra MalaysiaUniversity, 43400 UPM Serdang, Selangor, Malaysia.


Computational complexity and time-consuming iteration of simulation for tuning of Proportional-Integral-Derivative (PID) controller is a common drawback in many types of existing methods. This paper aims to propose a new method for achieving an optimal design for PID gains parameters with the least number of simulation runs. To achieve this purpose, we combine polynomial regression and Latin Hypercube Sampling (LHS) in order to Design and Analyze of Computer Experiments (DACE). In this method, the LHS is performed three times to design the associated sample points for different usage that includes training sample points to fit polynomial regression as a common surrogate model; validating sample points to scale standardized residuals; grid search sample points for investigating optimal point over whole design space. To show the flexibility and applicability of the proposed method, we serve a numerical case in the tuning of PID controller for linear speed control of Direct Current (DC) motor. Four different polynomial regression fit input/output (I/O) data over separately four model’s performances that includes Integral-Square-Error (ISE), Integral-Absolute-error (IAE), Integral-Time-Square-Error (ITSE), and Integral-Time-Absolute-Error (ITAE). Comparison of the result with two existing approaches such as traditional Zeigler-Nichols method and Taguchi-Gray Relational Analysis (Taguchi-GRA) confirms the reliability and superiority of the proposed method.


Main Subjects

[1]      Kleijnen, J. P. (2015, September). Design and analysis of simulation experiments: International workshop on simulation. Statistics and Simulation (pp. 3-22). Springer, Cham.

[2]     Huang, H. P., Jeng, J. C., Chiang, C. H., & Pan, W. (2003). A direct method for multi-loop PI/PID controller design. Journal of process control13(8), 769-786.

[3]     Bansal, H. O., Sharma, R., & Shreeraman, P. R. (2012). PID controller tuning techniques: a review. Journal of control engineering and technology2(4), 168-176.

[4]     Aras, M. S. M., Sulaiman, M., Keong, Y. E., Kasno, M. A., Kassim, A. M., & Khamis, A. (2017). Performance analysis of PID and fuzzy logic controller for unmanned underwater vehicle for depth control. Journal of telecommunication, electronic and computer engineering (JTEC)9(3-2), 59-63.

[5]     Wang, G. G., & Shan, S. (2007). Review of metamodeling techniques in support of engineering design optimization. Journal of mechanical design129(4), 370-380.

[6]     Parnianifard, A., Azfanizam, A., Ariffin, M. K. A. M., Ismail, M. I. S., & Ale Ebrahim, N. (2018). Recent developments in metamodel based robust black-box simulation optimization: An overview. Decision science letters, 8, (1), 17–44.

[7]     Parnianifard, A., Azfanizam, A. S., Ariffin, M. K. A., & Ismail, M. I. S. (2018). Kriging-Assisted robust black-box simulation optimization in direct speed control of DC motor under uncertainty. IEEE transactions on magnetics54(7), 1-10.

[8]     Barton, R. R. (2009, December). Simulation optimization using metamodels. Proceedings of the 2009 winter simulation conference (WSC) (pp. 230-238). Austin, TX, USA: IEEE.

[9]     Sahraian, M., & Kodiyalam, S. (2000). Tuning PID controllers using error-integral criteria and response surfaces based optimization. Engineering optimization33(2), 135-152.

[10] Jiang, A., & Jutan, A. (2000). Response surface tuning methods in dynamic matrix control of a pressure tank system. Industrial & engineering chemistry research39(10), 3835-3843.

[11] Nakano, E., & Jutan, A. (1994). Application of response surface methodology in controller fine-tuning. ISA transactions33(4), 353-366.

[12] Faucher, J. D., & Maussion, P. (2006, July). Response surface methodology for the tuning of fuzzy controller dedicated to boost rectifier with power factor correction. 2006 IEEE international symposium on industrial electronics (pp. 199-204). Montreal, Que., Canada: IEEE.

[13] Viana, F. A. (2016). A tutorial on Latin hypercube design of experiments. Quality and reliability engineering international32(5), 1975-1985.

[14] Thomas, N., & Poongodi, D. P. (2009, July). Position control of DC motor using genetic algorithm based PID controller. Proceedings of the world congress on engineering (pp. 1-3). London, UK: Newswood Limited.

[15] Li, Y. F., Ng, S. H., Xie, M., & Goh, T. N. (2010). A systematic comparison of metamodeling techniques for simulation optimization in decision support systems. Applied soft computing10(4), 1257-1273.

[16] Sabir, M. M., & Khan, J. A. (2014). Optimal design of PID controller for the speed control of DC motor by using metaheuristic techniques. Advances in artificial neural systems2014, 10.

[17] Rubaai, A., Castro-Sitiriche, M. J., & Ofoli, A. R. (2008). DSP-based laboratory implementation of hybrid fuzzy-PID controller using genetic optimization for high-performance motor drives. IEEE transactions on industry applications44(6), 1977-1986.

[18] Kanojiya, R. G., & Meshram, P. M. (2012, August). Optimal tuning of PI controller for speed control of DC motor drive using particle swarm optimization. 2012 international conference on advances in power conversion and energy technologies (APCET) (pp. 1-6). Mylavaram, Andhra Pradesh, India: IEEE.

[19] Ghany, M. A., Shamseldin, M. A., & Ghany, A. A. (2017, December). A novel fuzzy self tuning technique of single neuron PID controller for brushless DC motor. 2017 nineteenth international middle east power systems conference (MEPCON) (pp. 1453-1458). Cairo, Egypt: IEEE.

[20] Dewantoro, G. (2016). Multi-objective optimization scheme for PID-controlled DC motor. International journal of power electronics and drive systems (IJPEDS)7(3), 734-742.

[21] Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response surface methodology: process and product optimization using designed experiments-fourth edittion. John Wiley & Sons.

[22] McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics21(2), 239-245.

[23] Åström, K. J., & Hägglund, T. (1995). PID controllers: Theory, design, and tuning (Vol. 2). Research Triangle Park, NC: Instrument society of America.

[24] Dellino, G., & Meloni, C. (2015). Uncertainty management in simulation-optimization of complex systems. New York: Springer.

[25] Jurecka, F. (2007). Robust design optimization based on metamodeling techniques (Doctoral dissertation). Available from mediaTUM.