Initialization of a multi-objective evolutionary algorithms knowledge acquisition system for renewable energy power plants

Document Type: Research Paper


1 Orhantepe Mahallesi, Tekel Caddesi, Istanbul, Turkey

2 Department of Electrical, Systems and Automatics Engineering, University of León, Spain.


The design of Renewable Energy Power Plants (REPPs) is crucial not only for the investments' performance and attractiveness measures, but also for the maximization of resource (source) usage (e.g. sun, water, and wind) and the minimization of raw materials (e.g. aluminum: Al, cadmium: Cd, iron: Fe, silicon: Si, and tellurium: Te) consumption. Hence, several appropriate and satisfactory Multi-Objective Problems (MOPs) are mandatory during the REPPs' design phases. MOPs related tasks can only be managed by very well organized knowledge acquisition on all REPPs' design equations and models. The proposed MOPs need to be solved with one or more multi-objective algorithm, such as Multi-Objective Evolutionary Algorithms (MOEAs). In this respect, the first aim of this research study is to start gathering knowledge on the REPPs' MOPs. The second aim of this study is to gather detailed information about all MOEAs and available free software tools for their development. The main contribution of this research is the initialization of a proposed multi-objective evolutionary algorithm knowledge acquisition system for renewable energy power plants (MOEAs-KAS-F-REPPs) (research and development loopwise process: develop, train, validate, improve, test, improve, operate, and improve). As a simple representative example of this knowledge acquisition system research with two selective and elective proposed standard objectives (as test objectives) and eight selective and elective proposed standard constraints (as test constraints) are generated and applied as a standardized MOP for a virtual small hydropower plant design and investment. The maximization of energy generation (MWh) and the minimization of initial investment cost (million €) are achieved by the Multi-Objective Genetic Algorithm (MOGA), the Niched Sharing Genetic Algorithm/Non-dominated Sorting Genetic Algorithm (NSGA-I), and the NSGA-II algorithms in the Scilab 6.0.0 as only three standardized MOEAs amongst all proposed standardized MOEAs on two desktop computer configurations (Windows 10 Home 1709 64 bits, Intel i5-7200 CPU @ 2.7 GHz, 8.00 GB RAM with internet connection and Windows 10 Pro, Intel(R) Core(TM) i5 CPU 650 @ 3.20 GHz, 6,00 GB RAM with internet connection). The algorithm run-times (computation time) of the current applications vary between 20.64 and 59.98 seconds. 


Main Subjects

[1]            Abbass, H. A., Sarker, R., & Newton, C. (2001). PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems. Proceedings of the 2001 congress on evolutionary computation. (pp. 971-978). IEEE.

[2]            Acharya, B. G., Jain, V. K., & Batra, J. L. (1986). Multi-objective optimization of the ECM process. Precision engineering8(2), 88-96.

[3]            Anagnostopoulos, J. S., & Papantonis, D. E. (2007). Optimal sizing of a run-of-river small hydropower plant. Energy conversion and management48(10), 2663-2670.

[4]            Andersson, J. (2000). A survey of multi-objective optimization in engineering design (Technical Report: LiTH-IKP-R-1097). Department of Mechanical Engineering, Linktjping University. Sweden.

[5]            Arias-Montano, A., Coello, C. A. C., & Mezura-Montes, E. (2012). Multiobjective evolutionary algorithms in aeronautical and aerospace engineering. IEEE transactions on evolutionary computation16(5), 662-694.

[6]            Asadi, E., & Sadjadi, S. (2017). Optimization methods applied to renewable and sustainable energy: A review. Uncertain supply chain management5(1), 1-26.

[7]            Ashby, M. F. (2000). Multi-objective optimization in material design and selection. Acta materialia48(1), 359-369.

[8]            Azapagic, A., & Clift, R. (1999). Life cycle assessment and multi-objective optimisation. Journal of cleaner production7(2), 135-143.

[9]            Adisa, A. (1999). Life cycle assessment and its application to process selection, design and optimization. Chemical engineering journal79, 1-21.

[10]        Banos, R., Manzano-Agugliaro, F., Montoya, F. G., Gil, C., Alcayde, A., & Gómez, J. (2011). Optimization methods applied to renewable and sustainable energy: A review. Renewable and sustainable energy reviews15(4), 1753-1766.

[11]        Baudin, M., & Steer, S. (2009, September). Optimization with scilab, present and future. IEEE international workshop on open-source software for scientific computation (OSSC) (pp. 99-106). IEEE.

[12]        Baudin, M., Couvert, V., & Steer, S. (2010). Optimization in scilab. Scilab consortium, INRIA Paris-Rocquencourt.

[13]        Beiranvand, V., Mobasher-Kashani, M., & Bakar, A. A. (2014). Multi-objective PSO algorithm for mining numerical association rules without a priori discretization. Expert systems with applications41(9), 4259-4273.

[14]        Biswas, P. P., Suganthan, P. N., & Amaratunga, G. A. (2018). Decomposition based multi-objective evolutionary algorithm for windfarm layout optimization. Renewable energy115, 326-337.

[15]        Biswas, P. P., Suganthan, P. N., Qu, B. Y., & Amaratunga, G. A. (2018). Multiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro power. Energy150, 1039-1057.

[16]        Bode, C. C., & Sheer, T. J. (2010). A techno-economic feasibility study on the use of distributed concentrating solar power generation in Johannesburg. Journal of energy in southern africa21(2), 2-11.

[17]        Ciro, G. C., Dugardin, F., Yalaoui, F., & Kelly, R. (2016). A NSGA-II and NSGA-III comparison for solving an open shop scheduling problem with resource constraints. IFAC-PapersOnLine49(12), 1272-1277.

[18]        Chetty, K. M., & Subramanian, D. K. (1988). Rural energy consumption patterns with multiple objectives. International journal of energy research12(3), 561-567.

[19]        Chiang, H. D., & Jean-Jumeau, R. (1990). Optimal network reconfigurations in distribution systems. I. A new formulation and a solution methodology. IEEE transactions on power delivery5(4), 1902-1909.

[20]        Fonesca, C. M., & Fleming, P. J. (1993, July). Genetic algorithms for multi-objective optimization: formulation, discussion and generalization. Proceedings of the fifth international conference on genetic algorithms. (pp. 415-423). San Mateo, CA, Morgan Kaufmann. 

[21]        Coello, C. C. (1999, July). An updated survey of evolutionary multi-objective optimization techniques: State of the art and future trends. Proceedings of the congress on evolutionary computation (Vol. 1, pp. 3-13). Piscataway, NJ: IEEE Press.

[22]        Coello, C. A. C., Van Veldhuizen, D. A., & Lamont, G. B. (2002). Evolutionary algorithms for solving multi-objective problems. New York: Kluwer Academic.

[23]        Coello Coello, C. A. (1996). An empirical study of evolutionary techniques for multiobjective optimization in engineering design (Doctoral desertion). Available from ACM Digital Library.

[24]        Coello, C. A. C., Lamont, G. B., & Van Veldhuizen, D. A. (2007). Evolutionary algorithms for solving multi-objective problems (Vol. 5). New York: Springer.

[25]        Coello Coello, C. A., & Lechuga, M. S. MOPSO: a proposal for multiple objective particle swarm optimization. Proceedings of the 2002 congress on evolutionary computation CEC'02 (pp. 1051-1056).

[26]        de Simón-Martín, M., Alonso-Tristán, C., Díez-Mediavilla, M., de Francisco-Iribarren, M.A., Santamaría-Sánchez, R. (2012). Application to optimize the geometry of a parallel kinematics sun tracker. International conference on renewable energies and power quality (ICREPQ’12). Santiago de Compostela. Spain.

[27]        Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000, September). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. International conference on parallel problem solving from nature (pp. 849-858). Springer, Berlin, Heidelberg.

[28]        Deb K., Pratap A., Agarwal S., and Meyarivan T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, April 2002.

[29]        Demirkaya, G., Besarati, S., Padilla, R. V., Archibold, A. R., Goswami, D. Y., Rahman, M. M., & Stefanakos, E. L. (2012). Multi-objective optimization of a combined power and cooling cycle for low-grade and midgrade heat sources. Journal of energy resources technology134(3), 032002.

[30]        Dovgan, E., Javorski, M., Tušar, T., Gams, M., & Filipič, B. (2014). Discovering driving strategies with a multiobjective optimization algorithm. Applied soft computing16, 50-62.

[31]        Eliasson, J., & Ludvigsson, G. (2000, November). Load factor of hydropower plants and its importance in planning and design. 11th international seminar on hydro power plants, hydros future in changing markets. Vienna, Austria: University of Technology.

[32]        European Small Hydropower Association (ESHA). (2004). Guide on how to develop a small hydropower plant. Retrieved from

[33]        European Small Hydropower Association (ESHA). (2005). Environmental integration of small hydropower plants. Retrieved from

[34]        Blankenship, G. L., & Fink, L. H. (1978, October). Statistical characterizations of power system stability and security. Proceedings of second lawrence Symposiom. System and decision science.

[35]        Fonesca, C. M., & Fleming, P. J. (1993, July). Genetic algorithms for multi-objective optimization: formulation, discussion and generalization. Proceedings of the fifth international conference on genetic algorithms, forrest (pp. 415-423). San Mateo, CA, Morgan Kaufmann.

[36]        Garcia, C. E., & Prett, D. M. (1986). Advances in industrial model-predictive control. Retrieved from

[37]        Gorenstin, B. G., Campodonico, N. M., Costa, J. P., & Pereira, M. V. F. (1993). Power system expansion planning under uncertainty. IEEE transactions on power systems8(1), 129-136.

[38]        Günther, M., Joemann, M., & Csambor, S. (2011). Advanced CSP teaching materialsParabolic trough technology deutsches zentrum fuer luft-und raumfahrt ev mena teaching materials implementation workshop.

[39]        Hamdy, M., Palonen, M., & Hasan, A. (2012, September). Implementation of pareto-archive NSGA-II algorithms to a nearly-zero-energy building optimisation problem. Proceedings of the building simulation and optimization conference. Loughborough.

[40]        He, Y., & Agarwal, R. K. (2014). Shape optimization of NREL S809 airfoil for wind turbine blades using a multi-objective genetic algorithm. 32nd AIAA applied aerodynamics conference (p. 2845).

[41]        Miettinen, K. (2013). Nonlinear multi-objective optimization. International series in operations research & management science (VOL. 12). Springer US.

[42]         Miettinen, K. (2001, March). Some methods for nonlinear multi-objective optimization. International conference on evolutionary multi-criterion optimization (pp. 1-20). Springer, Berlin, Heidelberg.

[43]        Haselsteiner, R., Heimerl, S., Arch, A., Kohler, B., Recla, R., Bilmez, C., & Mesci, Ü. (2009). Evaluation of small and medium hydropower in Turkey in consideration of economical aspects. Wasserkraftnutzung im zeichen des klimawandels, (39), 335-358.

[44]        Hormozi, M.A., Jahromi, M.B., Nasiri, G. (2016). Optimal network reconfiguration and distributed generation placement in distribution system using a hybrid algorithm. International journal of energy and power engineering, 5(5), 163-170.

[45]        Hsiao, Y. T., Chiang, H. D., Liu, C. C., & Chen, Y. L. (1994). A computer package for optimal multi-objective VAR planning in large scale power systems. IEEE transactions on power systems9(2), 668-676.

[46]        Iqbal, M., Azam, M., Naeem, M., Khwaja, A. S., & Anpalagan, A. (2014). Optimization classification, algorithms and tools for renewable energy: A review. Renewable and sustainable energy reviews39, 640-654.

[47]        International Finance Corporation (IFC) (2015). Hydroelectric power a guide for developers and investors. Retrieved from

[48]        Ishibuchi, H., & Murata, T. (1996). Multi-objective genetic local search algorithm. Proceedings of the IEEE conference on evolutionary computation (pp .119-124). IEEE

[49]        Ishibuchi, H., & Murata, T. (1998). A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE transactions on systems, man, and cybernetics, part C (applications and reviews)28(3), 392-403.

[50]        Jebaraj, S., & Iniyan, S. (2006). A review of energy models. Renewable and sustainable energy reviews10(4), 281-311.

[51]        Jindal, A. K. (2010). Small hydropower: Technology and Indian perspectives. Retrieved from

[52]        Kacem, I., Hammadi, S., & Borne, P. (2002). Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic. Mathematics and computers in simulation60(3-5), 245-276.

[53]        Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000, September). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. International conference on parallel problem solving from nature (pp. 849-858). Springer, Berlin, Heidelberg.

[54]        Kamjoo, A., Maheri, A., Dizqah, A. M., & Putrus, G. A. (2016). Multi-objective design under uncertainties of hybrid renewable energy system using NSGA-II and chance constrained programming. International journal of electrical power & energy systems74, 187-194.

[55]        Klemeš, J., Dhole, V. R., Raissi, K., Perry, S. J., & Puigjaner, L. (1997). Targeting and design methodology for reduction of fuel, power and CO2 on total sites. Applied thermal engineering17(8-10), 993-1003.

[56]        Krasławski, A. (1989). Review of applications of various types of uncertainty in chemical engineering. Chemical engineering and processing: Process intensification26(3), 185-191.

[57]        Li, F. F., & Qiu, J. (2015). Multi-objective reservoir optimization balancing energy generation and firm power. Energies8(7), 6962-6976.

[58]        Li, H., & Zhang, Q. (2009). Multi-objective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Transactions on evolutionary computation13(2), 284-302.

[59]        Li, G., Wang, R., Zhang, T., & Ming, M. (2018). Multi-objective optimal design of renewable energy integrated CCHP system using PICEA-g. Energies11(4), 743.

[60]        Mansouri, V., Khosravanian, R., Wood, D. A., & Aadnoy, B. S. (2015). 3-D well path design using a multi objective genetic algorithm. Journal of natural gas science and engineering27, 219-235.

[61]        Margonari, M. (2011). A multi-objective optimization with open source software. Retrieved from

[62]        Ming, M., Wang, R., Zha, Y., & Zhang, T. (2017). Multi-objective optimization of hybrid renewable energy system using an enhanced multi-objective evolutionary algorithm. Energies10(5), 674.

[63]        Mitchell, K. H., & Bingham, M. (1986). Maximizing the benefits of Canadian forces equipment overhaul programs using multi objective optimization. INFOR: Information systems and operational research24(4), 252-264.

[64]        Murata, T., & Ishibuchi, H. (1995, November). MOGA: multi-objective genetic algorithms. . IEEE International Conference on evolutionary computation (Vol. 1, p. 289). IEEE.

[65]        Murata, T., Ishibuchi, H., & Tanaka, H. (1996). Multi-objective genetic algorithm and its applications to flowshop scheduling. Computers & industrial engineering30(4), 957-968.

[66]        Ohunakin, O. S., & Saracoglu, B. O. (2018). A comparative study of selected multi-criteria decision-making methodologies for location selection of very large concentrated solar power plants in Nigeria. African journal of science, technology, innovation and development10(5), 551-567.

[67]        Ramlogan, R. N., & Goulter, I. C. (1989). Mixed integer model for resource allocation in project management. Engineering optimization15(2), 97-111.

[68]        Osyczka, A. (1985). Multicriteria optimization for engineering design. Design optimization (pp. 193- 227).

[69]        Deb, K. (2005). Multi-objective optimization. Search methodologies (pp. 273-316). Springer, Boston, MA.

[70]        Deb, K. (2014). Multi-objective optimization. Search methodologies (pp. 403-449). Springer, Boston, MA.

[71]        Prina, M. G., Cozzini, M., Garegnani, G., Manzolini, G., Moser, D., Oberegger, U. F., ... & Sparber, W. (2018). Multi-objective optimization algorithm coupled to EnergyPLAN software: The EPLANopt model. Energy149, 213-221.

[72]        Qu, B., Qiao, B., Zhu, Y., Liang, J., & Wang, L. (2017). Dynamic power dispatch considering electric vehicles and wind power using decomposition based multi-objective evolutionary algorithm. Energies10(12), 1991.

[73]        Ramlogan, R. N. (1987). A mixed integer model for resource allocation in construction management (Master Thesis, University of Manitoba). Retrieved from

[74]        Ratono, J., Seminar, K. B., Arkeman, Y., & Suroso, A. I. (2015). ERP selection using fuzzy-MOGA approach: A food enterprise case study. TELKOMNIKA (Telecommunication computing electronics and control)13(3), 1105-1112.

[75]        Rao, S. S. (1987). Multi‐objective optimization of fuzzy structural systems. International journal for numerical methods in engineering24(6), 1157-1171.

[76]        RETScreen® International Clean Energy Decision Support Centre (RETScreen®). (2005). Clean energy project analysis RETScreen® engineering & cases textbook. Ottawa - Ontario: Natural Resources Canada.

[77]        Saracoglu, B. O. (2009). A new generic method for large investment analysis in industry and an application in shipyard - port investment (Doctoral Thesis, Institute of Science And Technology, Istanbul Technical University, Istanbul).

[78]        Saracoglu, B. O. (2015a). An experimental research study on the solution of a private small hydropower plant investments selection problem by ELECTRE III/IV, Shannon’s Entropy, and Saaty’s subjective criteria weighting. Advances in Decision Sciences.

[79]        Saracoglu, B. O. (2015b). An AHP application in the investment selection problem of small hydropower plants in Turkey. International Journal of the Analytic Hierarchy Process, 7(2).

[80]        Saracoglu, B. O. (2015c). A comparative study of Ahp, Electre Iii & Electre IV by equal objective & Shannon’s entropy objective & Saaty’s subjective criteria weighting in A private small hydropower plants investments selection problem. International journal of the analytic hierarchy process, 7(3).

[81]        Saracoglu, B. O. (2015d). An experimental research of small hydropower plant investments selection in Turkey by Carrot2, DEXi, DEXiTree. Journal of investment and management, 4(1), 47-60.

[82]        Saracoglu, B. O. (2016a). A PROMETHEE I, II and GAIA-based approach by Saaty's subjective criteria weighting for small hydropower plant investments in Turkey. International journal of renewable energy technology, 7(2), 163-183.

[83]        Saracoglu, B. O. (2016b). A qualitative multi-attribute model for the selection of the private hydropower plant investments in Turkey: By foundation of the search results clustering engine (Carrot2), hydropower plant clustering, DEXi and DEXiTree. Journal of industrial engineering and management, 9(1), 152-178.

[84]        Saracoglu, B. O. (2017). Location selection factors of small hydropower plant investments powered by SAW, grey WPM and fuzzy DEMATEL based on human natural language perception. International journal of renewable energy technology8(1), 1-23.

[85]        Saracoglu, B. O. (2017). An experimental fuzzy inference system for the third core module of the first console on the global grid peak power prediction system & its forecasting accuracy measures' comparisons with the first and the second core modules. Journal of energy systems1(2), 75-101.

[86]        Saracoglu, B. O. (2017). Comparative study on experimental type 1 & interval & general type 2 Mamdani FIS for G 2 P 3 S. Global journal of research in engineering.

[87]        Saracoglu, B. O. (2017). Comparative study on experimental 2 to 9 triangular fuzzy membership function partitioned type 1 Mamdanis FIS for G2EDPS. Global journal of research in engineering.

[88]        Saracoglu, B. O. (2017). G 2 EDPS's first module & its first extension modules. American journal of applied scientific research3(4), 33-48.

[89]        Saracoglu, B. O. (2017). Long term electricity demand & peak power load forecasting variables identification & selection. International journal of systems engineering6(2), 18-28.

[90]        Saracoglu, B. O. Solar star projects SAM version 2017.9. 5 PVwats version 5 model case study & validation. International journal of energy applications and technologies5(1), 13-28.

[91]        Saracoglu, B. O. Comparative experimental FWA & FOWA aggregated VLCSPPs' LUR estimation for GIS based VEED. International journal of engineering technologies4(2), 70-79.

[92]        Saracoglu, B. O. (2018). Analytic network process vs. Benjamin Franklin’s rule to select private small hydropower plants investments. MedCrave Group LLC.

[93]        SEO, F. (1977). Environmental assessment with multi-objective optimization in the region. Studies in regional science7, 95-111.

[94]        Shi, Z., Wang, R., & Zhang, T. (2015). Multi-objective optimal design of hybrid renewable energy systems using preference-inspired coevolutionary approach. Solar energy118, 96-106.

[95]        Shi, Z., Wang, R., Zhang, X., Zhang, Y., & Zhang, T. (2017). Optimal design of grid-connected hybrid renewable energy systems using multi-objective evolutionary algorithm. Scientia Iranica.

[96]        Shimizu, K. I. Y. O. T. A. K. A., & Hirata, T. O. S. H. I. A. K. I. (1986). Optimal design using min-max criteria for two-dimensional recursive digital filters. IEEE transactions on circuits and systems33(5), 491-501.

[97]        Shukla, A., & Singh, S. N. (2016). Multi-objective unit commitment with renewable energy using hybrid approach. IET renewable power generation10(3), 327-338.

[98]        Sierra, M. R., & Coello, C. A. C. (2005, March). Improving PSO-based multi-objective optimization using crowding, mutation and∈-dominance. International conference on evolutionary multi-criterion optimization (pp. 505-519). Springer, Berlin, Heidelberg.

[99]        Srinivas, N., & Deb K. (1993). Multi-objective optimization using nondominated sorting in genetic algorithms. Technical report. Department of Mechanical Engineering, Indian Institute of Technology, Kanput, India.

[100]     Srinivas, N., & Deb, K. (1994). Muilti-objective optimization using nondominated sorting in genetic algorithms. Evolutionary computation2(3), 221-248.

[101]     Talbi, E. G. (2009). Metaheuristics: from design to implementation (Vol. 74). John Wiley & Sons.

[102]     Tamaki, H., Kita, H., & Kobayashi, S. (1996, May). Multi-objective optimization by genetic algorithms: A review. Proceedings of IEEE international conference on evolutionary computation (pp. 517-522). IEEE.

[103]     Takama, N., & Umeda, T. (1981). Multi-level, multi-objective optimization in process engineering. Chemical engineering science36(1), 129-136.

[104]     Tripathi, P. K., Bandyopadhyay, S., & Pal, S. K. (2007). Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients. Information sciences177(22), 5033-5049.

[105]     Vazhayil, J. P., & Balasubramanian, R. (2014). Optimization of India’s electricity generation portfolio using intelligent Pareto-search genetic algorithm. International journal of electrical power & energy systems55, 13-20.

[106]     Wang, R., Zhang, F., & Zhang, T. (2015, August). Multi-objective optimal design of hybrid renewable energy systems using evolutionary algorithms. 11th international conference on natural computation (ICNC), 2015 (pp. 1196-1200). IEEE.

[107]     Wood, D. A. (2016). Asset portfolio multi-objective optimization tools provide insight to value, risk and strategy for gas and oil decision makers. Journal of natural gas science and engineering33, 196-216.

[108]     Hu, X., & Eberhart, R. (2002). Multi-objective optimization using dynamic neighborhood particle swarm optimization. Proceedings of the 2002 congress on evolutionary computation, CEC'02 (pp. 1677-1681). IEEE.

[109]     Xu, F., Liu, J., Lin, S., Dai, Q., & Li, C. (2018). A multi-objective optimization model of hybrid energy storage system for non-grid-connected wind power: A case study in China. Energy163, 585-603.

[110]     Yang, H. T., & Chen, S. L. (1989). Incorporating a multi-criteria decision procedure into the combined dynamic programming/production simulation algorithm for generation expansion planning. IEEE transactions on power systems4(1), 165-175.

[111]     Yao, W., Zhao, J., Wen, F., Dong, Z., Xue, Y., Xu, Y., & Meng, K. (2014). A multi-objective collaborative planning strategy for integrated power distribution and electric vehicle charging systems. IEEE transactions on power systems29(4), 1811-1821.

[112]     Yazdi, J., & Moridi, A. (2018). Multi-objective differential evolution for design of cascade hydropower reservoir systems. Water resources management32(14), 4779-4791.

[113]     Yokoyama, R., Bae, S. H., Morita, T., & Sasaki, H. (1988). Multi-objective optimal generation dispatch based on probability security criteria. IEEE transactions on power systems3(1), 317-324.

[114]     Yuan, X., Huang, B., Xu, J., Liu, H., & Yao, Q. (2018). Application of demand response strategy in optimal configuration of a standalone wind-solar-battery system. Preprints 2018, 2018040303 (doi: 10.20944/preprints201804.0303.v1).

[115]     Zhang, W., & Liu, Y. (2008). Multi-objective reactive power and voltage control based on fuzzy optimization strategy and fuzzy adaptive particle swarm. International journal of electrical power & energy systems30(9), 525-532.

[116]     Zhao, B., Zhang, X., Li, P., Wang, K., Xue, M., & Wang, C. (2014). Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island. Applied energy113, 1656-1666.

[117]     Zhao, J., & Yuan, X. (2016). Multi-objective optimization of stand-alone hybrid PV-wind-diesel-battery system using improved fruit fly optimization algorithm. Soft computing20(7), 2841-2853.

[118]     Zhai, R., Peng, P., Yang, Y., & Zhao, M. (2014). Optimization study of integration strategies in solar aided coal-fired power generation system. Renewable energy68, 80-86.

[119]     Zitzler, E., Laumanns, M., & Bleuler, S. (2004). A tutorial on evolutionary multi-objective optimization. Metaheuristics for multi-objective optimisation (pp. 3-37). Springer, Berlin, Heidelberg.