Forecasting, production planning, and control
Akbar Abbaspour Ghadim Bonab
Abstract
Demand forecasting can have a significant impact on reducing and controlling companies' costs, as well as increasing their productivity and competitiveness. But to achieve this, accuracy in demand forecasting is very important. On this point, in the present study, an attempt has been made to analyze ...
Read More
Demand forecasting can have a significant impact on reducing and controlling companies' costs, as well as increasing their productivity and competitiveness. But to achieve this, accuracy in demand forecasting is very important. On this point, in the present study, an attempt has been made to analyze the time series related to the demand for a type of women's luxury handbag based on a framework and using machine learning methods. For this purpose, five machine learning models including Adaptive Neuro-Fuzzy Inference System (ANFIS), Multi-Layer Perceptron Neural Network (MLPNN), Radial Basis Function Neural Network (RBFNN), Discrete Wavelet Transform-Neural Networks (DWTNN), and Group Model of Data Handling (GMDH) were used. The comparison of the models was also based on the accuracy of the forecasting according to the values of forecasting errors. The RMSE, MAE error measures as well as the R, correlation coefficient were used to assess the forecasting accuracy of the models. The RBFNN model had the best performance among the studied models with the minimum error values and the highest correlation value between the observed values and the outputs of the model. But in general, by comparing the error values with the data range, it is concluded that the models performed reasonably well.
Data mining
Aboosaleh Mohammad Sharifi; Kaveh Khalili Damghani; Farshid Abdi; Soheila Sardar
Abstract
Cryptocurrencies are considered as new financial and economic tools having special and innovative features, among which Bitcoin is the most popular. The contribution of the Bitcoin market continues to grow due to the special nature of Bitcoin. The investors' attention to Bitcoin has increased significantly ...
Read More
Cryptocurrencies are considered as new financial and economic tools having special and innovative features, among which Bitcoin is the most popular. The contribution of the Bitcoin market continues to grow due to the special nature of Bitcoin. The investors' attention to Bitcoin has increased significantly in recent years due to significant growth in its prices. It is important to create a prediction system which works well for investment management and business strategies due to the high chaos and volatility of Bitcoin prices. In this study, in order to improve predictive accuracy, Bitcoin price dataset is first divided into a time interval through time window, then propose a new model based on Long Short-Term Memory (LSTM) neural networks and Metaheuristic algorithms. Chaotic Dolphin Swarm Optimization algorithm is used to optimize the LSTM. Performance evaluation indicated that the proposed model can have more effective predictions and improve prediction accuracy. In addition, the performance of the optimized model is better and more reliable than other models.