Document Type : Research Paper


1 Department of Industrial Management, Faculty of Accounting and management, Allameh Tabataba'i University, Tehran, Iran.

2 Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran.


Scheduling is an important decision-making process that aims to allocate limited resources to the jobs in a production process. Among scheduling problems, Hybrid Flow Shop (HFS) scheduling has good adaptability with most real world applications including innumerable cases of uncertainty of parameters that would influence jobs processing when the schedule is executed. Thus a suitable scheduling model should take parameters uncertainty into account. The present study develops a multi-objective Robust Mixed-Integer Linear Programming (RMILP) model to accommodate the problem with the real-world conditions in which due date and processing time are assumed uncertain. The developed model is able to assign a set of jobs to available machines in order to obtain the best trade-off between two objectives including total tardiness and makespan under uncertain parameters. Fuzzy Goal Programming (FGP) is applied to solve this multi objective problem. Finally, to study and validate the efficiency of the developed RMILP model, some instances of different size are generated and solved using CPLEX solver of GAMS software under different uncertainty levels. Experimental results show that the developed model can find a solution to show the least modifications against uncertainty in processing time and due date in an HFS problem. 


Main Subjects

[1]        Uysal, F., İşleyen, S. K., & Çetinkaya, C. (2018). Resource constrained project scheduling with stochastic resources. Journal of applied research on industrial engineering5(1), 39-49.
[2]        Bougeret, M., Pessoa, A. A., & Poss, M. (2019). Robust scheduling with budgeted uncertainty. Discrete applied mathematics261, 93-107.
[3]        Rafiei, A., Homayouni, S. M., & Shafiei Alavijeh, A. (2015). A Mathematical Model for the Single Machine Scheduling Considering Sequence Dependent Setup Costs and Idle Times. Journal of applied research on industrial engineering2(2), 77-85.
[4]        Ebrahimi, M., Ghomi, S. F., & Karimi, B. (2014). Hybrid flow shop scheduling with sequence dependent family setup time and uncertain due dates. Applied mathematical modelling38(9-10), 2490-2504.
[5]        Ribas, I., Leisten, R., & Framiñan, J. M. (2010). Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective. Computers and operations research37(8), 1439-1454.
[6]        Linn, R., & Zhang, W. (1999). Hybrid flow shop scheduling: a survey. Computers and industrial engineering37(1-2), 57-61.
[7]        Shiau, D. F., Cheng, S. C., & Huang, Y. M. (2008). Proportionate flexible flow shop scheduling via a hybrid constructive genetic algorithm. Expert systems with applications34(2), 1133-1143.
[8]        Wang, H., Jacob, V., & Rolland, E. (2003). Design of efficient hybrid neural networks for flexible flow shop scheduling. Expert systems20(4), 208-231.
[9]        Choi, S. W., Kim*, Y. D., & Lee, G. C. (2005). Minimizing total tardiness of orders with reentrant lots in a hybrid flowshop. International journal of production research43(11), 2149-2167.
[10]    Choi, S. H., & Wang, K. (2012). Flexible flow shop scheduling with stochastic processing times: a decomposition-based approach. Computers and industrial engineering63(2), 362-373.
[11]    Luo, H., Du, B., Huang, G. Q., Chen, H., & Li, X. (2013). Hybrid flow shop scheduling considering machine electricity consumption cost. International journal of production economics146(2), 423-439.
[12]    Naderi, B., Gohari, S., & Yazdani, M. (2014). Hybrid flexible flowshop problems: Models and solution methods. Applied mathematical modelling38(24), 5767-5780.
[13]    Tang, D., Dai, M., Salido, M. A., & Giret, A. (2016). Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization. Computers in industry81, 82-95.
[14]    Rahmani, D., & Heydari, M. (2014). Robust and stable flow shop scheduling with unexpected arrivals of new jobs and uncertain processing times. Journal of manufacturing systems33(1), 84-92.
[15]    Lin, J. T., & Chen, C. M. (2015). Simulation optimization approach for hybrid flow shop scheduling problem in semiconductor back-end manufacturing. Simulation modelling practice and theory51, 100-114.
[16]    Wagner, H. M. (1959). An integer linear‐programming model for machine scheduling. Naval research logistics quarterly6(2), 131-140.
[17]    Manne, A. S. (1960). On the job-shop scheduling problem. Operations research8(2), 219-223.
[18]    Guinet, A., Solomon, M. M., Kedia, P. K., & Dussauchoy, A. (1996). A computational study of heuristics for two-stage flexible flowshops. International journal of production research34(5), 1399-1415.
[19]    Bowman, E. H. (1959). The schedule-sequencing problem. Operations research7(5), 621-624.
[20]    Meng, L., Zhang, C., Shao, X., Zhang, B., Ren, Y., & Lin, W. (2020). More MILP models for hybrid flow shop scheduling problem and its extended problems. International journal of production research58(13), 3905-3930.
[21]    Elyasi, A., & Salmasi, N. (2013). Stochastic flow-shop scheduling with minimizing the expected number of tardy jobs. The international journal of advanced manufacturing technology66(1-4), 337-346.
[22]    Wang, Y., & Li, L. (2014). Time-of-use based electricity cost of manufacturing systems: Modeling and monotonicity analysis. International journal of production economics156, 246-259.
[23]    Mirmohseni, S. M., Nasseri, S. H., & Khaviari, M. H. (2017). A new fuzzy hybrid dynamic programming for scheduling weighted jobs on single machine. Journal of applied research on industrial engineering4(2), 97-115.
[24]    Li, Z., & Ierapetritou, M. G. (2008). Robust optimization for process scheduling under uncertainty. Industrial and engineering chemistry research47(12), 4148-4157.
[25]    Nagasawa, K., Ikeda, Y., & Irohara, T. (2015). Robust flow shop scheduling with random processing times for reduction of peak power consumption. Simulation modelling practice and theory59, 102-113.
[26]    Shahnaghi, K., Shahmoradi-Moghadam, H., Noroozi, A., & Mokhtari, H. (2016). A robust modelling and optimisation framework for a batch processing flow shop production system in the presence of uncertainties. International journal of computer integrated manufacturing29(1), 92-106.
[27]    Emami, S., Moslehi, G., & Sabbagh, M. (2017). A Benders decomposition approach for order acceptance and scheduling problem: a robust optimization approach. Computational and applied mathematics36(4), 1471-1515.
[28]    Hamaz, I., Houssin, L., & Cafieri, S. (2018). A robust basic cyclic scheduling problem. EURO journal on computational optimization6(3), 291-313.
[29]    Ding, H., Fan, Y., & Zhong, W. (2018). Robust optimization of performance scheduling problem under accepting strategy. Open journal of optimization7(4), 65-78.
[30]    Jamili, A. (2019). Job shop scheduling with consideration of floating breaking times under uncertainty. Engineering applications of artificial intelligence78, 28-36.
[31]    Goli, A., Babaee Tirkolaee, E., & Soltani, M. (2019). A robust just-in-time flow shop scheduling problem with outsourcing option on subcontractors. Production and manufacturing research7(1), 294-315.
[32]    Sangaiah, A. K., Tirkolaee, E. B., Goli, A., & Dehnavi-Arani, S. (2020). Robust optimization and mixed-integer linear programming model for LNG supply chain planning problem. Soft computing24(11), 7885-7905.
[33]    Babaee Tirkolaee, E., Goli, A., Pahlevan, M., & Malekalipour Kordestanizadeh, R. (2019). A robust bi-objective multi-trip periodic capacitated arc routing problem for urban waste collection using a multi-objective invasive weed optimization. Waste management and research37(11), 1089-1101.
[34]    Sadjadi, S. J., & Omrani, H. (2008). Data envelopment analysis with uncertain data: An application for Iranian electricity distribution companies. Energy policy36(11), 4247-4254.
[35]    Soyster, A. L. (1973). Convex programming with set-inclusive constraints and applications to inexact linear programming. Operations research21(5), 1154-1157.
[36]    Ben-Tal, A., & Nemirovski, A. (1999). Robust solutions of uncertain linear programs. Operations research letters25(1), 1-13.
[37]    Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations research52(1), 35-53.
[38]    Narasimhan, R. (1980). Goal programming in a fuzzy environment. Decision sciences11(2), 325-336.
[39]    Hu, C. F., Teng, C. J., & Li, S. Y. (2007). A fuzzy goal programming approach to multi-objective optimization problem with priorities. European journal of operational research176(3), 1319-1333.
[40]    Baky, I. A. (2009). Fuzzy goal programming algorithm for solving decentralized bi-level multi-objective programming problems. Fuzzy sets and systems160(18), 2701-2713.
[41]    Hossain, M. S., & Hossain, M. M. (2018). Application of interactive fuzzy goal programming for multi-objective integrated production and distribution planning. International journal of process management and benchmarking8(1), 35-58.
[42]    Gupta, S., Ali, I., & Ahmed, A. (2018). Efficient fuzzy goal programming model for multi-objective production distribution problem. International journal of applied and computational mathematics4(2), 76.
[43]    Masoud, M., Khalifa, H. A., Liu, S. Q., Elhenawy, M., & Wu, P. (2019, September). A fuzzy goal programming approach for solving fuzzy multi-objective stochastic linear programming problem. 2019 international conference on industrial engineering and systems management (IESM) (pp. 1-6). IEEE.