Document Type : Research Paper


Department of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.


Demand forecasting can have a significant impact on reducing and controlling companies' costs, as well as increasing their productivity and competitiveness. But to achieve this, accuracy in demand forecasting is very important. On this point, in the present study, an attempt has been made to analyze the time series related to the demand for a type of women's luxury handbag based on a framework and using machine learning methods. For this purpose, five machine learning models including Adaptive Neuro-Fuzzy Inference System (ANFIS), Multi-Layer Perceptron Neural Network (MLPNN), Radial Basis Function Neural Network (RBFNN), Discrete Wavelet Transform-Neural Networks (DWTNN), and Group Model of Data Handling (GMDH) were used. The comparison of the models was also based on the accuracy of the forecasting according to the values of forecasting errors. The RMSE, MAE error measures as well as the R, correlation coefficient were used to assess the forecasting accuracy of the models. The RBFNN model had the best performance among the studied models with the minimum error values and the highest correlation value between the observed values and the outputs of the model. But in general, by comparing the error values with the data range, it is concluded that the models performed reasonably well.


Main Subjects

  1. Darvishinia, R., Ebrahimzadeh Shermeh, H., & Barzkar, S. (2019). Development of a forecasting model for investment in Tehran stock exchange based on seasonal coefficient. Journal of applied research on industrial engineering6(4), 333-366. 92.1103
  2. Ali, A. Y., Hassen, J. M., & Wendim, G. G. (2019). Forecasting as a framework for reducing food waste in Ethiopian university canteens. Journal of applied research on industrial engineering6(4), 374-380.
  3. Abolghasemi, M., Beh, E., Tarr, G., & Gerlach, R. (2020). Demand forecasting in supply chain: the impact of demand volatility in the presence of promotion. Computers & industrial engineering142, 106380.
  4. Fattah, J., Ezzine, L., Aman, Z., El Moussami, H., & Lachhab, A. (2018). Forecasting of demand using ARIMA model. International journal of engineering business management10, 1847979018808673.
  5. Lau, H. C., Ho, G. T., & Zhao, Y. (2013). A demand forecast model using a combination of surrogate data analysis and optimal neural network approach. Decision support systems54(3), 1404-1416.
  6. Goli, A., Zare, H. K., Moghaddam, R., & Sadeghieh, A. (2018). A comprehensive model of demand prediction based on hybrid artificial intelligence and metaheuristic algorithms: a case study in dairy industry. Journal of industrial and systems engineering, 11(4), 190-203.
  7. Parmezan, A. R. S., Souza, V. M., & Batista, G. E. (2019). Evaluation of statistical and machine learning models for time series prediction: identifying the state-of-the-art and the best conditions for the use of each model. Information sciences484, 302-337.
  8. Cankurt, S., & SUBAŞI, A. (2016). Tourism demand modelling and forecasting using data mining techniques in multivariate time series: a case study in Turkey. Turkish journal of electrical engineering and computer sciences24(5), 3388-3404.
  9. Kandananond, K. (2012). A comparison of various forecasting methods for autocorrelated time series. International journal of engineering business management4, 4.
  10. Tugay, R., & Öğüdücü, Ş. G. (2017). Demand prediction using machine learning methods and stacked generalization. Proceedings of the 6th international conference on data science, technology and applications, 1, 216–222.
  11. Chou, J. S., & Tran, D. S. (2018). Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders. Energy165, 709-726.
  12. Ardabili, S., Mosavi, A., & Várkonyi-Kóczy, A. R. (2019, September). Advances in machine learning modeling reviewing hybrid and ensemble methods. International conference on global research and education (pp. 215-227). Springer, Cham.
  13. Shih, H., & Rajendran, S. (2019). Comparison of time series methods and machine learning algorithms for forecasting Taiwan Blood Services Foundation’s blood supply. Journal of healthcare engineering2019.
  14. Pavlyshenko, B. M. (2019). Machine-learning models for sales time series forecasting. Data4(1), 15.
  15. Qiu, X., Ren, Y., Suganthan, P. N., & Amaratunga, G. A. (2017). Empirical mode decomposition based ensemble deep learning for load demand time series forecasting. Applied soft computing54, 246-255.
  16. Kilimci, Z. H., Akyuz, A. O., Uysal, M., Akyokus, S., Uysal, M. O., Atak Bulbul, B., & Ekmis, M. A. (2019). An improved demand forecasting model using deep learning approach and proposed decision integration strategy for supply chain. Complexity2019.
  17. Mostafaeipour, A., Goli, A., & Qolipour, M. (2018). Prediction of air travel demand using a hybrid artificial neural network (ANN) with Bat and Firefly algorithms: a case study. The journal of supercomputing74(10), 5461-5484.
  18. Goli, A., Moeini, E., Shafiee, A. M., Zamani, M., & Touti, E. (2020). Application of improved artificial intelligence with runner-root meta-heuristic algorithm for dairy products industry: a case study. International journal on artificial intelligence tools29(05), 2050008.
  19. Rai, S., Gupta, A., Anand, A., Trivedi, A., & Bhadauria, S. (2019, July). Demand prediction for e-commerce advertisements: a comparative study using state-of-the-art machine learning methods. 2019 10th international conference on computing, communication and networking technologies (ICCCNT)(pp. 1-6). IEEE. DOI: 1109/ICCCNT45670.2019.8944783
  20. Guanghui, W. A. N. G. (2012). Demand forecasting of supply chain based on support vector regression method. Procedia engineering29, 280-284.
  21. Srisaeng, P., Baxter, G. S., & Wild, G. (2015). An adaptive neuro-fuzzy inference system for forecasting Australia's domestic low cost carrier passenger demand. Aviation19(3), 150-163.
  22. Srisaeng, P., Richardson, S., Baxter, G., & Wild, G. (2016). Forecasting Australia’s domestic low cost carrier passenger demand using a genetic algorithm approach. Aviation20(2), 39-47.
  23. Scholz-Reiter, B., Kück, M., & Lappe, D. (2014). Prediction of customer demands for production planning–Automated selection and configuration of suitable prediction methods. CIRP annals63(1), 417-420.
  24. Carbonneau, R., Vahidov, R., & Laframboise, K. (2007). Machine learning-Based Demand forecasting in supply chains. International journal of intelligent information technologies (IJIIT)3(4), 40-57.
  25. Vairagade, N., Logofatu, D., Leon, F., & Muharemi, F. (2019, September). Demand forecasting using random forest and artificial neural network for supply chain management.  International conference on computational collective intelligence(pp. 328-339). Springer, Cham.
  26. Ampazis, N. (2015). Forecasting demand in supply chain using machine learning algorithms. International journal of artificial life research (IJALR)5(1), 56-73. R.2015010104
  27. Efendigil, T., Önüt, S., & Kahraman, C. (2009). A decision support system for demand forecasting with artificial neural networks and neuro-fuzzy models: a comparative analysis. Expert systems with applications36(3), 6697-6707.
  28. Chen, Y., Zhao, H., & Yu, L. (2010). Demand forecasting in automotive aftermarket based on ARMA model. 2010 international conference on management and service science(pp. 1-4). IEEE.
  29. Carbonneau, R., Laframboise, K., & Vahidov, R. (2008). Application of machine learning techniques for supply chain demand forecasting. European journal of operational research184(3), 1140-1154.
  30. Zhang, X. (2004). Evolution of ARMA demand in supply chains. Manufacturing & Service operations management6(2), 195-198.
  31. Du, X. F., Leung, S. C., Zhang, J. L., & Lai, K. K. (2013). Demand forecasting of perishable farm products using support vector machine. International journal of systems science44(3), 556-567.
  32. Chan, H. K., Xu, S., & Qi, X. (2019). A comparison of time series methods for forecasting container throughput. International journal of logistics research and applications22(3), 294-303.
  33. Yahya, N. A., Samsudin, R., Shabri, A., & Saeed, F. (2019). Combined group method of data handling models using artificial bee colony algorithm in time series forecasting. Procedia computer science163, 319-329.
  34. de Oliveira, J. F. L., Pacífico, L. D. S., de Mattos Neto, P. S. G., Barreiros, E. F. S., de Oliveira Rodrigues, C. M., & de Almeida Filho, A. T. (2020). A hybrid optimized error correction system for time series forecasting. Applied soft computing87, 105970.
  35. Sezer, O. B., Gudelek, M. U., & Ozbayoglu, A. M. (2020). Financial time series forecasting with deep learning: a systematic literature review: 2005–2019. Applied soft computing90, 106181.
  36. Adeniran, A. O., Kanyio, O. A., & Owoeye, A. S. (2018). Forecasting methods for domestic air passenger demand in Nigeria. Journal of applied research on industrial engineering, 5(2), 146–155
  37. Minli, Z., & Shanshan, Q. (2012). Research on the application of artificial neural networks in tender offer for construction projects. Physics procedia24, 1781-1788.
  38. Movahedi Sobhani, F., & Madadi, T. (2015). Studying the suitability of different data mining methods for delay analysis in construction projects. Journal of applied research on industrial engineering2(1), 15-33.
  39. Nury, A. H., Hasan, K., & Alam, M. J. B. (2017). Comparative study of wavelet-ARIMA and wavelet-ANN models for temperature time series data in northeastern Bangladesh. Journal of King Saud university-science29(1), 47-61.
  40. Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks: the state of the art. International journal of forecasting14(1), 35-62.
  41. Li, G. Q., Xu, S. W., & Li, Z. M. (2010). Short-term price forecasting for agro-products using artificial neural networks. Agriculture and agricultural science procedia1, 278-287. 0.09.035
  42. Moreno, J. J. M. (2011). Artificial neural networks applied to forecasting time series. Psicothema23(2), 322-329.
  43. Olawoyin, A., & Chen, Y. (2018). Predicting the future with artificial neural network. Procedia computer science140, 383-392.
  44. Lo, D. C., Wei, C. C., & Tsai, E. P. (2015). Parameter automatic calibration approach for neural-network-based cyclonic precipitation forecast models. Water7(7), 3963-3977.
  45. Faris, H., Aljarah, I., & Mirjalili, S. (2017). Evolving radial basis function networks using moth–flame optimizer. In Handbook of neural computation(pp. 537-550). Academic Press.
  46. Tatar, A., Naseri, S., Sirach, N., Lee, M., & Bahadori, A. (2015). Prediction of reservoir brine properties using radial basis function (RBF) neural network. Petroleum1(4), 349-357.
  47. Shabri, A., & Samsudin, R. (2014). A hybrid GMDH and box-jenkins models in time series forecasting. Applied mathematical sciences8(62), 3051-3062. s.2014.44270
  48. Ivakhnenko, A. G. (1968). The group method of data handling, a rival of the method of stochastic approximation. Soviet automatic control13(3), 43-55.
  49. Farlow, S. J. (1981). The GMDH algorithm of Ivakhnenko. The American statistician35(4), 210-215.
  50. Anastasakis, L., & Mort, N. (2001). The development of self-organization techniques in modelling: a review of the group method of data handling (GMDH) (Report No. 813).  University of Sheffield, United Kingdom.
  51. Ivakhnenko, A. G., & Müller, J. A. (1995). Self-organisation of nets of active neurons. System analysis modeling simulation, 20(1–2), 93–106.
  52. Ziari, H., Sobhani, J., Ayoubinejad, J., & Hartmann, T. (2016). Analysing the accuracy of pavement performance models in the short and long terms: GMDH and ANFIS methods. Road materials and pavement design17(3), 619-637.
  53. Jang, J. S. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE transactions on systems, man, and cybernetics23(3), 665-685. DOI:1109/21.256541
  54. Takagi, T., & Sugeno, M. (1983). Derivation of fuzzy control rules from human operator's control actions. IFAC proceedings volumes16(13), 55-60.
  55. Aengchuan, P., & Phruksaphanrat, B. (2018). Comparison of fuzzy inference system (FIS), FIS with artificial neural networks (FIS+ ANN) and FIS with adaptive neuro-fuzzy inference system (FIS+ ANFIS) for inventory control. Journal of intelligent manufacturing29(4), 905-923.
  56. Sremac, S., Kazimieras Zavadskas, E., Matić, B., Kopić, M., & Stević, Ž. (2019). Neuro-fuzzy inference systems approach to decision support system for economic order quantity. Economic research-ekonomska istraživanja32(1), 1114-1137.
  57. Alexandridis, A. K., & Zapranis, A. D. (2013). Wavelet neural networks: a practical guide. Neural networks42, 1-27.
  58. Gürsoy, Ö., & Engin, S. N. (2019). A wavelet neural network approach to predict daily river discharge using meteorological data. Measurement and control52(5-6), 599-607.
  59. Kærgaard, K., Jensen, S. H., & Puthusserypady, S. (2016). A comprehensive performance analysis of EEMD-BLMS and DWT-NN hybrid algorithms for ECG denoising. Biomedical signal processing and control25, 178-187.
  60. Khosravi, A., Machado, L., & Nunes, R. O. (2018). Time-series prediction of wind speed using machine learning algorithms: a case study Osorio wind farm, Brazil. Applied energy224, 550-566.
  61. Sun, G., Jiang, C., Cheng, P., Liu, Y., Wang, X., Fu, Y., & He, Y. (2018). Short-term wind power forecasts by a synthetical similar time series data mining method. Renewable energy115, 575-584.
  62. Al-hnaity, B., & Abbod, M. (2016). Predicting financial time series data using hybrid model. In Intelligent systems and applications(pp. 19-41). Springer, Cham.
  63. Neill, S. P., & Hashemi, M. R. (2018). Ocean modelling for resource characterization. Fundamentals of ocean renewable energy, 193-235.