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Abstract 

   

1 | Introduction  

Location theory is an important branch of transportation and communication. In location theory 

one looks for sites for one or more facilities that should interact with a set of existing users. These 

sites should be optimal concerning some performance measure. The p-median problem is a basic 

problem in this area of investigation. The goal in the p-median problem is finding the location of 

𝑝 facilities on edges or vertices of a given network G, such that the sum of weighted distances 

from all vertices in G to the closest facility is minimized. 

Kariv and Hakimi [1] showed that the 𝑝-median problem on general networks is NP-hard. 

However, when the underlying network is a tree, they showed the solution of this problem can 
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be found by an O(p2n2)-time algorithm. Tamir [2] improved the time complexity by presenting an O(pn2) 

algorithm. In the case p=1 on trees linear time algorithms is proposed by Hua [3] and Goldman [4]. 

Gavish and Sridhar [5] investigated an algorithm with time complexity O(nlogn) for the case p=2 on trees. 

Charikar et al. [6] introduced a constant-factor approximation algorithm for the k-median issue. An 

uncertain model for single facility location problems on networks was presented by Gao [7]. Since the 

median problem is NP-hard, some heuristic methods were presented for finding the solution to this 

problem (e. g. see [8] and [9]). 

Traditionally it has been assumed that such interaction is beneficial to the users, who want the facility as 

close as possible to them. This ignores that most facilities also have negative effects on the population, 

ranging from threat to lifestyles, such as parking troubles and noise around business centers or soccer 

stadium and then the facility is called obnoxious- to danger for health or life, such as lethal fumes close 

to chemical plants -and then the facility is called noxious. Although in recent years there has been an 

increasing interest in considering such obnoxious aspects, most existing models accommodate just one 

of the two aspects of the problem, and see the facility as either purely attractive or purely obnoxious. 

When the facilities are semi-obnoxious, i.e., they provide both services and disservices, the models 

designed for purely desirable or purely undesirable facilities oversimplify things, and may yield solutions 

which are unrealistic due to either the enormous economic costs incurred or the social reaction they 

provoke against them. Instead, one can combine models of both types.  

Although, conceptually the resulting model is just the combination of two existing models, things are 

more complicated from an algorithmic viewpoint. since such models cannot usually be coped with using 

the basic tools of the original models: to mention a few, semi-obnoxious facility models are as a rule 

multimodal, thus the standard techniques of convex analysis used for locating desirable facilities in the 

plane may be trapped in local optimal; moreover, the geometry of these problems is in general rather 

involved, thus the computational geometry approaches often used for the purely undesirable case may 

not be successfully adapted to this new context. 

However, in recent years, semi-obnoxious facilities, i.e., facilities that desirable for a part of the clients, 

and undesirable for the other part of clients, have gained increasing interest. Research in the location of 

multiple semi-obnoxious facilities is limited, though there are a few instances available in the literature 

(e. g., Berman and Wang [10]; Coutinho-Rodrigues et al. [11]; Eiselt and Marianov [12]; Silva et al. [13]). 

Other types of the multiple semi-obnoxious facility models found in the literature are either discrete (see 

e.g., Colmenar et al. [14]; Song et al. [15]) or network-based models presented in [16] and [17].  

Burkard and Krarup [18] were the first authors that assigned the positive and negative weights to 

desirable and undesirable clients in semi-obnoxious facility location models, respectively. They presented 

a O(n) time algorithm for the semi-obnoxious 1-median problem on a cactus. A cactus is a connected 

graph with no two cycles has more than one vertex in common. Burkard et al. [19] proposed two models 

for the semi-obnoxious 2-median problem on trees. One model tries to minimize the sum of the 

Minimal Weighted Distances (MWD) from clients to servers, whereas the second one minimizes the 

sum of the Weighted Minimum Distance (WMD) from clients to the facilities. For the MWD-model on 

trees, they presented some properties of the problem to propose an O(n2) algorithm. They also, 

developed an O(nlogn) algorithm for star graphs, and a linear time algorithm for paths. The WMD 

problem is harder than MWD to solve. Burkard et al. [19] find an O(n3) algorithm for WMD on trees. 

They showed that if the medians should locate only on the nodes, the complexity will be reduced 

to O(n2). These results were improved by Benkoczi et al. [20]. They showed that the MWD model of 2-

median on a tree with positive and negative weights can be solved in O(nlogn) time. For the WMD model 

they developed an O(nhlog2n) algorithm, where h is the height of the tree. In the case that all vertices of 

the tree have negative weights, Burkard et al. [21] showed that an optimal solution of the MWD model 

of 2-median problem can be solved in a linear time. In the case that the underlying network is a cycle, 

Burkard and Hatzl [22] developed a linear and O(n2) algorithm for the MWD and WMD models of 2-
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median problem, respectively. In the case p=3 Burkard and Fathali [23] gave an O(n5) algorithm for the 

WMD model on a tree and an O(n3) algorithm when medians are restricted to nodes. Zaferanieh and Fathali 

[24] considered the case of finding the semi-obnoxious median path in a tree.   

In the classical models of location problems, the facility weights and their availability are known precisely. 

However, in most real-life emergencies, a customer (demand) is likely not to receive immediate service if 

his designated nearest emergency service (facility) is engaged in serving other patients at the time of incident 

(see, Karatas et al. [25]). This is especially common in large scale emergency location problems or in severely 

supplies restricted systems. Cases, where this is observed, include emergency ambulance operations, repair 

crews responding to critical equipment failures, utilization of a limited number of expensive medical 

devices, etc. (see, Weaver and Church [26]). Keeping in mind that the difference between life and death 

can be sometimes measured in minutes (or even seconds), decision makers should take into account the 

issue of congestions and queues and should consider providing backup supplies for demands. When a 

demand nearest (primary) facility is busy, a common approach is to serve the demand with an available 

backup facility. 

Several cases of uncertainty have been defined and studied. Snyder and Daskin [27] investigated the 

reliability location model where servers may fail, and the clients allocated to these servers have to request 

service from other active servers. Wang et al. [28] developed a reliability-based formulation for the 2-

median problem. In their model, each server may fail with a given probability and when a server fails, the 

other server should serve the clients. They called this model as the backup 2-median problem and presented 

an O(nlogn) algorithm for finding the solution of this problem. Cheng et al. [29] developed an O(nlogn+m) 

algorithm for the backup 2-median problem on block graphs, where m is the number of edges of the given 

tree. Fathali [30] investigated the backup multifacility location problem on the plane, and proposed an 

iterative method for solving this problem. Nazari and Fathali [31] and Nazari et al. [32] considered the 

reverse and inverse of backup 2-median problem on trees, respectively. 

The utilization of backup service concept in emergency service systems continued in subsequent studies, 

including recent papers such as Araz et al. [33], Chanta et al. [34], Curtin et al. [35], Janosikova et al. [36] 

and Kordjazi and Kazemi [37], which mostly adopt a multi-objective optimization approach. 

In this paper we investigate the backup semi-obnoxious and obnoxious 2-median problems with MWD 

objective function on trees. The vertex optimality verified for these models. 

In what follows we describe the backup semi-obnoxious and obnoxious 2-median problems in Section 2. 

Some properties of these models on trees are given in sections 3 and 4, respectively.  

2 | Problem Description 

Let T= (V, E) be a tree with 𝑛 vertices. Each vertex vi in the tree T has an arbitrary weight wi. The weight wi 

also called the demand at vi. Let d (x, y) be the length of shortest path between two points x and y in T. The 

2-median problem asks to find a set of 2 vertices, X2={x1,x2} called facilities, so that the sum of the 

weighted distances from the vertices to the closest facility in X2 is minimized, i.e., 

For every edge e(v,u)∈T let Tv be the subtree of T obtained by deleting edge e(v,u) so that v∈Tv, and let 

Tu=T\Tv. Moreover, for each subtree T'⊆T we define W(T')=∑vi∈T' wi. 

Let ρ
1
 and ρ

2
 be the failure probabilities of the two servers in the backup semi-obnoxious 2-median 

problem. In this paper, we suppose that ρ
1
=ρ

2
=ρ. The backup semi-obnoxious 2-median problem, asks to 

min F(X2)=∑wid(X2, vi).

n

i=1

 (1) 
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find the location of servers such that the expected sum of distances from all vertices to the set of 

functioning servers is minimized, i.e., we want to minimize: 

 

 

Let {u1,u2} be a solution of the considered problem. Denote by 𝑚 the midpoint of P(u1,u2), where P(u1,u2) 

is the shortest path between u1 and u2. In fact, m is a point in T such that m∈P(u1,u2) and d(u1,m)=d(u2,m). 

Let e(x,y) be the edge containing 𝑚 in P(u1,u2). Without loss of generality, suppose that vertex x is on the 

path between u1 and 𝑚. Moreover, if m is a vertex of T, we assume that it coincides with x. 

Since d(u1,vi)≤d(u2,vi) and d(u1,vj)>d(u2,vj) for any vertices vi∈Tx and vj∈Ty, then all nonnegative weighted 

vertices in Tx and all negative weighted vertices in Ty are allocated to u1. The rest of vertices are allocated 

to u2. (If m=x we assume that x and all other vertices at the same distance from u1 and u2 are allocated 

to u1.) 

Therefore, we can partition the set of vertices in V into two subsets V1 and V2 as follows: 

 

 

Such that the vertices in V1 are served by u1 and the remaining vertices are served by u2. Let  

 

Then the backup semi-obnoxious 2-median problem can be written as follows: 

  

 

 

 Note that, the obnoxious model is a special case of semi-obnoxious model, in which all vertices have 

negative weights. Therefore, in this case 

 

 

3 | The Properties on Trees  

The vertex optimality property is a basic property of the classical 2-median problem on a network with 

nonnegative weights. This property states that there exists an optimal solution on the set of vertices of 

T [38]. In the case that vertices may have either positive or negative weights, the vertex optimality does 

not hold as shown in [19]. However, on the tree networks, this property holds for MWD model due to 

Burkard et al. [19]. In the following lemma we show that this property also holds for the semi-obnoxious 

and obnoxious backup 2-median problem on trees. 

Lemma 1.  For the tree T, there exists an optimal solution of the semi-obnoxious and obnoxious backup 

2-median problem on vertices of T.  

F(v1,v2)=(1-ρ)∑

v∈V

min
{1≤i≤2}

w(v)d(v,vi)+ρ [∑

v∈V

w(v)d(v,v1)+∑

v∈V

w(v)d(v,v2)] . (2) 

V1={v|d(v,x)≤d(v.y),w(v)≥0}∪{v|d(v,x)≥d(v.y),w(v)≤0}, (3) 

V2=V\V1. (4) 

D(V,u)=∑

v∈V

w(v)d(v,u). (5) 

F(v1,v2)=(1-ρ)[D(V1,v1)+D(V2,v2)]  

+ρ[D(V1,v1)+D(V2,v1)+D(V1,v2)+D(V2,v2)] 

=D(V1,v1)+ρD(V2,v1)+ρD(V1,v2)+D(V2,v2). 

(6) 

V1={v∈V|d(v,x)≥d(v.y)}. (7) 
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Proof. Since the obnoxious model is an especial case of semi-obnoxious model, we proof the lemma for 

the semi-obnoxious case. 

Suppose, to the contrary, there isn’t any optimal solution contains vertices of T. Let {m1,m2} be an optimal 

solution of the considered problem on T, and m1 be a non-vertex of the tree. Let e(vr,vq) be the edge of the 

tree containing m1. Let V1 be the set of vertices of T that allocated to m1. Consider the following function: 

Where V2=V\V1. We have: 

 

 

 

 

 

F(m1,m2)=D(V1,m1)+ρD(V2,m1)+ρD(V1,m2)+D(V2,m2). (8) 

D(V1,m1)+ρD(V2,m1) 

= ∑

v∈V1∩Tvr

w(v)(d(v,vr)+d(vr,m1))+ ∑

v∈V1\Tvr

w(v)(d(v,vr)-d(vr,m1)) 

+ρ [ ∑

v∈V2∩Tvr

w(v)(d(v,vr)+d(vr,m1))+ ∑

v∈V2\Tvr

w(v)(d(v,vr)-d(vr,m1))] 

= ∑

v∈V1∩Tvr

w(v)d(v,vr)+ ∑

v∈V1\Tvr

w(v)d(v,vr) 

+ρ [ ∑

v∈V2∩Tvr

w(v)d(v,vr)+ ∑

v∈V2\Tvr

w(v)d(v,vr)] 

+( ∑

v∈V1∩Tvr

w(v)- ∑

v∈V1\Tvr

w(v)+ρ [ ∑

v∈V2∩Tvr

w(v)- ∑

v∈V2\Tvr

w(v)]) d(vr,m1) 

=D(V1,vr)+ρD(V2,vr) 

+ [2( ∑

v∈V1∩Tvr

w(v)+ρ ∑

v∈V2∩Tvr

w(v)) -w(TV1
)-ρw(T(V2))] d(vr,m1). 

(9) 
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 Let 

 

 

So 

 

Now if K≥0 since d(vr,vi)<d(vr,m1) for every point vi in P(vr,m1) then F(vi,m2)<F(m1,m2), which contradicts the 

optimality of {m1,m2}. 

 If K<0 since d(vr,vj)>d(vr,m1) for every point 𝑣𝑗 in P(m1,vq) then F(vq,m2)<F(m1,m2) which vq and m2 are 

vertices. But this contradicts with our assumption that {m1,m2} is an optimal solution. 

An efficient method for 2-median problem on a tree is edge deletion method. This method developed 

for the problem with positive and negative weights by Burkard et al. [19]. The edge deletion method has 

been also applied to find the solution of backup 2-median problem with positive weights on a tree by 

Wang et al. [28]. However, this method does not work for the semi-obnoxious 2-median problem. We 

can find the optimal solution, using vertex optimality property, in O(n3) time. 

In the next section we investigate the obnoxious case where the weights of all vertices are negative. 

4 | The Obnoxious Backup 2-Median  

Note that the obnoxious problem is a special case of semi-obnoxious model, in which we don’t have 

any vertex with positive weight. Therefore, the vertex optimality holds for obnoxious backup 2-median 

problem. In this section we consider the obnoxious model and discuss some properties for this case. 

The obnoxious backup 2-median problem is equivalent to the backup 2-maxian problem. In the backup 

2-maxian problem the weights of all vertices in tree are positive, i.e., w(v)≥0 for v∈V, and the following 

objective function should be maximized 

 

 

Due to Burkard et al. [21] the solution of 2-maxian problem on trees is the two end vertices of the 

longest path of tree. In Example 1, we show this property does not hold for the backup 2-maxian 

problem. 

Example 1. Consider the tree depicted in Fig. 1. In the case ρ=0 we have the 2-maxian problem, therefor, 

the two ends of longest path i.e., {v1,v4}, is the optimal solution with the value of objective function 

F1(v1,v4)=45.5. However, in the case ρ>0 the objective function for this solution can be obtained as follow 

 

Now consider the solution {v1,v3}. The value of objective function for this solution is 

 

If 0.185<ρ≤1 then F1(v1,v3)<F1(v1,v4). Therefore, the longest path is not the optimal solution in this case.  

Fig. 2 shows the value of objective functions for three solutions {v1,v4}, {v1,v3} and {v4,v3} for varying 

values of ρ. 

K= [2( ∑

v∈V1∩Tvr

w(v)+ρ ∑

v∈V2∩Tvr

w(v)) -w(TV1
)-ρw(T(V2))] . (10) 

D(V1,m1)+ρD(V2,m1)=D(V1,vr)+ρD(V2,vr)+Kd(vr,m1). (11) 

F1(v1,v2)=(1-ρ)∑

v∈V

maxi=1,2w(v)d(v,vi)+ρ [∑

v∈V

w(v)d(v,v1)       +∑

v∈V

w(v)d(v,v2)] . (12) 

F1(v1,v4)=(1-ρ)45.5+ρ(25.5+25.5)=45.5+5.5ρ. (13) 

F1(v1,v3)=(1-ρ)43+ρ(25.5+36.5)=43+19ρ. (14) 
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Fig. 1. The optimal solution of backup 2-maxian problem contains no both two ends of longest path of the 

tree. 

Fig. 2. The value of objective functions in example 1 respect to 𝟎 ≤ 𝝆 ≤ 𝟏. 

Ting [39] showed that the optimal solution of 1-maxian problem is on the leaves of the tree and the optimal 

solution of 2-maxian, as mentioned previously in this section, is the two end vertices of the longest path. 

However, the following example shows that an optimal solution is not necessarily on the set of leaves of 

the tree anymore. 

Example 2. Consider the path depicted in Fig. 3. The value of objective function for the solution {v1,v5} 

is F1(v1,v5)=(1-ρ)(7+52)+ρ(15+53)=59+9ρ. On the other hand, the value of objective function for {v2,v5} can 

be calculated as:  

 

Therefore, if 59+9ρ≤57+14ρ or 
2

5
<ρ≤1, then F1(v2,v5)>F1(v1,v5). Thus, the end vertex v1 is not a part of 

solution anymore.  

 

Fig. 3. A path with 5 vertices. 

Fig. 4 shows the value of objective functions for the solutions {v1,v5} and {v2,v5} for varying values of ρ. 

 

 

F1(v2,v5)=(1-ρ)(5+52)+ρ(18+53)=57+14ρ. (15) 
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Fig. 4. The value of objective functions in example 2 respect to 𝟎 ≤ 𝝆 ≤ 𝟏. 

To find the optimal solution of backup 2-maxian problem, we should compare the objective function 

of (
2

n) solution. Thus, the time complexity is O(n3). 

In summary, using the obtained results in this paper, we will see that just the vertex optimality property 

holds for the both obnoxious and semi-obnoxious backup 2-median problems on a tree. However, the 

optimal solution of these problems can be found in polynomial times.    

5 | Summary and Conclusion 

In this paper we studied the semi-obnoxious and obnoxious versions of the backup 2-median problem 

on trees. In the classical 2-median problem we should find the location of two servers on the tree so 

that the sum of the minimum weighted distances from all vertices to the closest severs is minimized. In 

the semi-obnoxious case, every vertex has either a positive or a negative weight, whereas in the 

obnoxious model all vertices have negative weights. In these two problems the vertices with positive 

and negative weights are allocated to the closest and farthest servers, respectively. In the backup models 

the servers may fail and if a server fails, the functioning server should serve the clients. We investigated 

the vertex optimality for the semi-obnoxious and obnoxious backup 2-median problem on trees. For 

the obnoxious model it has been shown that the optimal solution may not happens on the leaves of the 

tree. 
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