Document Type : Research Paper


Department of Mathematics, College of Natural and Computational Science, Wollega University, Nekemte, Ethiopia.


In this paper, optimal control problem is applied to Human Papillomavirus (HPV) and Herpes Simplex Virus type 2 (HSV-2) coinfection model formulated by a system of ordinary differential equations. Optimal control strategy is employed to study the effect of combining different intervention strategy on the transmission dynamics of HPV-HSV-II coinfection diseases. The necessary conditions for the existence of the optimal controls are established using Pontryagin’s Maximum Principle. Optimal control systems were performed with help of Runge-Kutta forward-backward sweep numerical approximation method. Finally, numerical simulation illustrated that a combination of all controls is the most effective strategy to minimize the disease from the community. The results shows that the size of infectious population are minimized by using different control strategies.


Main Subjects

  1. Schiffman, M., & Castle, P. E. (2003). Human papillomavirus: epidemiology and public health. Archives of pathology & laboratory medicine127(8), 930-934.
  2. Bruni, L. B. R. L., Barrionuevo-Rosas, L., Albero, G., Aldea, M., Serrano, B., Valencia, S., ... & Castellsagué, X. (2015). Human papillomavirus and related diseases in the world. Retrieved from
  3. Reid, R., Stanhope, C. R., Herschman, B. R., Booth, E., Phibbs, G. D., & Smith, J. P. (1982). Genital warts and cervical cancer. I. Evidence of an association between subclinical papillomavirus infection and cervical malignancy. Cancer50(2), 377-387.
  4. World Health Organization. (2017). WHO list of priority medical devices for cancer management. World Health Organization.
  5. Wardak, S. (2016). Human papillomavirus (HPV) and cervical cancer. Medycyna doswiadczalna i mikrobiologia68(1), 73-84.
  6. Mustafa, M., Illzam, E., Muniandy, R., Sharifah, A., Nang, M., & Ramesh, B. (2016). Herpes simplex virus infections, pathophysiology and management. IOSR J dent med sci15(07), 85-91.
  7. Patel, R., Kennedy, O. J., Clarke, E., Geretti, A., Nilsen, A., Lautenschlager, S., ... & Foley, E. (2017). 2017 European guidelines for the management of genital herpes. International journal of STD & AIDS28(14), 1366-1379.
  8. World Health Organization. (2016). WHO guidelines for the treatment of genital herpes simplex virus. Retrieved from
  9. Looker, K. J., Magaret, A. S., Turner, K. M., Vickerman, P., Gottlieb, S. L., & Newman, L. M. (2015). Global estimates of prevalent and incident herpes simplex virus type 2 infections in 2012. PloS one10(1), e114989.
  10. Gurmu, E. D., Bole, B. K., & Koya, P. R. (2020). A Mathematical model for co-infection of HPV and HSV-II with drug resistance compartment.  J. Sci. Res. in mathematical and statistical sciences Vol7(2), 34-46.
  11. Fleming, W. H., & Rishel, R. W. (2012). Deterministic and stochastic optimal control(Vol. 1). Springer Science & Business Media.
  12. Kumar, A., Srivastava, P. K., Dong, Y., & Takeuchi, Y. (2020). Optimal control of infectious disease: Information-induced vaccination and limited treatment. Physica A: statistical mechanics and its applications542, 123196.
  13. Berhe, H. W., Makinde, O. D., & Theuri, D. M. (2019). Co-dynamics of measles and dysentery diarrhea diseases with optimal control and cost-effectiveness analysis. Applied mathematics and computation347, 903-921.
  14. Pontryagin, L. S. (2018). Mathematical theory of optimal processes. CRC Press.
  15. Panetta, J. C., & Fister, K. R. (2000). Optimal control applied to cell-cycle-specific cancer chemotherapy. SIAM journal on applied mathematics60(3), 1059-1072.
  16. Naik, P. A., Yavuz, M., Qureshi, S., Zu, J., & Townley, S. (2020). Modeling and analysis of COVID-19 epidemics with treatment in fractional derivatives using real data from Pakistan. The European physical journal plus135(10), 1-42.
  17. Naik, P. A. (2020). Global dynamics of a fractional-order SIR epidemic model with memory. International journal of biomathematics13(08), 2050071.
  18. Naik, P. A., Zu, J., & Owolabi, K. M. (2020). Modeling the mechanics of viral kinetics under immune control during primary infection of HIV-1 with treatment in fractional order. Physica A: statistical mechanics and its applications545, 123816.
  19. Naik, P. A., Zu, J., & Owolabi, K. M. (2020). Global dynamics of a fractional order model for the transmission of HIV epidemic with optimal control. Chaos, solitons & fractals138, 109826.
  20. Naik, P. A., Zu, J., & Ghoreishi, M. (2020). Stability analysis and approximate solution of SIR epidemic model with Crowley-Martin type functional response and holling type-Ⅱ treatment rate by using homotopy analysis method. Journal of applied analysis & computation10(4), 1482-1515.
  21. Naik, P. A., Owolabi, K. M., Yavuz, M., & Zu, J. (2020). Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells. Chaos, solitons & fractals140, 110272.
  22. Naik, P. A., Yavuz, M., & Zu, J. (2020). The role of prostitution on HIV transmission with memory: a modeling approach. Alexandria engineering journal59(4), 2513-2531.
  23. Ribassin-Majed, L., & Lounes, R. (2011). A SIS model for human papillomavirus transmission. Retrieved from
  24. Taira, A. V., Neukermans, C. P., & Sanders, G. D. (2004). Evaluating human papillomavirus vaccination programs. Emerging infectious diseases10(11), 1915-1923.
  25. Ribassin-Majed, L., Lounes, R., & Clémençon, S. (2012). Efficacy of vaccination against HPV infections to prevent cervical cancer in France: present assessment and pathways to improve vaccination policies. PloS one7(3), e32251.