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Abstract 

1 | Introduction 

In each production system, human error is the main source of concern for managers. Although 

many production systems have been automated by using digital machines and equipment, human 

error has not been eliminated considerably and a high proportion of errors in many industries are 

derived from humans. For example, in chemical production systems 60-90% of error happens 

because of human failure [1]. 

Human errors can be divided into two categories according to their impact on production systems. 

The low and high impact categories. Low impact leads to produce poor quality and defective 

production [2]. But in critical industries such as nuclear or chemical industries, human errors in 

the high impact category can cause a fatal failure and impose a high risk to production systems 

[3]. Human errors also decrease productivity and increase undesirable costs such as idle cost, 

backorder cost, and quality cost.  
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Many researchers investigated human error and attempted to quantify the Human Errors Probability 

(HEP) as a function of the human type, work type and environmental factors [4]. These attempts lead to 

propose Human Reliability Analysis (HRA) methods by researchers. 

The HRA methods were developed with the quantitative methods in the first generation and the qualitative 

methods in the second one, and in recent year dynamic HRA attracted the researchers' attention as the 

third generation [5]-[6]. The first generation includes many methods such as Technique for Human Error 

Rate Prediction (THERP) [7], Human Cognition Reliability (HCR)[8]. The first generation methods use a 

simple "fits" or "doesn’t fit" dichotomy to match the error scenario to error identification and 

quantification. But second generation methods such as Cognitive Reliability and Error Analysis Method 

(CREAM)[9] and [10] use a theory-based error taxonomy and complex match of error scenarios to error 

identification and quantification. In these methods Performance Shaping Factors (PSFs) with multiple 

levels of assignment utilized to indicate degrees of degraded or enhance performance relative to nominal. 

In recent years, dynamic HRM has become an interesting issue for study since many parameters influence 

human reliability and the effect of these parameters on human reliability cannot be calculated by the exact 

algorithm. Chang and Mosleh [11]-[15] room operating crew in nuclear power plants to use this method in 

proposed the Information Decision and Action in Crew (IDAC) context for HRA. The model was 

developed to predict the responses of the control Probabilistic Risk Assessments (PRA). Trucco and Leva 

[16] developed a new probabilistic cognitive simulator (PROCOS) to obtain the errors of human in 

operational systems, they used the quantification susceptibilities of the first-generation HRA with a 

cognitive evaluation for an operator. Kim et al.[17]  proposed a scheme to classify the erroneous behaviors 

identified by simulator data. Pasquale et al. [18] proposed the Simulator for Human Error Probability 

Analysis (SHERPA), and utilized the advantages of the simulation technique and the traditional HRA 

methods to model human behavior and obtain the error probability for a specific scenario in production 

systems. In these models, the effect of PSFs has been simulated and the results are used to predict the 

HEP [18]. Pandya et al. [19] proposed a methodology to support a systematic and traceable process to 

develop the generic task type–performance-influencing factor structure, to ease the review of the HRA 

process. Pandya et al. [20] proposed a model for HRA quantification based on expert judgment 

aggregation. Laumann investigated the quality criteria for qualitative HRA method to make the HRA results 

more accurate [21].  

Simulation of the PSFs effect on HEP requires the occurrence probability of each PSFs and the manner 

of PSFs effect on HEP. In many real situations, these data are not available or accurate. Also, most HRA 

methods have been developed in a specific context, such as nuclear power plants and fewer methods have 

been proposed for production systems. Also, some HRA methods such as HEART (Human Error 

Assessment and Reduction Technique) and SHERPA proposed some PSFs and calculate the HEP base 

on these factors, lack of attention to the factors dependency is one of the shortcomings of these methods 

that causes error in HEP calculation. All PSFs should be considered together to investigate their effect on 

human error. Another issue is that not all PSFs need to be used and the most important ones should be 

considered to reduce the cost and time of the HRA. In this paper, we propose a method to eliminate the 

mentioned defects by Artificial Neural Networks (ANN) and Response Surface Method (RSM), The ANN 

considers the PSFs dependency and RSM selects the most important PSFs. This method reduces the cost, 

and time in HEP calculation and makes results closer to reality. This method uses the neural network to 

calculate the HEP based on several environmental, work (duration, type), and human (age, sex) factors and 

their dependency, and RSM to investigate the effect of each PSF on human error and eliminated PSFs with 

insignificant effect. Since we consider factors dependency, the results are more accurate and reliable.  

 The rest of the paper is organized as follows: Section 2 presents the research methodology and describes 

the HEP calculation method, PSFs and ANN. Section 3 is the finding and discussion section that describes 

the ANNHRA framework and proposes the framework procedure for a real case, and finally, Section 4 

concludes the paper. 
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2 | Research Methodology 

In this section, the methods used in this paper such as HEP calculation method, PSFs, ANN and RSM 

are presented. 

2.1 | Human Error Probability Calculation  

According to The THERP method, HRA aims to find the contribution of human reliability to the system 

reliability, that is to say, the aim is to predict human error probability and assess the total unreliability of 

human–machine systems likely to be caused by a human in association with equipment, machines, 

procedures, and human characteristics which influence the production system [22]. The first step in the 

HRA is error identification. In this step, all probable errors should be identified with their consequences. 

The second step is calculating the occurrence probability of each identified error and the final step is 

the reduction of error probability. Kirwan [23] proposed that the HEP can be calculated as follows: 

 

The OEN is the number of occurred errors and PEN is the number of potential errors. For example, if 

the opportunity for a specific error is 20 times and the error occurs 10 times the HEP is equal to 50%. 

It should be noted that data gathering to use this formula is not simple, some researchers presented that 

HEP is derived from four Contextual Control Modes (CoCoMs), scrambled, opportunistic, tactical, and 

strategic in the first generation and several PSFs such as stress and complexity, but dynamic HRA 

presented that HEP is a result of human performance factor relations and dependencies such as work 

type and work time [24]. 

2.2 |  Performance Shaping Factors 

PSF was advocated by Swain [25] first time and is usually treated as ‘‘the regulation item for the 

introduction of the error rate’’ or ‘‘the providing items for the prediction of human error’’. PSFs are the 

aspects of human behavior and the context that can impact human resource performance, these factors 

were viewed in terms of the effects, they might exert on human performance such as work efficiency 

and system reliability. Many PSFs and categories have been proposed by researchers for different 

systems such as nuclear or power plants [26], [27] and [28]. 

In practice, the number of PSFs that are included in HRA methods lies between these 1 to 60 PSFs. For 

example, the SPAR-H method [22], which is widely used in the US nuclear industry, includes eight PSFs. 

The internationally widely used CREAM [29] uses nine PSFs. Boring studied the important PSFs and 

proposed 8 PSFs that are considered in common HRA methods [30]. These PSFs are as follows: 

 Available time, 

 Stress, 

 Complexity, 

 Experience and training, 

 Procedures, 

 Ergonomics, 

 Fitness for duty, 

 Work process. 

PSFs may have a negative impact or a positive impact on human error. When the influencing factor 

represents a positive impact, it corresponds to a value less than one; which is used to decrease the HEP 

value. Also, the PSF represents a negative impact, it corresponds to a value greater than one and leads 

to decreases the HEP. The total impact of PSFs is calculated using Eq. (2). 

HEPnominal=
OEN

PEN
. (1) 
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Eq. (2) shows that the total impact of PSFs is the multiplication of each PSF impact (IPSF). The HEP 

formulation has been shown by Eq. (3). 

Although Eq. (3) is used to obtain the human error probability considering the PSFs in some mentioned 

methods. In this paper, we investigate the impact of PSFs on HEP separately, the PSFs impact on HEP 

are evaluated by ANN. That is to say, in the proposed method the value of HEPcomposite is predicted by 

ANN and there is no need to calculate the HEPnominal in the first step. 

2.3 | Artificial Neural Network 

ANN are well known since they can process a huge amount of information through an interconnected 

network with several nodes in many layers [31]. The information flow is related to the network architecture 

which mimics the one present in the neurons of the human body. Since ANN is an imitation of nature and 

the human body, it includes several steps such as recognition, verification, optimization, and prediction. 

The ANN aims to understand the effect of parameters (inputs) on a result (output) in different systems. 

After selecting the input parameters, the learning process starts with the training and testing steps. Also, it 

can be done after standardizing and eliminating the outliers of the input parameters [32]. The schema of 

ANN has been shown in Fig. 1. 

Fig. 1. The schema of ANN. 

In the learning process, different networks can be selected and examined for obtaining their performance 

by altering the layers and nodes number, the transfer functions' shape, and the learning algorithm. To 

evaluate the accuracy of different networks, Eq. (4) minimizes the overall error between the targets and 

calculated values. 

 

 

In Eq. (4) y
i
' and y

i
  are the actual and estimated output values, and N is the number of input data points. 

In this paper, we use the ANN to obtain the effect of PSFs on the HEP. In the prior researches, some 

coefficients have been proposed for each PSF that show the effect of PSF on the HEP. For example, the 

SPAR-H method proposed a table for PSFs value in different situations and the systems. Table 1 shows 

the weight for different manners of available time as a PSF. 

Total PSFs Impact=IPSF1*IPSF2*…*IPSF8. (2) 

HEPcomposite=
HEPnominal.PSFtotal

HEPnominal.(PSFtotal-1)+1
. (3) 

R2=1-
∑ (y

i
'-y

i
)
2N

i=1

∑ (y
i
'- ∑ y

i
'/NN

i=1 )
2N

i=1

. (4) 
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Table 1. The PSF weight for available time. 

 

 

 

 

As could be seen in Table 1 the system and environment have no effect on PSF weight, but the weight 

of the PSF level should be varied based on system type and environment conditions. Considering this 

fact, all PSF levels have some error and multiplication of this error leads to a significant error in total 

HEP.  

In this paper, we provide the actual effect of the PSFs level by using the ANN method. Using this 

method can make us sure that the total HEP value has not a significant error and is reliable. Selecting 

the important PSFs and the environmental conditions depends on the experts’ opinion and in experts’ 

opinion we confront a specific level of error and inconsistency. Using ANN can reduce this error and 

predict more accurate HEP value based on PSFs in different work environments.  

2.4 | RSM 

The RSM has been proposed by box and his collaborators [33]. This method was derived from the 

multi-dimensional graph to assess the fitness of the mathematical model. RSM consists of a group of 

techniques that aim to fit an empirical model based on the experimental data, to achieve this goal, linear 

or square polynomial functions are employed to describe the system studied and, to optimize the 

experimental conditions to propose the optimal configuration of input parameters [34]. RSM can be 

summarized in six steps. The first step is the selection of independent inputs that influence the results. 

The second step is designing an experimental matrix and carrying out the experiments according to the 

selected experimental matrix. The third step is fitting a function to obtain the mathematic–statistical 

treatment of experimental data. The fitness evaluation of the obtained model is the fourth step. 

Verification of the necessity and possibility of performing a displacement in direction for the optimal 

region is the fifth step. Finally providing the optimum value for each input is the sixth step. The 

application of RSM in the proposed framework is described in the next section. 

3 | Finding & Discussion 

In this section, we propose the ANNHRA framework and its procedure to calculate the human error 

and reliability, and examine the effectiveness of the proposed framework using a set of data from a real 

case. The provided results verify the framework effectiveness in human error and human reliability 

calculation. 

3.1 | ANNHRA Framework 

he proposed framework to assess human reliability is shown in Fig. 2. As could be seen the framework 

has two subsystems, the first is ANN that evaluates the effect of PSFs and the second is RSM which 

identifies the most effective PSFs in different systems. This framework will be repeated until the results 

converge. This framework proposed the HEP value and provide the most effective PSFs in different 

systems that lead to reduce the time and cost in data gathering and increase the accuracy of HEP value. 

PSF level (Available Time) Multipliers Action Multipliers 
Diagnosis 

Inadequate Time P (failure) =1 P (failure) =1 
Time available = time required/Barely adequate time 10 10 
Nominal time 1 1 
Time available > 5 x time required Extra time 0.1 0.1 
Time available > 50 x time required Expansive time 0.01 0.01 
Insufficient information Nominal time Nominal time 
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Fig. 2. The proposed framework to assess the human reliability. 

3.2 | Framework Procedure 

To illustrate the procedure of the proposed framework we investigated a real case. In this case, a lathing 

workshop with three human resources and 8 PSFs have been considered. The aim is to find the most 

important PSFs and their dependencies for calculating the HEP to reduce the cost of gathering information 

and sampling in the production system. First of all, we used some samples to provide HEP and ANN to 

predict HEP for other sets of PSFs. We considered several works with different conditions and calculated 

the related PSFs value according to the works and their implementation conditions. The PSFs multipliers 

like what was mentioned in Table 1 can be found in [35] and [36]. To calculate the HEP, we implemented 

a set of works by a set of workers and calculated the failure probability by doing works repeatedly (at least 

100 times for each work). Table 2 shows the HEP and PSFs for each work. 

Table 2. Instances detail PSFs. 
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H
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P
 

Ins 1 0.1 2 5 3 20 0.5 5 0.5 0.155 

Ins2 10 2 2 0.5 1 10 1 0.5 0.13 

Ins 3 10 1 2 1 50 1 5 5 0.15 

Ins 4 0.1 1 1 1 5 0.5 1 0.5 0.04 

Ins 5 10 2 5 3 50 1 5 5 0.2 

Ins 6 0.1 2 5 0.5 1 1 5 1 0.09 

Ins 7 0.01 1 1 0.5 1 1 1 5 0.03 

Ins 8 1 5 2 1 1 1 1 5 0.1 

Ins 9 0.01 5 2 0.5 1 10 5 5 0.165 

Ins 10 10 2 1 3 1 10 5 5 0.18 
Ins 11 1 1 5 0.5 1 10 1 5 0.11 

Ins 12 0.1 5 5 3 50 10 1 1 0.19 

Ins 13 0.01 5 5 0.5 20 10 5 0.5 0.17 

Ins 14 0.1 5 2 3 5 0.5 5 1 0.15 

Ins 15 0.1 5 2 3 5 0.5 5 1 0.16 

Organize 

Input

Training 

Data Set

Test Data 

Set

Feature 

Selection

Training of 

The ANN

ANN output ANN output

ANN out 
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As could be seen, several combinations of PSFs and their effects on the HEP have been calculated 

according to work and the workers’ conditions. By using ANN, the framework aims to calculate the 

HEP and provide a function to determine the HEP according to PSFs. 

In the first step, the PSFs value should be normalized to [0,1]. In this case, a simple normalization 

scheme is adopted as follows: 

 

 

The normalized PSFs and their related HEP are fed into the network shown in Fig. 3 for training. There 

are many algorithms for ANN training. These algorithms usually search ANN parameters that minimize 

the deviation of predicted values from the measured values. 

The proposed ANN has three layers: the input layer, the hidden layer, and the output layer. It has 8 

inputs (number of PSFs) with one output (The HEP value). To overcome the over fitting problem, the 

hidden node number should not be very large. With some practical guidelines, this number is selected 

to be the same as the number of input nodes. 

 

Fig. 3. The ANN layers schema. 

The results of the proposed ANN for historical data are shown in Table 3. Since the ANN is initialized 

randomly before training, several replicated runs are usually done with different initialization, and the 

average is used as the estimated HEP. To assess the performance of the proposed ANN the Square 

Error (SE) is calculated for each instance. According to SE value, the Mean Square Error (MSE) is 

calculated to evaluate the fitness of the ANN function. The MSE is equal to 5.24E-04 for Table1. 

To make it clearer, the HEP and Estimated HEP are illustrated in Fig. 4. As could be seen the difference 

between HEP and Estimated HEP is large in some instances. To eliminate this tolerance the RSM 

should be used to refine the PSFs and select the most effective PSFs. 

 

 

 

 

HEP

PSF1

PSF2

PSF3

PSF7

PSF8

PSFi

j norm
=

PSFi

j

PSFmax
j

. (5) 
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Table 3. The results of ANN. 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The original HEP vs. HEP proposed By ANN. 

In RSM, we have eight factors and the full RSM requires 282 runs with 10 center points. To reduce the 

run number we use the "Min Run Res V" method. In this method the number of runs is equal to 60 and 

the number of the center points is 6. Table 4 shows the RSM design for 8 PSFs, the reliability (1-HEP) for 

each design has been calculated by ANN. 

 

 

 
HEP Estimated 

HEP 
(ANN) 

SE 

Ins 1 0.155 0.134 4.41E-04 

Ins2 0.132 0.161 8.41E-04 

Ins 3 0.151 0.162 1.21E-04 

Ins 4 0.046 0.064 3.24E-04 

Ins 5 0.223 0.263 1.60E-03 

Ins 6 0.098 0.0851 1.66E-04 

Ins 7 0.032 0.046 1.96E-04 

Ins 8 0.136 0.112 5.76E-04 

Ins 9 0.165 0.175 1.00E-04 

Ins 10 0.182 0.154 7.84E-04 

Ins 11 0.112 0.127 2.25E-04 

Ins 12 0.193 0.175 3.24E-04 

Ins 13 0.172 0.196 5.76E-04 

Ins 14 0.153 0.186 1.09E-03 

Ins 15 0.164 0.142 4.84E-04 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. The RSM design for 8 PSFs. 
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22  1 0.80 0.36 0.84 0.83 0.80 0.81 0.84 0.82 83.47 58 31 0.50 0.60 0.60 0.58 0.51 0.53 0.60 0.55 85.78 
52  2 0.50 0.60 0.60 0.58 0.51 0.53 1.00 0.55 87.51 48 32 0.50 0.60 0.60 0.58 1.00 0.53 0.60 0.55 79.96 
12  3 0.20 0.36 0.84 0.33 0.22 0.24 0.84 0.82 85.83 40 33 1.00 0.60 0.60 0.58 0.51 0.53 0.60 0.55 88.27 
41  4 0.50 0.20 0.60 0.58 0.51 0.53 0.60 0.55 92.78 29 34 0.80 0.36 0.36 0.83 0.22 0.81 0.84 0.28 90.57 
15  5 0.80 0.84 0.36 0.33 0.22 0.81 0.84 0.82 90.94 33 35 0.80 0.84 0.36 0.33 0.80 0.24 0.36 0.28 93.68 
26  6 0.20 0.36 0.36 0.83 0.22 0.24 0.84 0.82 81.05 32 36 0.20 0.36 0.36 0.83 0.80 0.24 0.36 0.28 93.32 
28  7 0.20 0.84 0.36 0.83 0.80 0.81 0.84 0.28 91.78 9 37 0.80 0.84 0.84 0.83 0.22 0.81 0.84 0.28 91.78 
34  8 0.20 0.36 0.84 0.83 0.80 0.24 0.84 0.28 84.02 21 38 0.20 0.36 0.84 0.83 0.80 0.81 0.36 0.82 86.74 
44  9 0.50 0.60 1.00 0.58 0.51 0.53 0.60 0.55 80.07 20 39 0.20 0.84 0.36 0.33 0.22 0.24 0.36 0.82 78.06 
54  10 0.50 0.60 0.60 0.58 0.51 0.53 0.60 1.00 74.70 47 40 0.50 0.60 0.60 0.58 0.02 0.53 0.60 0.55 87.39 
60  11 0.50 0.60 0.60 0.58 0.51 0.53 0.60 0.55 82.52 46 41 0.50 0.60 0.60 1.00 0.51 0.53 0.60 0.55 96.05 
25  12 0.20 0.36 0.36 0.33 0.80 0.81 0.84 0.28 82.35 19 42 0.80 0.36 0.84 0.33 0.22 0.81 0.84 0.28 89.59 
53  13 0.50 0.60 0.60 0.58 0.51 0.53 0.60 0.10 97.52 39 43 0.00 0.60 0.60 0.58 0.51 0.53 0.60 0.55 89.90 
42  14 0.50 1.00 0.60 0.58 0.51 0.53 0.60 0.55 85.56 10 44 0.20 0.84 0.84 0.83 0.22 0.24 0.84 0.82 81.32 
35  15 0.20 0.84 0.36 0.33 0.22 0.24 0.84 0.28 81.77 2 45 0.20 0.84 0.36 0.33 0.22 0.81 0.36 0.28 89.34 
                       
23  16 0.20 0.36 0.84 0.83 0.22 0.24 0.36 0.28 78.02 1 46 0.20 0.84 0.36 0.83 0.22 0.81 0.36 0.82 95.72 
24  17 0.80 0.84 0.36 0.83 0.22 0.24 0.36 0.28 94.53 59 47 0.50 0.60 0.60 0.58 0.51 0.53 0.60 0.55 79.17 
55  18 0.50 0.60 0.60 0.58 0.51 0.53 0.60 0.55 80.57 43 48 0.50 0.60 0.20 0.58 0.51 0.53 0.60 0.55 75.82 
4  19 0.80 0.84 0.36 0.33 0.80 0.81 0.84 0.28 90.42 18 49 0.20 0.36 0.36 0.33 0.22 0.81 0.36 0.82 81.58 
37  20 0.20 0.84 0.36 0.33 0.80 0.81 0.84 0.82 76.01 6 50 0.20 0.36 0.84 0.33 0.80 0.24 0.36 0.28 86.68 
30  21 0.80 0.36 0.84 0.83 0.22 0.24 0.84 0.82 87.93 36 51 0.80 0.36 0.84 0.83 0.80 0.81 0.36 0.28 85.97 
51  22 0.50 0.60 0.60 0.58 0.51 0.53 0.20 0.55 90.27 49 52 0.50 0.60 0.60 0.58 0.51 0.05 0.60 0.55 91.56 
14  23 0.80 0.36 0.36 0.33 0.80 0.81 0.36 0.82 83.19 45 53 0.50 0.60 0.60 0.16 0.51 0.53 0.60 0.55 97.51 
31  24 0.20 0.84 0.84 0.33 0.80 0.81 0.84 0.28 86.19 7 54 0.80 0.84 0.36 0.83 0.80 0.24 0.84 0.82 75.95 
16  25 0.80 0.84 0.84 0.33 0.80 0.24 0.84 0.82 84.82 3 55 0.80 0.84 0.84 0.83 0.80 0.81 0.36 0.82 88.15 
38  26 0.80 0.36 0.36 0.33 0.22 0.24 0.36 0.28 96.85 27 56 0.80 0.36 0.36 0.33 0.80 0.24 0.84 0.82 96.28 
11  27 0.80 0.36 0.84 0.83 0.80 0.24 0.36 0.82 83.14 50 57 0.50 0.60 0.60 0.58 0.51 1.00 0.60 0.55 74.55 
13  28 0.80 0.84 0.84 0.33 0.22 0.24 0.36 0.28 96.19 57 58 0.50 0.60 0.60 0.58 0.51 0.53 0.60 0.55 92.67 
56  29 0.50 0.60 0.60 0.58 0.51 0.53 0.60 0.55 96.37 5 59 0.20 0.84 0.84 0.83 0.80 0.24 0.36 0.28 94.98 
17  30 0.80 0.36 0.84 0.83 0.22 0.81 0.36 0.82 78.21 8 60 0.20 0.84 0.84 0.33 0.22 0.81 0.36 0.82 76.41 
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The above designs have been investigated by RSM, and a quadratic model has been selected to use for the 

fitting process. The result of the ANOVA test is shown in Table 5. According to Table 5, the Model F-value 

of 4.65 implies the model is significant. There is only a 0.01% chance that a "Model F-Value" this large 

could occur due to noise. Also, the "Lack of Fit F-value" of 0.38 implies the "Lack of Fit" is not significant 

relative to the pure error. There is a 96.30% chance that a "Lack of Fit F-value" this large could occur due 

to noise. 

Table 5. The result of ANOVA for RSM designs. 

 

The final equation proposed by RSM is as follows: 

Reliability^3 = +8.21001E+005 +7.00605E+005*Available Time -2.14049E+005 *Stress 

+1.41735E+006*Complexity -1.79156E+006* Experience And Training -4.82962E+005 *Ergonomics 

+2.92725E+005 * Fitness For Duty -2.62798E+005 * Work Process -6.94343E+005 * Available Time * 

Experience And Training -3.17430E+005 * Available Time * Ergonomics +5.35751E+005 * Stress * 

Experience And Training +5.10007E+005 * Stress * Ergonomics -5.93368E+005 * Stress * Fitness For 

Duty  +5.21145E+005 * Experience And Training * Ergonomics -1.21129E+006 * Complexity^2 

+1.35036E+006 * Experience And Training^2. 

To illustrate the robustness of the proposed equation by RSM the original reliability and the predicted 

reliability are shown in Fig. 5. The proposed graph indicates that the RSM equation effectively predicts the 

reliability value for each design.  

Source Sum Of 
Squares 

Df Mean 
Square 

F Value P-Value 
 

Model 8.0622E+11 15 5.37E+10 4.64885 < 0.0001 Significant 

A-Available Time 60659292101 1 6.07E+10 5.246629 0.0268 
 

B-Stress 163330712.9 1 1.63E+08 0.014127 0.9059 
 

C-Complexity 2855478876 1 2.86E+09 0.24698 0.6217 
 

D-Experience And 
Training 

1238037384 1 1.24E+09 0.107082 0.7450 
 

F-Ergonomics 3675806671 1 3.68E+09 0.317933 0.5757 
 

G-Fitness For Duty  9371607097 1 9.37E+09 0.810582 0.3728 
 

H-Work Process 2.08453E+11 1 2.08E+11 18.0298 0.0001 
 

AD 92996049608 1 9.3E+10 8.043546 0.0069 
 

AF 23260353958 1 2.33E+10 2.011867 0.1631 
 

BD 36896245096 1 3.69E+10 3.191282 0.0809 
 

BF 41169334214 1 4.12E+10 3.560876 0.0658 
 

BG 41678085594 1 4.17E+10 3.60488 0.0642 
 

DF 47101313124 1 4.71E+10 4.073954 0.0497 
 

C^2 95926695605 1 9.59E+10 8.297028 0.0061 
 

D^2 1.4491E+11 1 1.45E+11 12.53377 0.0010 
 

Residual 5.08709E+11 44 1.16E+10 
   

Lack of Fit 3.79594E+11 39 9.73E+09 0.376917 0.9630 Not 
significant 

Pure Error 1.29116E+11 5 2.58E+10 
   

Cor Total 1.31493E+12 59 
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Fig. 5. The original reliability and the predicted reliability. 

Other graphs such as residual normal plot, and residual vs. predicted are shown in Fig. 6. Fig. 6.a shows 

that all points fall on the line and the framework fits the data well. For a well-fitted model, the residuals 

plotted with respect to predicted values should not follow any particular pattern and should be 

symmetrically distributed with respect to the center line, Fig. 6b follows these rules and indicates that the 

framework is well fitted. 

a 
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                               b 

Fig. 6. The related graph for RSM: a. normal plot of residuals, b. residuals vs. predicted. 

It is understood from the obtained results that the fourth PSF (Procedures) is not effective in reliability (1-

HEP) and we can eliminate this PSF to increase the accuracy of the ANN. The RSM can assess the 

importance of each PSF and the ANN calculates the HEP considering the PSFs dependency. In the next 

step, the ANN is utilized again to estimate the HEP for the proposed instances in Table 1. The "procedure" 

is eliminated from non-effective PSF and the proposed ANN is run with 7 PSFs as Inputs. Other 

parameters of ANN do not change. The provided results are shown in Table 6. 

Table 6. The result of ANN after RSM method. 

 

 

 

 

 

 

 

 

 

The SE-After RSM value indicates that the accuracy of proposed ANN increases in cooperation with RSM. 

The decreases in the SE are shown in Fig. 7. The tolerance between original HEP and predicted HEP has 

decreased in comparison with ANN without RSM. 

 

 
HEP Estimated 

HEP-Before 
RSM 

Estimated 
HEP-After 
RSM 

SE-Before 
RSM 

SE-After 
RSM 

Ins 1 0.155 0.134 0.141409178 4.41E-04 1.85E-04 

Ins2 0.132 0.161 0.149928035 8.41E-04 3.21E-04 

Ins 3 0.151 0.162 0.158017965 1.21E-04 4.93E-05 

Ins 4 0.046 0.064 0.055952861 3.24E-04 9.91E-05 

Ins 5 0.223 0.263 0.250007036 1.60E-03 7.29E-04 

Ins 6 0.098 0.0851 0.089366754 1.66E-04 7.45E-05 

Ins 7 0.032 0.046 0.042212003 1.96E-04 1.04E-04 

Ins 8 0.136 0.112 0.11851672 5.76E-04 3.06E-04 

Ins 9 0.165 0.175 0.170615192 1.00E-04 3.15E-05 

Ins 10 0.182 0.154 0.161680555 7.84E-04 4.13E-04 

Ins 11 0.112 0.127 0.121836516 2.25E-04 9.68E-05 

Ins 12 0.193 0.175 0.183575021 3.24E-04 8.88E-05 

Ins 13 0.172 0.196 0.186279252 5.76E-04 2.04E-04 

Ins 14 0.153 0.186 0.17487524 1.09E-03 4.79E-04 

Ins 15 0.164 0.142 0.152283547 4.84E-04 1.37E-04 
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Fig. 7. The original HEP vs. HEP proposed By ANN after RSM implementation. 

 

4 | Conclusion 

HRA is an important issue in production systems and some methods should be proposed to evaluate 

the reliability of humans in these systems. All HRA methods proposed some Performance Shaping 

Factors (PSF) and calculate the HEP base on these factors. Selecting the most effective PSFs and 

considering the PSFs dependency is an important problem that decreases the time and cost and increases 

the HRA accuracy. In this paper, we proposed an ANN based Human Reliability Analysis (ANNHRA) 

in cooperation with RSM, with ANN we can calculate the HEP considering the PSFs dependency and 

using RSM we can find the most effective PSFs. This framework can provide more accurate HEP with 

lower time and cost. The performance of the proposed framework was examined and the provided 

results indicated the model can obtain efficient and effective HEP and reliability value in production 

systems. 
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