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Abstract 

 

1 | Introduction  

Automated guided vehicle and supply chain management are one of the most important components 

of productivity and efficiency in the organization's units [1]. In the JIT system, the materials and 

services required for the project should be provided at the on-time they are needed, as a result of a 

significant reduction in waste of time and loss of time and storage. Nowadays in many projects such 

as production projects, leasing, etc. Which utilize automated guided vehicle management systems 

during times of uncertainty of supply chain demand, the supply of raw materials, manpower, 

machinery, and others planning the right things when they want to meet the needs of the plan. The 

order flow usually begins when the project implementation team starts the request. In these 

conditions, the process of purchasing and managing an AGV is organized in terms of demand 

uncertainty based on demand pull. One of the applications of AGV management is to apply its 

mechanisms in designing the optimal model for despatching locations and routing construction 

projects such as production projects.  
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In automated vehicle management planning for the optimal design of production and inventory routing 

models, must be cover the three overlaps: material and service time requirements, software mechanisms, 

and timing of available cash flows. Adjusting the scheduling of purchases and ordering them is easier 

with the cash flows needed. All constraints must be considered in the planning process. One of the most 

important constraints is the ability to liquidate and restrict access to capital. 

To reduce the negative impact of this restriction, the project's financial plan, purchasing, and managing 

automated guided vehicle agreements with suppliers should be concluded together. Also, in automated 

vehicle management planning, in terms of demand uncertainty, supply chain processes such as the 

supply of products and services required by the project from within or outside the organization are 

considered. Goli et al. [27] provided a framework for supply chain managers in crisis, who face similar 

problems in other environments, with valuable insights. At this step, we should have complete 

documentation of the factors that influence the process of purchasing and managing AGV, including 

understanding the methods of AGV management, the type of products or services required, the quantity 

and quality that they required, and their time of preparation [43]. Mohajeri et al. [51] purposed a fuzzy 

mathematical model is applied to an illustrative example of an uncertain closed-loop Green Supply Chain 

(GSC). However, in this study, this challenge is addressed to present a hybrid meta-heuristic algorithm 

using AGV routing and an intelligent model for AGV routing in planner facility with demand uncertainty 

conditions and locations. In this paper, the challenge is that many routes in routing can be sent back to 

the products by the facility and then to the distribution centers of the automated routing approach to 

be transferred to the manufacturer or intermediaries or waste and waste recovery companies. 

Our costs include AGV transportation, energy consumption, and opening the number of depots is 

minimized when we can predict the location of the demand. To the last researches, there are only a few 

manuscripts in this field and our study is amongst the first modeling efforts, which aims to consider 

AGV-Location Routing (ALRP) and facility uncertainty demand and location with multi AGV, 

simultaneously. In effect, a simultaneous approach to both AGV dispatching location-routing and urban 

distribution depot location is believed to provide an optimal solution to the problem. Moreover, in this 

paper stochastic approach is implemented to rival uncertainties. Therefore, in real-world problems, the 

location of facilities is supposed as a function of the offered best AGV to an operation by some 

production operations and it’s unknown. The developed model illustrates AGV assignment strategies 

and dispatching opening decisions, which minimizes the total cost in such an unreversed situation. The 

main novelty of this research is outlined as follows: 

 Studying the role of LRP in Intelligence AGV Location–Routing (IALRP) and energy-consuming impact in 

CMS. 

 Addressing the uncertain demand of the problem by applying the Stochastic Programming (SP) approach. 

Demonstrating the applicability of the proposed model by designing and implementing an efficient 

hybrid ICA (GICA/VNS). 

Simulating the best level of parameters of employed meta-heuristic by the Taguchi method as well as 

four assessment metrics. 

Validation of the performance of the developed model by some sensitivity analyses. 

Considering the complexity of the joint location routing of AGVs and uncertainty demand, assumptions 

are made to simplify the problem. The most common ones are: 
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 Each AGV is available at the start of the assignment period. 

 The routing of each facility type is available before making transportation decisions. 

 All AGVs can service all type of facility operations in each of periods. 

 The specified input/output buffer space is assumed at each machine and the load/unload stations, i.e. the limited 

buffer capacity is considered. 

 AGVs move along Euclidean distance, with the assumption of no delay due to the disorder. 

 Facility breakdown and AGV failure are ignored. 

 All demands have equal value for transportation. 

 Each vehicle simultaneously supports just one facility but the job facility can have more than one vehicle. 

The road map of the research illustrated, Section 2 presents the last literature on the types of LRP design 

and highlights the novelty of this paper to the last studies. The problem statement and model formulation 

are described in Section 3. Section 4 illustrates the implemented approaches and solution method for both 

combined the illustrated MIP model and statistical and uncertainty distributional information. 

Experimental evaluation and data generation, new meta-heuristic approach, chromosome coding, and the 

output of the developed model to samples and sensitivity analyses are described in Section 5. Finally, 

Section 6 deals with the conclusion and suggestion for further research directions in this study. 

2 | Literature Review 

Reveliotis [56] proposed a bi-directional path processing in a conflict resolution strategy, which ensures 

robust AGV conflict resolution. Other works that novelty significantly are Bish et al. [8], Hsu and Huang 

[37], Christopher et al. [13], Krishnamurthy et al. [37], Naiqi and Zeng [65], Lim et al.[42], Singh and Tiwari 

[58], Qiu et al. [67] and Taghaboni and Tanchoco [62]. Akturk and Yilmaz [3] presented jobs and vehicles 

scheduling decision-making hierarchy by Micro Opportunistic Approach (MOSA). Qiu and Hsu [52] 

proposed an algorithm for AGVs routing and schedule on a bi-directional path layout. The research is not 

sufficient to integrate the efficient routing algorithm with a path layout design that will route AGVs along 

a bi-directional in the shortest path available time. Haleh et al. [28] presented a problem that can be 

modeled as a job shop where the jobs have to transport between machines by AGVs. 

 

 

 

 

 

 

 

Vis [67] reviewed the literature on design and control issues related to AGV systems in the manufacturing, 

distribution, and transport systems. It is concluded that the majority of models can be used at 

manufacturing centers for design problems. Some of these models and new models in large AGV systems 

have already proven successful. Hasan [29][3 Introduced the AGV routing problem with highlighted 

shortest path and AGV routing using Local Position System (LPS) in real-time in the lab view environment 

is obtained. Some of the last reviews Fazlollahtabar and Saidi-Mehrabad [21], Hasan [29], Le-Anh and De 

Koster [39], Vis [67], Vivaldini et al. [68] classified in Table 1. 

Researchers Scheduling Routing Type of 
Vehicles 

Stochastic 
Parameter 

Objectives 

Jerald et al. [35] MH  MV - MIT, MC 
Jerald et al. [34]   AI  SV - MIT, MC 
Guan and Dai [26]    S MV - MDA 
Gamberi et al. [22]   S SV - MHTC 
Dai et al. [11]   S SV - MTT 
Tavakkoli-Moghaddam et al. [64]    MT MV - MM 
Farahani et al. [77]     MT MV - MMW 
Yahyaei et al. [71]    AI   MC 
Fazlollahtabar and Mahdavi-
Amiri [19]  

 AI   MTT, MC 

This research ALRP MT-
MILP 

MV FD Min. MIT, 
MC, NV 
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Table 1. Review of the previous studies on the AGV location-routing problem. 

 

 

 

 

 

 

 

 

MO mathematic optimization; S simulation; MT meta-heuristic; AI artificial intelligence; FC facility 

demand; MV: multi-vehicle; SV: single-vehicle; CD customer demand; T travel/transport time; MTT 

minimize travel time; CL customer location; MC minimum completion time; CT Cycle time; WIP work 

in process; MM minimize makespan; MDVE minimize the distance the vehicle travels empty; TW time 

window; SPT shortest operation time; LPT longest operation time; LTT longest travel time; STT 

shortest travel time; VS vehicle speed; NV number of vehicles; D demand; MIAT minimize idle AGV 

travel; MCD minimize cost delay; MS minimize space; MDA deadlock avoidance; MIT machine idle 

time; MHTC material handling time and cost; MMW minimize maximum workload. 

Based on the last researches, the research gaps identified are presented as follows: 

According to Mehrabian el al. [48] the prediction during FMS production schemes falls far behind 

compared to the actul scheduling, thus in real-life problems parameters like due dates, demand, and 

completion time are always uncertain. Be that as it may, the study of uncertainty facility locations 

demands and demand quantity has not been seen in the earlier works. The research focused on a dynamic 

scheduling problem, where several machines and AGVs move with a stable speed on a shop floor [27]. 

Nowadays, these automated guided vehicles generally are mobile vehicles without drivers or robots that 

are used in transportation systems De Ryck et al. [12], Stopka [61]. Another research developed a non-

linear integer mathematical programming model to group several machines into several rings to make 

an efficient configuration for the AGV system in Tandem layout. Avoid Air-Pollution: In container 

ports and industrial plants, ships, trucks, and other fossil fuel engines are the most important sources 

for the generation of air pollution in these environments. Using AGV in these environments can 

significantly reduce air pollution. Edrissi et al. [15] another research developed a distributed system of 

multi-agent to scheduling problems of the robotic flexible assembly cells [32]. Minimize total cost 

including pollution and routing costs and the second is to maximize supply reliability. Tirkolaee et al. [4] 

minimized total costs including pollution and routing costs and the second is to maximize supply 

reliability. Ghobadi et al. [23] presented a Multi-Depot Electric Vehicle Routing Problem (MD-EVRP) 

with recharging stations considering the fuzzy time windows in pickup/delivery. Ghobadi et al. [23] the 

application of an Electric Vehicle (EV), especially in various operations of goods transportation used a 

solution for salvaging the crowded cities of the world. Goli et al. [24] addressed the cell formation and 

inter-cellular scheduling problems in a CMS environment and formulated them as integrated problems. 

The literature review in the AGV scheduling production system is summarized in Table 2. 

Researchers Scheduling Routing Type of 
Vehicles 

Stochastic 
Parameter 

Objectives 

Za Remba et al. [75]  MO    MTT 
Bing [70] MO    MM 
Sinriech and Palni [59]   MO   CT MC 
Meersmans and Wagelmans [47] MO     
Veeravalli et al. [66] MO     
Sinriechy and Kotlarskiy [60]  MO    CT, WIP 
Krishnamurthy et al. [37]   MO SV CD MM 
Ilić [31]  MO MV T MDVE 
Lee et al. [40]   MO   MTT 
Rajotia et al. [53]    MO SV T TW 
Jawahar et al. [33]     MO  T SPT, LPT, 

LTT, STT 
Oboth et al. [10]  MO MV CD VS, NV,D, 

MIAT 
Desaulniers et al. [13]    MO SV - MCD 
Levitin and Abezgaouz [41]   MO MV - MT, MS 
Yoo et al. [74]     MO MV CD MDA 
Fazlollahtabar et al. [20]   S  MV CD  
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3 | Problem Statement 

The presented research focused on the AGV location routing operation models to minimize the cost of 

transportation of shops in the company. The problem was divided into two parts: one as the facility AGV 

allocation planning problem and the second integrated LRP problem of AGVs. The framework is based 

on a Mixed-Integer Programming (MIP) algorithm for dispatching candidate generation on both location 

routing and demand satisfaction in Facility Layout Problem (FLP) and assignment of AGVs. This MIP 

algorithm includes a powerful stochastic procedure. The problem is modeled first as an uncertainty sub-

tour stochastic approach. It is possible to obtain an exact sub tour for facility job services and choosing 

the best location for AGVs despatching. Next, we decide to assign the AGVs to the facility by uncertainty 

demands. In the real world, the demand for jobs that request for AGVs is unknown. For example, some 

Trucking and load/unload operations have deference time depend on the type of demands, type of 

vehicles, and manpower skills. So we used to keep some AGVs idle and still on waiting until on related 

facility applied. 

In intelligent location–routing we modeled the request AGV, path assignment, dispatching location, and 

occurs the uncertainty of demands together. So the presented model minimized the empty trip, total cost 

of dispatching opening, and transportation. What differentiates the solution values of the routine flow path 

network and those of the Intelligence AGV Location–Routing (IALRP) is said to be a good reference for 

a firm or organization looking for its distribution operations. Fig. 1 and Fig. 2 compares the solutions of 

the flow path network with its corresponding IALRP solution. Fig. 1 illustrates an example of a flow path 

network solution with solid arcs, while Fig. 2 represents the IALRP method including the uncertainty 

demands with unsolid arcs corresponding to machine demands case any robots must be move along the 

resist path to visit all facilities. 

0 *

M2 r1 M3 r2 M1
8 5

M3 r1 M4 M1
5 4

M5 M1 M3
5 5

4
0

0

0

1

3

Machine 

disjunction 

problem

Robot 

disjunction 

problem 

J1

J2

J3  

Fig. 1. Exact route dispatching location. 

Egbelu et al. [16] focused on minimization of the maximum response time of the vehicle to movement 

empty from the dispatching depot to the facility point and even distribution of idle of vehicles over the 

network. Fig. 3 represents the 3 jobs, 5 machines, and 3 robots in 3 shops, so according to the figure if the 

robots have exact demand with exact location, then idle time and the empty trip will be increased. 
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Fig. 2. An uncertainty demand route dispatching location. 

 

 

Fig. 3. Example of a solution with empty trip. 

The main objective of the multi-facility ALRP is to reduce the total cost of the transportation system, 

such as dispatching opening costs and AGV trucking along the planning horizon. 

Yang et al. [82] there are facilities' set with given demands and coordinates using sparsely distributed 

passive RFID tags for efficient object localization. However, the assumption used to determine the 

coordinates for facilities is relaxed in our study. In effect, the situation-based vulnerability sets are 

considered for facilities of different production. A known direction is additionally given with a set of 

candidates AGV dispatching, each being related to an opening cost. The total demands delivered to the 

facility location fitted the capacity of AGV's space. Each AGV is used to provide services to the facility 

so that to meet his demands. In effect, the total demand of the facility is assigned to an AGV according 
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to AGV capacity. Finally, each AGV route is connected from dispatching as a starting point to a facility as 

an endpoint. The parameters and decision variables for a schematic example are shown in Table 3, Table 4 

and Table 5. 

Table 1. Parameter definition. 

 

 

 

 

 

 

 

Table 2. Notation definition. 

 

 

 

 

 

Table 3. Multi-period AGV intelligence model parameters. 

 

 

 

 

 

 

 

 

 

 

 

Notation Definition 

b Capacity of AGV.  
a The capacity of available AGV for products. 
c Costs.  
u Capacity of dispatching. 
d AGV’s demand of dispatching for machines request. 
k The starting points (candidate for dispatching). 
DC The coordinate of demand. 
i Number of machines. 
j number of AGV,s. 
h Cost of dispatching service opening.  
F Stable node for production. 
r The number of available AGV assigned to the start points. 
fkj The location of demand corresponding to the paths. 

Notation Definition 
x jip Quantity production type P from node i to control node. 
xikp Quantity production type P from node i to dispatching node. 
x jkm Quantity production type m from node i to control node. 
x jrm Quantity of product type m from AGV to warehouse r. 
xkfm Quantity of product type m from dispatching to machine f. 
xkrm Quantity of product type m from dispatching to warehouse r. 
yjm ∈ {0, 1} Yij equals 1 if AGV from j is assigned to point i. According to the variable 

opening costs and demands. 
Q km ∈ {0, 1} Qkm equals 1 if AGV from dispatching k is assigned to product m. 

Notation Definition 

Dk̃ The total intelligent capacity of start points. 

Sups̃ 
Location of AGV refer according to uncertainty demand. 

Wj̃ Facility demand. 

di Uncertainty capacity of go and round-trip route. 
C ji Number of Facility location candidate with uncertainty demand. 

akj Type of facility capacity. 
tsk AGV operators according to AGV point visited. 
Ch Facility location candidate capacity. 
S AGV capacity. 
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Min  Z = ∑∑cjp
oc

P

p=1

Yjm

J

j=1

+ ∑∑ckm
oc

M

m=1

Qkm

K

k=1

+∑∑∑cijp

P

p=1

J

j=1

xijp

I

i=1

+ ∑∑∑cikp

P

p=1

K

k=1

xikp

I

i=1

+ ∑∑∑cjkm

M

m=1

K

k=1

x jkm

J

j=1

+ ∑∑∑cjrm

M

m=1

x jrm

R

r=1

J

j=1

+∑∑∑ckfm

M

m=1

xkfm

F

f=1

K

k=1

    

+ ∑∑∑ckrm

M

m=1

xkrm

R

r=1

K

k=1

 .                                     

(1) 

s.t.  

∑xijp

J

j=1

≤ aip, ∀ i, p.                                                 (2) 

∑xikp

K

k=1

≤ aip, ∀ i, p.                                                (3) 

∑x jkm

K

k=1

≤ bjmYjm , ∀ j, p,m.                                          (4) 

∑x jrm

R

r=1

≤ bjmYjm , ∀ j, p,m.                                           (5) 

∑xkfm

F

f=1

≤ ukmQkm , ∀k,m.                                           (6) 

∑xkrm

R

r=1

≤ ukmQkm , ∀k,m.                                          (7) 

∑∑x jkm

K

k=1

J

j=1

≤ nmp ( 
  
  
 
 

∑∑xijp

J

j=1

I

i=1
) 
  
  
 
 

 ∀m,p.                           (8) 

∑∑x jrm

R

r=1

J

j=1

≤ nmp ( 
  
  
 
 

∑∑xijp

J

j=1

I

i=1
) 
  
  
 
 

 ∀m,p.                            (9) 

P
( 
  
  
 
 

∑∑x jkm

K

k=1

J

j=1

≥ ∑dfm

F

f=1
) 
  
  
 
 

≥ 1 − αfm ∀  f,m.                        (10) 

P ( 
  
  
 

∑∑xikp

K

k=1

I

i=1

≥ ∑drp

R

r=1

) 
  
  
 

≥ 1 − α rp, ∀r, p.                            (11) 

P ( 
  
  
 

∑xkfm

K

k=1

≥ dfm) 
  
  
 

≥  1 − α fm, ∀ f,m.                                (12) 

P ( 
  
  
 

∑xkrp

K

k=1

≥ drp ) 
  
  
 

≥  1 − αrp, ∀r, p.                                 (13) 
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The main objective (1) of this problem is to minimize the total cost, including the fixed cost of AGV 

transportation cost and the cost of dispatching/charge opening. 

3.1 | Constraints 

 Reverse depot capacity: These Eqs. (2) and (3) mentions that the quantity of products output from machines to 

dispatching equal to or less than the capacity of machines. 

 Controlling capacity: Eqs. (4) and (5) ensure that the parts of transport by AGV to dispatching are equal to or less 

than the capacity of AGV.  

 Constraints (6) and (7) is the number of parts transported from dispatching (if it's open) to machines and warehouse 

must be equal or less than the capacity of dispatching.  

 Path balancing: Eqs. (8) and (9) related to AGV parts follow balance with 𝑛𝑚𝑝 index. 

 Path Demand balancing: The Constraints (10) and (11) mentions parts transported from machines and AGVs to 

dispatching are pulled demand systems.  

 Constrain (12) shows the demand of machines for parts is random. Eq. (13) showed the demand for parts from the 

warehouse is random. Eq. (14) implies that the demand for warehouses is random.   

 Maximize depot opening: Constraints (15) and (16) showed upper bound of dispatching allowed depot opening in 

uncertainty situation. 

 Binary constraints: These constraints (17) and (18) and (19) are decision variables for point i, j. 

3.2 | Uncertainty AGVLRP Formulation 

As mentioned above the uncertainty model applied to this problem so we used normal density function to 

change uncertainty model to a certainty model as follows: 

 

P
( 
  
  
 
 

∑x jrm

J

j=1

≥ drm 
) 
  
  
 
 

≥  1 − αrm, ∀r,m .                               (14) 

∑Yjm

J

j=1

≤ J , ∀m.                                                   (15) 

∑Qkm

K

k=1

≤ K, ∀m.                                                  (16) 

xijp, xikp, x jkm, x jrm, xkfm, xkrm, x jdm, ≥ 0, ∀  i, j, k, r, f, p,m.                 (17) 

Yjm = {0,1} ∀ j,m.                                                    (18) 

Qkm = {0,1} ∀k,m.                                                   (19) 

μ,σ2 , fx=12π∙σe−x−μσ22 , −∞<x<+∞,  

So if Z =
X−μ

σ
~n(0,1) ⇒ {

f(z) =
1

√2π
e−z2/2

−∞ < z < +∞
, 

P(Z > zα) = α , P(Z < zα) = 1 − α.  
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For example, we suppose this uncertainty constraints such as ∑ 𝑋𝑗 ≤ 𝐾𝑛
𝑗=1  with normal distribution 

𝐾~𝑛(𝜇, 𝜎2) as 𝑃( ∑ 𝑋𝑗 ≤ 𝐾𝑛
𝑗=1 ) ≥ 1 − 𝛼 equal to 𝑃 (

𝐾−𝜇

𝜎
>

∑ 𝑋𝑗
𝑛
𝑗=1 −𝜇

𝜎
) ≥ 1 − 𝛼 or 𝑃(𝑍 >

∑ 𝑋𝑗
𝑛
𝑗=1 −𝜇

𝜎
) ≥ 1 − 𝛼 as a 

result: 
∑ 𝑋𝑗

𝑛
𝑗=1 −𝜇

𝜎
≤ 𝑍1−𝛼 or  ∑ 𝑋𝑗

𝑛
𝑗=1 ≤ 𝜎.𝑍1−𝛼 + 𝜇 . 

3.3 | Problem Linear Optimization 

The purposed chance constraint of the structure of a linear optimization problem is written by: 

 

 

With the usage of Eq. (20) we can change uncertainty normal constraint to an exact constraint. 

4 | Proposed Approach 

Exactly in the absence of likelihood information, the undefined parameters, the ordinary rate, and 

diverse objectives as in Section 4 are inconsequential. Various healthiness measures are being suggested 

for this condition. There are two typical measures; SP and chance constraint, which are not movable 

concerning one another as discussed in Sections 4.1 and 4.2. 

4.1 | Overview of Approaches 

Stochastic AGV Location Routing Problem (SALRP) is also a generic name given to ALRP that 

considers one or more unknown or stochastic parameters during problem modelling. The SALRP 

presents a type of problem that combines the stochastic parameters and Integer Programs (IP) and is 

often regarded as NP-hard models. The random parameters may be the presence of location machine 

or facility, the several customer's demands at an exact location, the time such as service or delivery time, 

pick up time, or transportation time. Berman et al. [6] present a single mobile service centre for customer 

dispatching demand the contact server demand created a queue with stochastic parameters. SP as a 

research area to find broad coverage of mathematical properties, models, and solution algorithms Birge 

and Louveaux [7] and the uncertainty parameter has known distribution. Zahan et al. [76] used artificial 

bone manufacturing and a stochastic optimization model to help disease in elderly people. Dhingra et 

al. [14] and The Continuous-Time Markov Chain (CTMC) applied to achieve scheduling and planning 

of AGVs, combined the solution of a two-level with a stochastic model, it proved that the shipping 

container handling time was affected by AGVs path. Also, Mishra et al. [50] and [63] applied the 

stochastic queue to solve Inter-Terminal Transportation (ITT) and applied the model to Port of 

Rotterdam. Shao et al. [57] applied a multi-stage traffic control strategy to resolve trade-offs and 

problems in AGV systems. A traffic control system is used to operate each motion AGV after utilizing 

an A∗ algorithm to the optimum path set for AGVs. 

4.2 | Proposed Algorithm 

The major steps of the proposed algorithm are shown in Fig. 4. However, the detail of the same is well 

explained in the next section. In Step 1, create random locations according to Lu et al. [44] and Yang et 

al. [73]  real instance. In Step 2, calculate a rectangular distance between facility locations and AGV’s. In 

Step 3, assign dispatching depot selection to AGV’s and AGV’s to facilities assignment. In Step 4, 

calculate the cost minimization and find a feasible solution (e.g., routing). 

 

P
( 
  
  
 
 

 ∑X j ≤ K

n

j=1
) 
  
  
 
 

≥ 1 − α ≈  ∑X j

n

j=1

≤ σ.Z1−α + μ.                     (20) 

file:///H:/maryam/مقاله%20jarie/مقاله%201%20نویسنده%20ج.docx%23f20
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Fig. 4. Steps of the proposed algorithm. 

For rearranging the portrayal of the arrangement, it is accepted that there is a model with 32 facilities and 

5 main nodes with 2 periods of time. Table 6 shows the answer to this issue. Obviously, in this arrangement, 

a priority requirement between the facilities of every depot is considered. For taking care of this issue, this 

arrangement requires a heuristic strategy. In this strategy, horizontal and vertical stochastic radii of every 

ellipsoid are characterized as 2t times and select the best stop to benefit them. After that, we select the best 

visit for the cost objective function minimization. 

Table 6. Example of 5 facilities and 2 periods. 

  

 

 

 

  

The string of number display sequence covers the location of dispatching depots, how facilities are 

allocated to AGV's and the route between them. For example facility number 5 visits the first one and net 

1, 2, 4, and 5. 

4.3 | Constraint Satisfaction 

Constraints on observing the sequence and avoiding creating a sub-loop are automatically satisfied 

depending on the type of answer string definition. Cause the simulation process of the system is very 

convenient, starting from the point where you start the workstation/dispatching to the first node and then 

back to the next node (transport path) and finally back to the supply point. We do this process for each 

period. In the same process, all variables in the model are updated. The most important variable is the 

value sent to each node. 

Given the type of answer string definition that the numbers are binary ∈ {0, 1}, a normalization is first 

performed on these numbers, which sum to one after which the share of each node is multiplied by the 

percentage in the answer string multiplied by the total volume of the AGV. The entire volume of the AGV 

is emptied to the end and returned to the supply point. After specifying this variable according to the 

relationship in the model presented in section three, easily calculate the number of AGV carrying the 

number of AGV by type and capacity of the transport routes, the number of transport purposes of the 

facility in terms of demand calculate in uncertainty demand. 

 

Available Facility 5 1 2 4 3 

Period 1 2 3 4 5 

Available Depot-d 1 2 5 3 4 

Customers-n 1 2 3 4 5 

Step 1#

• Assume all of the demand facility  
that maybe occure in space and 

listed them.

Step 2#

• Calculate distance beetween 
customers (C̃ 

ij)for all situation 
with  rectangular distance.

• d(X,Pi)=|X-ai|-|Y-bi|

Step 3#

• select  allocated  AGV's.

• Path selection

• dispatching capacity

Step 4#

• Select minimum cost and feasible  
distance solution for facilities 

location.

file:///H:/maryam/مقاله%20jarie/مقاله%201%20نویسنده%20ج.docx%23Fig4
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4.4 | Imperialist Competitive Algorithm and Variable Neighbourhood Search 

(ICAVNS) 

Therefore, the initial number of colonies for an emperor is calculated by: 

 

Where, 𝑁𝐶𝑛 - original number of colonies for the nth emperor, while 𝑁𝑐𝑜𝑙 - the overall number of 

colonies. 𝑁𝐶𝑛, the number of colonies is randomly selected and assigned to each emperor. This way, an 

emperor with greater strength will have a higher number of colonies than a weaker emperor. 

4.4.2 | Total strength of an emperor 

The total strength of an emperor is subjective to the strength of the emperor's country. Nonetheless, 

the strength of the colonies for an emperor will influence the total strength of that emperor. Hence, the 

total strength of an emperor can be calculated by:  

Where 𝑇𝑃 𝐸𝑚𝑝𝑛 represents the total strength of the n-th emperor, while 𝜉 is a positive number less than 

1. Thus, we create pop1 which is the primary population. 

4.4.3 | Imperialist colonies move toward the emperor 

Having been allocated, the colonies moved toward their emperors. This move is illustrated in Fig. 5, 

where d represents the distance between the colony and the emperor. X shows a random variable with 

a uniform distribution between dβ and zero, while β > 1. The direction has been shown as an angle 

(θ). Moreover, 𝑃𝐴 displays the rate of solutions approximating toward the emperor. 

4.4.4 | Transfer of information between colonies 

The information between the colonies is transferred through a crossover operator in the genetic 

algorithm. For the crossover operator, one-point and two-point crossovers are employed. Tournament 

selection is used to select the colonies. Moreover, 𝑃𝑐 represented the percentage of solutions subject to 

the crossover. The continuous crossover applied in this model Fig. 6. 

 

Fig. 5. Colonies move toward the emperors at a random angle. 

 

NCn = round{pn.Ncol}. (24) 

TP Empn = (Total Cost(imperialistn) + ξmean{Total Cost(colonies of empire )}s).  

file:///H:/maryam/مقاله%20jarie/مقاله%201%20نویسنده%20ج.docx%23Fig5
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Illustrated a schematic shape of a sample method display. In this method, a random vector is generated 

between 0 and 1, and the second random vector is complementary to this initial vector. Thereafter, two 

children are generated according to the following formula: 

 

Parent 1(path1#) 0.2 0.1 0.7 00.9

Parent 2(path1#) 1 0.2 0.4 0.40.5

 

Parent 1(path 2#) 0.5 0.5 0.4 0.80.8

Parent 2(path 2#) 0.9 0.2 1 0.10.5

 

R1

0.4 0.5 1 0.30.8

0.1 0.3 0.3 0.60.6

 

R2

0.6 0.5 0 0.70.2

0.9 0.7 0.7 0.40.4

 

Fig. 6. Continuous crossover. 

The random selection operator is used for path parent selection also the elitism Reddy and Rao [55] method 

applied for randomly gen place chosen for replacement. 

The stopping condition for ending the imperialist competition takes place when there is only one emperor 

left from all the countries as illustrated in the pseudo code of the hybrid ICAVNS method (see Fig. 7). 

 

 

 

   

   

:
1

2 1

1 1 1 2 2

2 1 2 2 1

R Rand,

R 1 R ,

O P R P R ,

O P R P R .
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d i i k k

Initialization %

Set Parameters ((Max , PopSize), )

Generating initial countries (Pop1)

Evaluaute fitness value o

Position shift between c

f Pop1

For it 1to MaxIt

olonie

do

- Colonie

s%

n ,nd , nc , t, cd ,

Begi

I fd

n

t







1 2

s attraction by an empire of  the imperialist

Revolution beetwen colonies and imperialist%

Use VNS as a local search for

Select random individualsposition: (X , X );

Choiceonescenariofor assimilationoperation(Pop2);





reach to better imperialists;

Update colonies%

If  cos t of  countries imperialist result

- replacement related colony positions instead of imperialist and 

end

Imperialistic competition%

 Total power of empiresis





Merge%

Calculated

choice  and assign the worst colony of the weakest empire  to

 one of the power empiresissueon their cos ts

delete the weakness empires the imperialist empty of colony

Combinedal



 
 

  
  
 

pop

lof population {Pop1 Pop2 Pop3};

Choice n country according toaffinity function;

end for

Output : Extract the best solution with minimum cost function;

end.

 

 

Fig. 7. ICAVNS pseudo code. 

5 | Experimental Evaluation 

These arrangements have a place in the best transformative arrangement. Also, the arithmetic tests are 

performed to assess the adequacy and effectiveness of the arrangement depicted. To compare the 

solution methods for this model, we give a prime example to compare the results of the methods 

together. In this case the number of periods equal to 4, the number of nodes (transport routes) equal to 

5, the number of automobiles transported by type and capacity of the transport routes, the number of 

transport purposes of the facility in the conditions of initial demand uncertainty. At each node equal to 

5,000, the exact location of demand per unit of time equals 10, the number of starting points equals 100, 

the number of supply points, and at the same time intelligent management centers for automated 

vehicles equal to 5 and the weight of each sub-function. Equals 0.1. The rest of the parameter values 

are as follows. 

Table 7 Shows the distance of five nodes between the exact demands points specified the capacity of 

path demand in an uncertain situation. Any point has 5 situations in path demand and namely, we have 

25 conditions. Corresponding to 5 nodes the capacity of any facility demand showed in Table 8. We have 

9 paths (scenario) with 6 samples in 5 iteration level leads to the position of demand showed in Table 9. 

            

 

file:///H:/maryam/مقاله%20jarie/مقاله%201%20نویسنده%20ج.docx%23table3
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Corresponding to 5 transportation paths, we have 25 quantity levels of paths that lead to demand locations.  

The tolerance of chance limit implies in Table 10. 

 

 

 

 

 

  

The quantity demand in 4 periods with 5 nodes showed in Table 11. 

 

 

 

 

 

 

  Table 7. Volume and capacity of path demand and distance between exact demand point. 

 i1  i2 i3 i4 i5 

i1 0 54.20332 49.49747 56.0803 55 

i2 54.20332 0 34.05877 2.236068 6.708204 

i3 49.49747 34.05877 0 36.01389 40.31129 

i4 56.0803 2.236068 36.01389 0 5.656854 

i5 55 6.708204 40.31129 5.656854 0 

Table 8. Capacity of facility. 

 i1 i2 i3 i4 i5 

capacity 21.9545 74.02702 61.18823 76.05919 75.69016 

  Table 9. The exact location of demand. 

 t1 t2 t3 t4 

i1 44 56 80 38 

i2 13 19 87 93 

i3 39 93 21 87 

i4 31 36 23 49 

i5 54 15 48 60 

Table 10. Various facility demands. 

 t1 t2 t3 t4 

i1 73 73 73 73 

i2 34 34 34 34 

i3 25 25 25 25 

i4 89 89 89 89 

i5 19 19 19 19 

  Table 11. Work period matrix. 

 t1 t2 t3 t4 

i1 51 51 51 51 

i2 75 75 75 75 

i3 4 4 4 4 

i4 56 56 56 56 

i5 91 91 91 91 

file:///H:/maryam/مقاله%20jarie/مقاله%201%20نویسنده%20ج.docx%23table6
file:///H:/maryam/مقاله%20jarie/مقاله%201%20نویسنده%20ج.docx%23table7
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The main test problem was solved by the suggestion algorithm and compared with the optimization 

package used as the LP and integer programming. The best results outcome for 78day is 18341058 that 

implies validity and good convexity according to the exact algorithm solution. 

5.1 | Parameters Setting 

Taguchi's arrangement of the trial named the TDOE procedure helps researchers tune the best 

parameter before the operation is created. In effect, a definite figure for simulating the desirable data is 

presented by reducing the number of simulations. It is significantly extraordinary to regulate reactions 

influenced by different elements. The Taguchi technique joins the affirmation of a wide unit of test 

conditions, outlined as orthogonal exhibits, to decrease slip-ups and overhaul the proficiency and 

repeatability of the examinations. Orthogonal arrays are a set of numbers developed to skilfully achieve 

ideal test plans by thinking about various exploratory circumstances. The Taguchi strategy, then again, 

utilizes motion to-commotion proportion, false name SNR rather than the normal incentive to interpret 

the information into an incentive for a trademark, which is being assessed inside the ideal setting 

investigation. The utilization SNR is because it shows both the variety of the quality trademark and the 

normal value. 

Initial design parameters table as shown in Table 12. There are 4 parameters in three-level. It also 

considers the intersection action at three levels, which represents the percentage of intersections at 

defined levels. Then, using the ICAVNS algorithm, we investigate different scenarios for designing a 

multi-objective AGV routing model in terms of demand uncertainty by considering demand uncertainty 

in the number of vehicles based on the type and capacity of the transport routes. We address the number 

of transportation facilities in terms of demand uncertainty. To design an AGV routing model as a multi-

objective problem under demand uncertainty, we examined three iteration levels, 1 to 10 nodes per 

iteration, and 25 to 150 population units. While there are many standard orthogonal arrays available, 

each of the arrays is meant for a specific number of independent design variables and levels. As an 

example, if one wants to experiment to understand the influence of 4 different independent variables 

with each variable having 3 set values, then an L9 (Table 13) instead of 34=81experiment and orthogonal 

array might be the right choice. 

Table 12. Orthogonal array. 

 

 

 

 

Table 13. Problem scenario setting. 

 

 

 

 

 

 

Parameters A B C D 

Level No. nodes No. paths N pop N iteration 

Low (1) 2 1 25 100 

Medium (2)  3 5 75 300 

High (3) 4 10 150 700 

Scenario                     No. nodes No. paths N pop N iteration 

1 1 1 1 1 

2 1 2 2 2 

3 1 3 3 3 

4 2 1 2 3 

5 2 2 3 1 

6 2 3 1 2 

7 3 1 3 2 

8 3 2 1 3 

9 3 3 2 1 

file:///H:/maryam/مقاله%20jarie/مقاله%201%20نویسنده%20ج.docx%23table8
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5.2 | Computational Evaluation 

5.2.1 | Small-scale problem 

In this section, the operation of ICAVNS metaheuristic was measured and the respective deterministic 

solutions are given. The exact experiments are then executed in a PC having a processor of 2.6 GHz and 

a RAM of 16 GB with GAMS®. Table 14 shows the results of the stochastic location problem. 

Table 14. Results of small scale. 

 

 

 

 

 

 

 

We show that by increasing the periods and increasing the number of nodes to 15 nodes, the target function 

has increased from 33999997 units to 2170865465. In other words, with increasing demand volume and 

scope, task status and type of facility control, and the number of facilities based on total points of origin 

and supply points in the main nodes, the precise demand-generating location has increased non-linear 

against linear increasing. 

Nine scenarios with six examples and five iterations were created for any experiment. The following are 

Tables 15 and 16. Of the objective function obtained, the order of the working seasons and the nodes 

(source routes) of the precise location of demand generation based on intelligent capacity, the number of 

transport facilities in terms of demand uncertainty, and the RPD. 

In each test run the value of the objective function obtained shall be following the Taguchi method relative 

to the order of the working seasons and the nodes of origin to evaluate the exact location of demand 

generation based on intelligent capacity, number of transport facilities in uncertainty. The demand, which 

is a variable response, is converted and analyzed according to its changes. In the Taguchi method with goal 

maximization, the S/N ratio is the ratio of the variable that the objective function in each execution 

converts to that ratio to decide according to the following equation. 

The results of the implementation of the algorithms are shown in the tables which show the quality of the 

algorithm's performance. And Eq. (28) shows how to calculate the RPD value Mi is the value of the 

objective function obtained for each algorithm implementation Mmin is the lowest value of the objective 

function obtained for solving each of the three algorithms. 

 

 

No. Number of Paths Number of Periods  ICAVNS 
Obj Time 

1 2 2 33999997 98 

2 2 4 68201853 157 

3 3 7 110326067 180 

4 3 11 247363446 251 

5 4 2 483921596 602 

6 4 6 692231026 1224 

7 5 9 965224129 2651 

8 7 17 1289524523 5974 

9 12 24 1530603628 8680 

10 15 32 2170865465 10080 

  S
Nl
⁄ = −10 log ( 

  
  
 
1

n
∑

1

yi
2

n

i=1

) 
  
  
 

. (27) 
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According to the diagrams obtained in Taguchi's method, the 1th level of crossover percentage parameter 

is selected, 2th level for node percentile parameter, 3th level for population parameter, and 4th level is 

selected for iteration parameter. 

Fig. 9 shows the normal S/N and its proportions. The ideal levels are A(2), B(1), C(3), D(3). Thus, the 

results processed in terms of minimizing the mean of the maximum total cost in the Taguchi exploratory 

investigation affirmed the ideal levels utilizing the S/N ratio (see Fig. 8). Table 16 shows the results of 

uncertainty demand in 20 paths for the AVG location routing problem.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Taguchi method showing the S/N ratio plot: a. objective; b. seasons period paths and nodes; 

c. performance tolerance.  

 

Relative percentage deviation (RPD) = 
Mi−Mmin

Mmin
. (28) 

 
                              a 

 

                              b 

 

 
                               c  
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 Table 16. RPD results from the ICAVNS algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on the proposed algorithm and considering Gams software, a general framework of the proposed 

path that constitutes our model can be examined. In these 20 paths, we have provided two outputs to solve 

the route problems: One the first output (considering the exact location of the demand), and the second 

output (taking into account a small level of work). In both outputs, the values of each path are explained 

by specified criteria. Examination of the first 20 paths for the first output can show that the first path and 

the eighteenth path have the highest index level and show the best response. Examination of the first 20 

paths for the second output can show that the first and third paths and the eighteenth path have the highest 

index level and show the best results in Table 17. 

 

  Mean RPD 0.46 0.45 0.57 0.47 0.51 0.48 0.55 0.52 0.55 

Iteration  road1 road2 road3 road4 road5 road6 road7 road8 road9 

Sample 1 1 1 0.22 0.86 0.53 0 0.84 0.62 0.37 1 

2 0.11 0 0 0.29 0.51 0.52 0.92 1 0 

3 0.45 0.58 1 1 0.9 0.87 0.85 0.01 0.99 

4 0 0.55 0.11 0.32 1 0 0 0 0.13 

5 0.21 1 0.7 0 0.55 1 1 0.47 0 

Sample 2 1 0 0.59 0.81 0.51 0.49 1 1 0 0.91 

2 0.53 0.49 0.94 0 0 0.04 0.33 1 0.66 

3 1 0 0 1 1 0.69 0.72 0.76 1 

4 0.23 1 1 0.01 0.9 0 0.43 0.84 0 

5 0.84 0.74 0.65 0.47 0.27 0.77 0 0.31 0.85 

Sample 3 1 0.12 0 0.91 0 0.91 0.39 0.26 0.92 0.76 

2 0.74 1 1 0.25 0.48 1 0.59 0.4 0 

3 0.06 0.4 0.25 0.06 0 0.63 0 1 0.85 

4 0 0.05 0.81 0.02 1 0 0.49 0.7 0.27 

5 1 0.17 0 1 0.02 0.55 1 0 1 

Sample 4 1 0.25 1 0.91 0.42 0.82 1 0 0.2 0.52 

2 0 0.2 0 1 0.04 0 1 0.99 0 

3 1 0 1 0.91 0.06 0.23 0.88 0 0.77 

4 0.5 0.19 0.26 0.58 0 0.37 0.73 1 0.26 

5 0.16 0.04 0.03 0 1 0.2 0.68 0.09 1 

Sample 5 1 0.82 0.55 0.3 0.51 0.99 0.47 0.43 0 0 

2 0.89 0.52 0.32 0.36 1 0.18 0.06 0.73 0.88 

3 0.8 1 1 0 0.33 0 1 0.77 0.4 

4 0 0 0.9 0.55 0 1 0.03 0.32 1 

5 1 0.52 0 1 0.37 0.33 0 1 0.84 

Sample 6 1 0.34 0 0.76 0.87 0 0.13 0 0.1 0 

2 1 0.83 1 0.61 0.66 1 1 0 0.51 

3 0 0.54 0.84 0 1 0.92 0.82 0.9 0.19 

4 0.26 0.58 0 1 0.12 0.74 0.53 1 1 

5 0.52 1 0.62 0.81 0.74 0 0.91 0.87 0.723 
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Table 17. The final value of dispatching system corresponding to facility and dispatching point. 
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