Document Type : Research Paper


1 Department of Information Technology Management, Faculty of Management, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

2 Department of Industrial Management, Faculty of Management and Economics, Science and Research Branch, Islamic Azad University, Tehran, Iran.


Optimized asset tracking with Radio Frequency Identification (RFID) as a complicated innovation that requires much money to be implemented has become more popular in the healthcare industry. Considering the use of more antennas in each reader, we present a modern heuristic methods, hybrid of Genetic Algorithms (GA) and Simulated Annealing (SA) for the purpose of placing readers in an emergency department of a hospital with an RFID network. In this study, a multi-objective function is developed for the network coverage maximization and the minimization of total cost, tag reader collision, interference, energy consumption, and path loss in a simultaneous way. The proposed algorithm provides savings (on average) in the total cost of the RFID network through the efficient use of three types of readers with one, two and four antenna ports. Additionally, by testing three scenarios, the effect of algorithms in achieving the optimal solution is indicated by the simulated results.  Besides, the results of GA-SA is compared to the results of GA and other existing models in the relevant literature. It is shown that its main advantage is the use of multi-antenna RFID readers, which reduces the total cost of the RFID network and also increase network coverage with fewer readers and antennas. In other words, contributions for the research are proposing a hybrid GA-SA algorithm, developing a multi-objective function, testing the algorithm in a hospital setting, and comparing the results of GA-SA with GA.


Main Subjects

  1. Pietrabissa, A., Poli, C., Ferriero, D. G., & Grigioni, M. (2013). Optimal planning of sensor networks for asset tracking in hospital environments. Decision support systems55(1), 304-313.
  2. Roper, K. O., Sedehi, A., & Ashuri, B. (2015). A cost-benefit case for RFID implementation in hospitals: adapting to industry reform. Facilities, 33(5/6), 367-388.
  3. Zebra Technologies (2015). RFID solutions for health care reducing costs and improving operational efficiency. Retrieved July 6, 2021 from
  4. D'Souza, I., Ma, W., & Notobartolo, C. (2011). Real-time location systems for hospital emergency response. IT professional13(2), 37-43.
  5. Bhattacharya, I., & Roy, U. K. (2010). Optimal placement of readers in an RFID network using particle swarm optimization. International journal of computer networks & communications2(6), 225-234.
  6. Guan, Q., Liu, Y., Yang, Y., & Yu, W. (2006, October). Genetic approach for network planning in the RFID systems. Sixth international conference on intelligent systems design and applications(Vol. 2, pp. 567-572). IEEE.
  7. Zhu, W., & Li, M. (2018). RFID reader planning for the surveillance of predictable mobile objects. Procedia computer science129, 475-481.
  8. Rubini, N., Prasanthi, C., Subanidha, S., Vamsi, T. N. S., & Jeyakumar, G. (2017, September). An optimization framework for solving RFID reader placement problem using greedy approach. 2017 International conference on advances in computing, communications and informatics (ICACCI)(pp. 900-905). IEEE.
  9. Yazici, H. J. (2014). An exploratory analysis of hospital perspectives on real time information requirements and perceived benefits of RFID technology for future adoption. International journal of information management34(5), 603-621.
  10. Ahsan, K. (2011). RFID components, applications and system integration with healthcare perspective. In Turcu (Ed.), Deploying RFID, challenges, solutions, and open issues (pp.27-49). IntechOpen.
  11. Glasser, D. J., Goodman, K. W., & Einspruch, N. G. (2007). Chips, tags and scanners: ethical challenges for radio frequency identification. Ethics and information technology9(2), 101-109.
  12. Finkenzeller, K. (2010). RFID handbook: fundamentals and applications in contactless smart cards, radio frequency identification and near-field communication. John wiley & sons.
  13. Sörensen, K. (2015). Metaheuristics—the metaphor exposed. International transactions in operational research22(1), 3-18.
  14. Cao, Y., Liu, J., & Xu, Z. (2021). A hybrid particle swarm optimization algorithm for RFID network planning. Soft computing25(7), 5747-5761.
  15. Gupta, N., & Iyer, S. (2005). RFIDPlanner-A coverage planning tool for rfid networks. Lecture notes in computer science, springer3823, 1047-1057.
  16. Zhang, W., Lin, B., Gao, C., Yan, Q., Li, S., & Li, W. (2018, September). Optimal placement in RFID-integrated VANETs for intelligent transportation system. 2018 IEEE international conference on RFID technology & application (RFID-TA)(pp. 1-6). IEEE.
  17. Irfan, N., Yagoub, M. C., & Hettak, K. (2012). Genetic-based approach for efficient RFID ReaderAntenna positioning. International journal of information and electronics engineering2(5), 780-784.
  18. Dimitriou, A. G., Siachalou, S., Bletsas, A., & Sahalos, J. (2019, March). Introduction of dynamic virtual force vector in particle swarm optimization for automated deployment of RFID networks. 2019 13th European conference on antennas and propagation (EuCAP)(pp. 1-5). IEEE.
  19. Gao, Y., Hu, X., Peng, L., Liu, H., & Li, F. (2011, October). A differential evolution algorithm combined with cloud model for RFID reader deployment. The fourth international workshop on advanced computational intelligence(pp. 193-198). IEEE.
  20. Jaballah, A., & Meddeb, A. (2019). A new variant of cuckoo search algorithm with self adaptive parameters to solve complex RFID network planning problem. Wireless networks25(4), 1585-1604.
  21. Lee, L. S., Fiedler, K. D., & Smith, J. S. (2008). Radio frequency identification (RFID) implementation in the service sector: a customer-facing diffusion model. International journal of production economics112(2), 587-600.
  22. Tzeng, S. F., Chen, W. H., & Pai, F. Y. (2008). Evaluating the business value of RFID: evidence from five case studies. International journal of production economics112(2), 601-613.
  23. Manfredi, S. (2012). Reliable and energy-efficient cooperative routing algorithm for wireless monitoring systems. IET wireless sensor systems2(2), 128-135.
  24. Lindqvist, P. (2006). RFID monitoring of health care routines and processes in hospital environment (Master Thesis, Aalto University). Retrieved from
  25. Østbye, T., Lobach, D. F., Cheesborough, D., Lee, A. M. M., Krause, K. M., Hasselblad, V., & Bright, D. (2003). Evaluation of an infrared/radiofrequency equipment-tracking system in a tertiary care hospital. Journal of medical systems27(4), 367-380.
  26. Panangadan, A., Ali, S. M., & Talukder, A. (2005, January). Markov decision processes for control of a sensor network-based health monitoring system. Proceedings of the national conference on artificial intelligence(Vol. 20, No. 3, p. 1529-1534). Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999.
  27. Varshney, U. (2009). Pervasive healthcare computing: EMR/EHR, wireless and health monitoring. Springer Science & Business Media.
  28. Oztekin, A., Pajouh, F. M., Delen, D., & Swim, L. K. (2010). An RFID network design methodology for asset tracking in healthcare. Decision support systems49(1), 100-109.
  29. Griffin, J. D., & Durgin, G. D. (2008). Gains for RF tags using multiple antennas. IEEE transactions on antennas and propagation56(2), 563-570.
  30. Angerer, C., Langwieser, R., Maier, G., & Rupp, M. (2009, September). Maximal ratio combining receivers for dual antenna RFID readers. 2009 IEEE MTT-S international microwave workshop on wireless sensing, local positioning, and RFID (pp. 1-4). IEEE.
  31. Wang, J. J. M., Winters, J., & Warner, R. (2007). RFID system with an adaptivearray antenna. US Patent.
  32. Irfan, N., & Yagoub, M. C. (2010). Efficient algorithm for redundant reader elimination in wireless RFID networks. International journal of computer science issues (IJCSI)7(3), 1.
  33. Ma, L., Wang, X., Huang, M., Lin, Z., Tian, L., & Chen, H. (2017). Two-level master–slave RFID networks planning via hybrid multiobjective artificial bee colony optimizer. IEEE transactions on systems, man, and cybernetics: systems49(5), 861-880.
  34. Esmaeili, H., & Bidgoli, B. M. (2018). EMRP: evolutionary-based multi-hop routing protocol for wireless body area networks. AEU-international journal of electronics and communications93, 63-74.
  35. Rodriguez, J. L., Garca-Tunon, I., Taboada, J. M., & Basteiro, F. O. (2007). Broadband HF antenna matching network design using a real-coded genetic algorithm. IEEE transactions on antennas and propagation55(3), 611-618.
  36. Martinez-Fernandez, J., Gil, J. M., & Zapata, J. (2007). Ultrawideband optimized profile monopole antenna by means of simulated annealing algorithm and the finite element method. IEEE transactions on antennas and propagation55(6), 1826-1832.
  37. Xavier-de-Souza, S., Suykens, J. A., Vandewalle, J., & Bollé, D. (2009). Coupled simulated annealing. IEEE transactions on systems, man, and cybernetics, part B (cybernetics)40(2), 320-335.
  38. Ma, M., Wang, P., & Chu, C. H. (2018). Redundant reader elimination in large-scale distributed RFID networks. IEEE internet of things journal5(2), 884-894.
  39. Aggarwal, D., Singh, B., & Ranjan, K. S. (2021). Steering assisting with path detection and car detection. Journal of applied research on industrial engineering8(1), 19-26.
  40. Nozari, H., Fallah, M., & Szmelter-Jarosz, A. (2021). A conceptual framework of green smart IoT-based supply chain management. International journal of research in industrial engineering10(1), 22-34.
  41. Shahsavari Pour, N., Abolhasani Ashkezari, M. H., Sheikhi, H., Mohammadi Andargoli, H., & Abolhasani Ashkezari, H. (2014). A novel genetic algorithm for a flow shop scheduling problem with fuzzy processing time. International journal of research in industrial engineering3(4), 1-12.