Document Type : Research Paper


1 Department of Industrial and System Engineering, Isfahan University of Technology, Isfahan, Iran.

2 Department of Industrial Engineering, University of Louisville, KY, USA.

3 Guildhall School of Business and Law, London Metropolitan University, United Kingdom.

4 Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology, Norway.


The objective of this study is to model a dynamic redesigning closed-loop supply chain network with capacity planning in order to minimize the costs of the network. The structure of this model consists of existing facilities including manufacturing plants, distribution and reworking centers. Any such structure should change due to fluctuations in demand in order to meet customer demand. Establishing new facilities, closing the existing ones, and adding discrete capacity levels to facilities, are among the decisions which lead to necessary changes in network structure. To make the issue more realistic, it is assumed that demand and returned products are stochastic. To solve the problem, a two-stage stochastic mixed integer linear programming is modelled, followed by writing a robust counterpart of the MILP model program. An accelerated Benders decomposition algorithm is proposed to solve this model. To increase the convergence trend of this proposed algorithm, valid-inequalities and Pareto optimal cut are combined to the model. The expected performance improvement based on applying valid-inequalities and Pareto optimal cut is expressed through numerical results obtained from different samples.


Main Subjects

  1. Badri, H., Bashiri, M., & Hejazi, T. H. (2013). Integrated strategic and tactical planning in a supply chain network design with a heuristic solution method. Computers & operations research40(4), 1143-1154.
  2. Correia, I., Melo, T., & Saldanha-da-Gama, F. (2013). Comparing classical performance measures for a multi-period, two-echelon supply chain network design problem with sizing decisions. Computers & industrial engineering64(1), 366-380.
  3. Melo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2014). An efficient heuristic approach for a multi-period logistics network redesign problem. Top22(1), 80-108.
  4. Melo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2012). A tabu search heuristic for redesigning a multi-echelon supply chain network over a planning horizon. International journal of production economics136(1), 218-230.
  5. Wilhelm, W., Han, X., & Lee, C. (2013). Computational comparison of two formulations for dynamic supply chain reconfiguration with capacity expansion and contraction. Computers & operations research40(10), 2340-2356.
  6. Melo, M. T., Nickel, S., & Saldanha-Da-Gama, F. (2009). Facility location and supply chain management–A review. European journal of operational research196(2), 401-412.
  7. Govindan, K., Soleimani, H., & Kannan, D. (2015). Reverse logistics and closed-loop supply chain: a comprehensive review to explore the future. European journal of operational research240(3), 603-626.
  8. Pishvaee, M. S., & Torabi, S. A. (2010). A possibilistic programming approach for closed-loop supply chain network design under uncertainty. Fuzzy sets and systems161(20), 2668-2683.
  9. Lee, D. H., & Dong, M. (2008). A heuristic approach to logistics network design for end-of-lease computer products recovery. Transportation research part E: logistics and transportation review44(3), 455-474.
  10. Asl-Najafi, J., Zahiri, B., Bozorgi-Amiri, A., & Taheri-Moghaddam, A. (2015). A dynamic closed-loop location-inventory problem under disruption risk. Computers & industrial engineering90, 414-428.
  11. Govindan, K., Fattahi, M., & Keyvanshokooh, E. (2017). Supply chain network design under uncertainty: a comprehensive review and future research directions. European journal of operational research263(1), 108-141.
  12. Sahinidis, N. V. (2004). Optimization under uncertainty: state-of-the-art and opportunities. Computers & chemical engineering28(6-7), 971-983.
  13. Ballou, R. H. (1968). Dynamic warehouse location analysis. Journal of marketing research5(3), 271-276.
  14. Scott, A. J. (1971). Dynamic location-allocation systems: some basic planning strategies. Environment and planning A3(1), 73-82.
  15. Geoffrion, A. M., & Graves, G. W. (1974). Multicommodity distribution system design by Benders decomposition. Management science20(5), 822-844.
  16. Correia, I., & Melo, T. (2017). A multi-period facility location problem with modular capacity adjustments and flexible demand fulfillment. Computers & industrial engineering110, 307-321.
  17. Cortinhal, M. J., Lopes, M. J., & Melo, M. T. (2015). Dynamic design and re-design of multi-echelon, multi-product logistics networks with outsourcing opportunities: a computational study. Computers & industrial engineering90, 118-131.
  18. Keyvanshokooh, E., Ryan, S. M., & Kabir, E. (2016). Hybrid robust and stochastic optimization for closed-loop supply chain network design using accelerated Benders decomposition. European journal of operational research249(1), 76-92.
  19. Thanh, P. N., Bostel, N., & Péton, O. (2008). A dynamic model for facility location in the design of complex supply chains. International journal of production economics113(2), 678-693.
  20. Hinojosa, Y., Kalcsics, J., Nickel, S., Puerto, J., & Velten, S. (2008). Dynamic supply chain design with inventory. Computers & operations research35(2), 373-391.
  21. Alem, D., & Morabito, R. (2013). Risk-averse two-stage stochastic programs in furniture plants. OR spectrum35(4), 773-806.
  22. Pimentel, B. S., Mateus, G. R., & Almeida, F. A. (2013). Stochastic capacity planning and dynamic network design. International journal of production economics145(1), 139-149.
  23. Thanh, P. N., Péton, O., & Bostel, N. (2010). A linear relaxation-based heuristic approach for logistics network design. Computers & industrial engineering59(4), 964-975.
  24. Bashiri, M., Badri, H., & Talebi, J. (2012). A new approach to tactical and strategic planning in production–distribution networks. Applied mathematical modelling36(4), 1703-1717.
  25. Fattahi, M., Mahootchi, M., Govindan, K., & Husseini, S. M. M. (2015). Dynamic supply chain network design with capacity planning and multi-period pricing. Transportation research part E: logistics and transportation review81, 169-202.
  26. Melo, M. T., Nickel, S., & Da Gama, F. S. (2006). Dynamic multi-commodity capacitated facility location: a mathematical modeling framework for strategic supply chain planning. Computers & operations research33(1), 181-208.
  27. Fattahi, M., Govindan, K., & Keyvanshokooh, E. (2018). A multi-stage stochastic program for supply chain network redesign problem with price-dependent uncertain demands. Computers & operations research100, 314-332.
  28. Aghezzaf, E. (2005). Capacity planning and warehouse location in supply chains with uncertain demands. Journal of the operational research society56(4), 453-462.
  29. Aras, N., & Bilge, Ü. (2018). Robust supply chain network design with multi-products for a company in the food sector. Applied mathematical modelling60, 526-539.
  30. Canel, C., Khumawala, B. M., Law, J., & Loh, A. (2001). An algorithm for the capacitated, multi-commodity multi-period facility location problem. Computers & operations research28(5), 411-427.
  31. Antunes, A., & Peeters, D. (2001). On solving complex multi-period location models using simulated annealing. European journal of operational research130(1), 190-201.
  32. Dias, J., Captivo, M. E., & Clímaco, J. (2007). Efficient primal-dual heuristic for a dynamic location problem. Computers & operations research34(6), 1800-1823.
  33. Georgiadis, M. C., Tsiakis, P., Longinidis, P., & Sofioglou, M. K. (2011). Optimal design of supply chain networks under uncertain transient demand variations. Omega39(3), 254-272.
  34. Hinojosa, Y., Puerto, J., & Fernández, F. R. (2000). A multiperiod two-echelon multicommodity capacitated plant location problem. European journal of operational research123(2), 271-291.
  35. Melachrinoudis, E., & Min, H. (2000). The dynamic relocation and phase-out of a hybrid, two-echelon plant/warehousing facility: a multiple objective approach. European journal of operational research123(1), 1-15.
  36. Govindan, K., & Fattahi, M. (2017). Investigating risk and robustness measures for supply chain network design under demand uncertainty: a case study of glass supply chain. International journal of production economics183, 680-699.
  37. Correia, I., & Melo, T. (2021). Integrated facility location and capacity planning under uncertainty. Computational and applied mathematics40(5), 1-36.
  38. Silva, A., Aloise, D., Coelho, L. C., & Rocha, C. (2021). Heuristics for the dynamic facility location problem with modular capacities. European journal of operational research290(2), 435-452.
  39. Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of risk,2, 21-42.
  40. Mulvey, J. M., Vanderbei, R. J., & Zenios, S. A. (1995). Robust optimization of large-scale systems. Operations research43(2), 264-281.
  41. Vladimirou, H., & Zenios, S. A. (1997). Stochastic linear programs with restricted recourse. European journal of operational research101(1), 177-192.
  42. Ahmed, S., & Sahinidis, N. V. (1998). Robust process planning under uncertainty. Industrial & engineering chemistry research37(5), 1883-1892.
  43. Yu, C. S., & Li, H. L. (2000). A robust optimization model for stochastic logistic problems. International journal of production economics64(1-3), 385-397.
  44. Leung, S. C., Tsang, S. O., Ng, W. L., & Wu, Y. (2007). A robust optimization model for multi-site production planning problem in an uncertain environment. European journal of operational research181(1), 224-238.
  45. de Sá, E. M., de Camargo, R. S., & de Miranda, G. (2013). An improved Benders decomposition algorithm for the tree of hubs location problem. European journal of operational research226(2), 185-202.
  46. Saharidis, G. K., Minoux, M., & Ierapetritou, M. G. (2010). Accelerating Benders method using covering cut bundle generation. International transactions in operational research17(2), 221-237.
  47. Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische mathematik4(1), 238-252.
  48. Saharidis, G. K., Boile, M., & Theofanis, S. (2011). Initialization of the Benders master problem using valid inequalities applied to fixed-charge network problems. Expert systems with applications38(6), 6627-6636.
  49. Magnanti, T. L., & Wong, R. T. (1981). Accelerating Benders decomposition: algorithmic enhancement and model selection criteria. Operations research29(3), 464-484.