Document Type : Research Paper


1 Department of IT Management, Qeshm Branch, Islamic Azad University, Qeshm, Iran.

2 Department of Computer Science, Kashan Branch, Islamic Azad University, Kashan, Iran.

3 Department of Management, Central Tehran Branch, Islamic Azad University, Tehran, Iran.


With the increase of news on social networks, a way to identify fake news has become an essential matter. Classification is a fundamental task in natural language processing (NLP). Convolutional neural network (CNN), as a popular deep learning model, has shown remarkable success in the task of fake news classification. In this paper, new baseline models were studied for fake news classification using CNN. In these models, documents are fed to the network as a 3-dimensional tensor representation to provide sentence-level analysis. Applying such a method enables the models to take advantage of the positional information of the sentences in the texts. Besides, analyzing adjacent sentences allows extracting additional features. The proposed models were compared with the state-of-the-art models using a collection of real and fake news extracted from Twitter about covid-19, and the fusion layer was used as the decision layer in selecting the best feature. The results showed that the proposed models had better performance, particularly in these documents, and the results were obtained with 97.33% accuracy for classification on Covid-19 after reviewing the evaluation criteria of the proposed decision system model.


Main Subjects

  1. Zhou, X., & Zafarani, R. (2018). Fake news: a survey of research, detection methods, and opportunities. Available at arXiv:1812.00315
  2. Shu, K., Sliva, A., Wang, S., Tang, J., & Liu, H. (2017). Fake news detection on social media: a data mining perspective. ACM SIGKDD explorations newsletter19(1), 22-36.
  3. Sharma, K., Qian, F., Jiang, H., Ruchansky, N., Zhang, M., & Liu, Y. (2019). Combating fake news: a survey on identification and mitigation techniques. ACM transactions on intelligent systems and technology (TIST)10(3), 1-42.
  4. Tacchini, E., Ballarin, G., Della Vedova, M. L., Moret, S., & de Alfaro, L. (2017). Some like it hoax: automated fake news detection in social networks. Available at arXiv:1704.07506
  5. Rashkin, H., Choi, E., Jang, J. Y., Volkova, S., & Choi, Y. (2017, September). Truth of varying shades: analyzing language in fake news and political fact-checking. Proceedings of the 2017 conference on empirical methods in natural language processing(pp. 2931-2937). Association for Computational Linguistics.
  6. Agag, G. M., & El-Masry, A. A. (2017). Why do consumers trust online travel websites? drivers and outcomes of consumer trust toward online travel websites. Journal of travel research56(3), 347-369.
  7. Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? sentiment classification using machine learning techniques. Available at  cs/0205070
  8. Jindal, N., & Liu, B. (2007, May). Review spam detection. Proceedings of the 16th international conference on world wide web(pp. 1189-1190). Association for Computing Machinery, New York, NY, United States.
  9. Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM55(4), 77-84.
  10. Russel, S., & Norvig, P. (2013). Artificial intelligence: a modern approach. Pearson.
  11. Wang, S. I., & Manning, C. D. (2012, July). Baselines and bigrams: simple, good sentiment and topic classification. Proceedings of the 50th annual meeting of the association for computational linguistics (Volume 2: Short Papers)(pp. 90-94). Association for Computational Linguistics.
  12. LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural computation1(4), 541-551. DOI: 1162/neco.1989.1.4.541
  13. Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A critical review of recurrent neural networks for sequence learning. Available at  arXiv:1506.00019
  14. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation9(8), 1735-1780. DOI:1162/neco.1997.9.8.1735
  15. Zhang, X., Zhao, J., & LeCun, Y. (2015). Character-level convolutional networks for text classification
  16. Feng, G., Li, S., Sun, T., & Zhang, B. (2018). A probabilistic model derived term weighting scheme for text classification. Pattern recognition letters110, 23-29.
  17. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Available at arXiv:1310.4546
  18. Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: global vectors for word representation. Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP)(pp. 1532-1543). Association for Computational Linguistics.
  19. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. Availabla at arXiv:1406.1078  
  20. Yogatama, D., Dyer, C., Ling, W., & Blunsom, P. (2017). Generative and discriminative text classification with recurrent neural networks Availabla at arXiv:1703.01898     
  21. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE86(11), 2278-2324. DOI:1109/5.726791
  22. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural language processing (almost) from scratch. Journal of machine learning research12(ARTICLE), 2493-2537.
  23. Kim, Y. (2019). Convolutional neural networks for sentence classification. Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1746–1751). Association for Computational Linguistics.
  24. Conneau, A., Schwenk, H., Barrault, L., & Lecun, Y. (2016). Very deep convolutional networks for text classification. Availabla at arXiv:1606.01781
  25. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition(pp. 770-778). IEEE.
  26. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Available at arXiv:1706.03762
  27. Lin, Z., Feng, M., Santos, C. N. D., Yu, M., Xiang, B., Zhou, B., & Bengio, Y. (2017). A structured self-attentive sentence embedding. Available at arXiv:1703.03130       
  28. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E. (2016, June). Hierarchical attention networks for document classification. Proceedings of the 2016 conference of the North American chapter of the association for computational linguistics: human language technologies(pp. 1480-1489). Association for Computational Linguistics.
  29. Wang, S., Huang, M., & Deng, Z. (2018, July). Densely connected CNN with multi-scale feature attention for text classification. Proceedings of the 27th international joint conference on artificial intelligence (pp. 4468-4474). AAAI Press.
  30. Castillo, C., Mendoza, M., & Poblete, B. (2011, March). Information credibility on twitter. Proceedings of the 20th international conference on World wide web(pp. 675-684). Association for Computing, Machinery, New York, NY, United States.
  31. Zhang, H., Fan, Z., Zheng, J., & Liu, Q. (2012). An improving deception detection method in computer-mediated communication. Journal of networks7(11), 1811-1907.
  32. Zhou, L., Twitchell, D. P., Qin, T., Burgoon, J. K., & Nunamaker, J. F. (2003, January). An exploratory study into deception detection in text-based computer-mediated communication. Proceedings of the  36th annual Hawaii international conference on system sciences. IEEE. DOI: 1109/HICSS.2003.1173793
  33. Chang, C., Zhang, Y., Szabo, C., & Sheng, Q. Z. (2016, December). Extreme user and political rumor detection on twitter. International conference on advanced data mining and applications(pp. 751-763). Springer, Cham.
  34. Aker, A., Derczynski, L., & Bontcheva, K. (2017). Simple open stance classification for rumour analysis. Available at arXiv:1708.05286
  35. Ruchansky, N., Seo, S., & Liu, Y. (2017, November). Csi: a hybrid deep model for fake news detection. Proceedings of the 2017 ACM on conference on information and knowledge management(pp. 797-806). Association for Computing, Machinery, New York, NY, United States.
  36. Giasemidis, G., Singleton, C., Agrafiotis, I., Nurse, J. R., Pilgrim, A., Willis, C., & Greetham, D. V. (2016, November). Determining the veracity of rumours on Twitter. International conference on social informatics(pp. 185-205). Springer, Cham.
  37. Vosoughi, S. (2015). Automatic detection and verification of rumors on Twitter(Doctoral dissertation, Massachusetts Institute of Technology). Retrieved from
  38. Otter, D. W., Medina, J. R., & Kalita, J. K. (2020). A survey of the usages of deep learning for natural language processing. IEEE transactions on neural networks and learning systems32(2), 604-624. DOI:1109/TNNLS.2020.2979670
  39. Zhang, Y., Meng, J. E., Venkatesan, R., Wang, N., & Pratama, M. (2016, July). Sentiment classification using comprehensive attention recurrent models. 2016 international joint conference on neural networks (IJCNN)(pp. 1562-1569). IEEE. DOI: 1109/IJCNN.2016.7727384
  40. Rojas‐Barahona, L. M. (2016). Deep learning for sentiment analysis. Language and linguistics compass10(12), 701-719.
  41. Deng, L., & Liu, Y. (Eds.). (2017). Deep learning in natural language processing. Springer, Singapore.
  42. LeCun, Y., Haffner, P., Bottou, L., & Bengio, Y. (1999). Object recognition with gradient-based learning. In Shape, contour and grouping in computer vision(pp. 319-345). Springer, Berlin, Heidelberg.
  43. Le, Q. V., Zou, W. Y., Yeung, S. Y., & Ng, A. Y. (2011, June). Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. CVPR 2011(pp. 3361-3368). IEEE. DOI: 1109/CVPR.2011.5995496
  44. Tompson, J. J., Jain, A., LeCun, Y., & Bregler, C. (2014). Joint training of a convolutional network and a graphical model for human pose estimation. Proceedings of the 27th international conference on neural information processing systems (pp. 1799-1807). MIT Press.  
  45. Chen, H., Xie, L., Leung, C. C., Lu, X., Ma, B., & Li, H. (2016). Modeling latent topics and temporal distance for story segmentation of broadcast news. IEEE/ACM transactions on audio, speech, and language processing, 25(1), 112-123.
  46. Zeiler, M. D., & Fergus, R. (2013). Stochastic pooling for regularization of deep convolutional neural networks. Available at arXiv:1301.3557
  47. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE transactions on pattern analysis and machine intelligence37(9), 1904-1916. DOI:1109/TPAMI.2015.2389824
  48. Ouyang, W., Luo, P., Zeng, X., Qiu, S., Tian, Y., Li, H., ... & Tang, X. (2014). Deepid-net: multi-stage and deformable deep convolutional neural networks for object detection. Available at arXiv:1409.3505
  49. Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Deep learning for visual understanding: a review. Neurocomputing187, 27-48.
  50. Yang, Y., Zheng, L., Zhang, J., Cui, Q., Li, Z., & Yu, P. S. (2018). TI-CNN: convolutional neural networks for fake news detection. Available at arXiv:1806.00749
  51. Ajao, O., Bhowmik, D., & Zargari, S. (2018, July). Fake news identification on twitter with hybrid cnn and rnn models. Proceedings of the 9th international conference on social media and society(pp. 226-230). Association for Computing Machinery, New York, NY, United States.
  52. Dragoni, M., & Petrucci, G. (2017). A neural word embeddings approach for multi-domain sentiment analysis. IEEE transactions on affective computing8(4), 457-470. DOI:1109/TAFFC.2017.2717879
  53. Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. Available at arXiv:1409.0473
  54. Long, Y. (2017). Fake news detection through multi-perspective speaker profiles. The eighth international joint conference on natural language processing (Volume 2: Short Papers). Asian Federation of Natural Language Processing, Taipei, Taiwan.
  55. Karimi, H., & Tang, J. (2019). Learning hierarchical discourse-level structure for fake news detection. Available at arXiv:1903.07389
  56. Chauhan, A., Babu, M., Kandru, N., & Lokegaonkar, S. (2018). Empirical Study on convergence of capsule networks with various hyperparameters. Retrieved from
  57. Sabour, S., Frosst, N., & Hinton, G. E. (2017). Dynamic routing between capsules. 
  58. Hinton, G. E., Sabour, S., & Frosst, N. (2018, February). Matrix capsules with EM routing. Paper presented at the metting of International conference on learning representations, Vancouver Convention Center, Vancouver CANADA.
  59. Deng, F., Pu, S., Chen, X., Shi, Y., Yuan, T., & Pu, S. (2018). Hyperspectral image classification with capsule network using limited training samples. Sensors18(9), 3153.
  60. Iesmantas, T., & Alzbutas, R. (2018, June). Convolutional capsule network for classification of breast cancer histology images. International conference image analysis and recognition(pp. 853-860). Springer, Cham.
  61. De La Escalera, A., Moreno, L. E., Salichs, M. A., & Armingol, J. M. (1997). Road traffic sign detection and classification. IEEE transactions on industrial electronics44(6), 848-859. DOI:1109/41.649946
  62. Paoletti, M. E., Haut, J. M., Fernandez-Beltran, R., Plaza, J., Plaza, A., Li, J., & Pla, F. (2018). Capsule networks for hyperspectral image classification. IEEE transactions on geoscience and remote sensing57(4), 2145-2160. DOI: 1109/TGRS.2018.2871782
  63. Goli, A., Zare, H. K., Tavakkoli-Moghaddam, R., & Sadeghieh, A. (2019). Application of robust optimization for a product portfolio problem using an invasive weed optimization algorithm. Numerical algebra, control & optimization9(2), 187-209.  DOI: 3934/naco.2019014
  64. Goli, A., Tirkolaee, E. B., & Aydın, N. S. (2021). Fuzzy integrated cell formation and production scheduling considering automated guided vehicles and human factors. IEEE transactions on fuzzy systems29(12), 3686-3695. DOI:1109/TFUZZ.2021.3053838
  65. Goli, A., & Malmir, B. (2020). A covering tour approach for disaster relief locating and routing with fuzzy demand. International journal of intelligent transportation systems research18(1), 140-152.
  66. Goli, A., Zare, H. K., Moghaddam, R., & Sadeghieh, A. (2018). A comprehensive model of demand prediction based on hybrid artificial intelligence and metaheuristic algorithms: a case study in dairy industry. Journal of industrial and systems engineering, 11, 190-203.
  67. Goli, A., Khademi-Zare, H., Tavakkoli-Moghaddam, R., Sadeghieh, A., Sasanian, M., & Malekalipour Kordestanizadeh, R. (2021). An integrated approach based on artificial intelligence and novel meta-heuristic algorithms to predict demand for dairy products: a case study. Network: computation in neural systems32(1), 1-35.
  68. Lotfi, R., Mardani, N., & Weber, G. W. (2021). Robust bi‐level programming for renewable energy location. International journal of energy research45(5), 7521-7534.
  69. Lotfi, R., Yadegari, Z., Hosseini, S. H., Khameneh, A. H., Tirkolaee, E. B., & Weber, G. W. (2020). A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: a case study for a bridge construction project. Journal of industrial & management optimization. 13(5), 1-22. DOI: 3934/jimo.2020158
  70. Lotfi, R., Nayeri, M., Sajadifar, S., & Mardani, N. (2017). Determination of start times and ordering plans for two-period projects with interdependent demand in project-oriented organizations: a case study on molding industry. Journal of project management2(4), 119-142. DOI: 5267/j.jpm.2017.9.001
  71. Lotfi, R., Mehrjerdi, Y. Z., Pishvaee, M. S., Sadeghieh, A., & Weber, G. W. (2021). A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical algebra, control & optimization11(2), 221-253.
  72. Kingma, D. P., & Ba, J. (2014). Adam: a method for stochastic optimization. Available at arXiv:1412.6980
  73. Joulin, A., Grave, E., Bojanowski, P., & Mikolov, T. (2016). Bag of tricks for efficient text classification. Available at arXiv:1607.01759