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Abstract

One of the most complex and costly systems in the industry is the Gas Turbine (GT). Because of the complexit
assets, various indicators have been used to monitor the health condition of different p&Ts dluthee Exit
Temperature (TET) spad is one of the significant indicators that help monitor and detect faults such as overall
deterioration and burner fault. The goal of this article is to usdridataapproaches to monitor TET data
detecffaults early, as fault detectiom lsave a significant impact®m reliability and availability. In this study, the TET
data of v94.2 GT is measured by six temperature transmitters to show a detailed profile. According to the statis
TET data are high dimensional and 4itepenlent in the realorld industryHence, three distinctive methods in the
field of theGT are proposed in this stufty early fault detection. Conventional Principal Component Analysis (PC
Moving WindowPrincipal Component Analy$MWPCA), and Incremtai Principal Component AnalygIPCA)
were implemented on TET data. According to the results, the conventional PCA modeadsgtimermethod, and
the false alarm rate is high due to the incompatibility of this approach and the process. The MW/@CYshas
aheadand IPCA approaches overcame thestationary problem and reduced the false alarm rate. In fact, th
approaches can distinguish between the normalamyieg and slow ramp fault processes. The results showed !
IPCA could detedtult situations faster than MWPCA based-stepahead in this study.

Keywords Early fault detection, Datliven, Gasurbine exit temperatyr&imevarying, PCA model, MWPCA
model, IPCA model.

1 | Introduction

LicenseeJournal of | AS the demand for systems safety anduptaepliality increases, the role of process monitoring in

Applied Research on industriabrocedures becomes more promifiglhOne of the most complex and costly systems
Industrial Engineering . This | in the industry is the Gas Turbine (GT). There is increasing attention to condition monitoring of
article is an open access GTsin power plants operations and maintenartoe main reasons for this consideration are to

article distributed under the | enhance the reliability and availability of these valuablg2jssetsa result, employing the
terms and conditions ofthe | o njitoring strategy appears to be important to ensure that fauitpesrate detected early
Creative Commons . . .
Attribution (CC BY) license and that a forced plant shutdown is avdigleBecause of the complexity of these assets, various
indicators have been used to monitor the health condition of different garfsoth as coast
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Turbine Exit Temperature (TEBpread, Bearing temperature during coast dowi4dletc. 0 TE T
spreadoé is one of the essenti al i ndicator s=ut hat
overall engine deterioration and burner fault. JARIE

There are several conceptual approaches to detecting and diagnosing failure, as well as distinct categories
presented by different researchers. None of these classifications are comprehensive, antieach resé88
has his or her own viewpoidhang et aJ5]argued that fault detection methods could be either-model

based or dataased method§if.1). However, Chiang et @] believed that three fault detecting and
diagnosing methods are e@dti@en, angticatbased, and knowledgased methods.

Fault detection and diagnosis
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Fig. 1. Classification of fault detection and diagnosis methdd]. -
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The analytical approach utilizes first principles to construct mathematical models of fiig $hstem =

analytical model cannot be applied for dsecgle and complex systems. Accordin{B]iothe &
knowledgdased methods are mostlydulas ed expert syst ems. The ®Hail

a.

experience are used to formulate the rules. When the detailed mathematical model cannot be reachgd,
and when the number of inputs, outputs, and states of a system is logically small, thelasadledge
methodwill yield the best results.[Bhedatadriven methods use product-tifecle data to detect faults
and they do not depend on the fpsnciples mode[9], [10]

Hajarian et

Hence, datdriven methods can be used for lsige and complex systems which are inexpensive and
high accurady], [11]Upon the availability of the data of product or systerriileta methods are
chosen, but the system model ighdt AsFig. Ishows, datdriven methods consist of statistical and
non-statistical method$]. One of the datdriven statistical tools Principal Component Analysis
(PCA)models. Instead of using basedels, we introduced PCA models for monitoring and identifying
earlyfailures in a&GT using TET spread indicators in this study. Because the basic principles for
constructing mathematioabdels of5Tsare not readily available, and such a model is typically difficult
to obtain due to the complexity and high dimensionality Dfthere appears to be sufficient historical
data for employing a statistical method.

StatisticaProces$onitaring (SPM) developedtie quality control charts to detect a system deviation
from the normal behavior. When the number of variables or dimensions of a igroblgnd one
value, it is necessary to use a multivariate statistical ajjf@jpach

Monitoring,in a power plant contexneans assessing the measured data smtpkest form to
distinguish data of the normal operatiom abnormatlata Nowadays, GTs are equipped with a lot
of sensors, of which the collected dataiaed for monitoring purpog&4d]
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The idea of monitoring the TET spread monitoring has been proposed for more than two decades, and
different methods have been suggested unti[4jpjt5][21] Various research has been done in TET
spread monitoring since 198 [15][21] All of them mentioned the importance of TET monitoring to
prevent catastroph@®T damages. In an ideal condition, thasueements of all thermocouples in exhaust

must be the same. Nevertheless, in the real world, it is not. Khdldescribed all possible reasons for

this fact and suggested monitoring temperature patterns instead of temperature spresdhdd ghis

pattern is extractedfn the healthy condition of t&d to compare the current TET pattefisalavoutas

et al.[21] presentec statistical method to evaluate the changes in temperature phttermd these
researchers considered the influenceayhitipn status and ai@bt conditions on their models.

Some researchapplied TET to diagnose a specific failure. Meding/E@]dbcused on combustion
chambers failure detection with the aid of TET monitoring. They developed a TET model based on the
basic principles of @T, which estimates tA&T, then compared the actual temperature measurement
with the TET estimation to detect each combustor chamber failure. Korfz@dskivered a method

to detect the failures of the automatic engine caystdm according to the alteration in TET during
transient conditions such as stgraind acceleration processes. Besides, he presented diagnostic tolerances
based on the statistical quality control metlloda.et al[1§ presented an early fault détsn method

of the hot component. They introduced an indicator to detect the early faults of the hot component in the
GT. Kenyon et aJ22]proposed an anomaly detection in exhaust gas temperature system by data mining
algorithm to monitor the related parameters when anomalies are idéanifietchl[23]proposed partial

kernel PCA for sensor fault detection of an induStfiaPalmé et gl20Jused Auto Associative Kernel
Regression method to simulate the TET pattern. In this methodaltiee of each thermocouple
measurement would be estimated according to the previous records of exhaust temperature. Literatut
review shows that previous stadiere often in the field of fault detection ofGiewith an analytical
approach, and there was no special attention to the important point that the trend of TET measured date
is high dimensional and nstationary. They are affected by operation siadusmbient condiins.

According to our findings, no research has been conducted on early fault detection by monitoring TET
spread using a statistical approach witistadionary and higimensional data assumptions. This study

aims to find an approptéaapproach for early fault detection of turbine gas using TET spread, with a
focus on data that will change over time, namelstatonary data. In this paper, a low and
straightforward calculation cost method will be proposed. It will help us likttetamd the condition

of the TET pattern during the encounters of any fault generation and propagation. This study presents
two approaches to cope with hijmensional and tindependent features. ThMoving Window

Principal Component Analyfi$WPCA)ard IncrementalPrincipal Component AnalydBCA)are two

new approaches that can solve the dimensionality ailgpienelent problems.

This paper also looks into the basic MDAPCA, andPCA inSecion 2. In additionSectn 3 presents
the details of the results of implementation and fault detection methods based on the conventional PCA
MWPCA, and IPCA. Finally, the conclusion is givE&ection 4.

2 | The Multivariate Statistical Approachbased on PCA, MWPCA,
IPCA

Reseathers believe that among the monitoring of multivariate processepaRi@lleast squares,
canonical correlation analysis and factor analysis are the suitable monitoring §pgfoaches

The mentionedapproaches and their expansion indicate the ggpalsbnducting digh-dimensional

data process. All turn the hidimensional process into a lodnensional subspace and control the
process behavior accordinffp] In the PCA, the original space variables, usually correlated, are
transformed lirerly into a new space of variables; these new variables are uncorrelated or orthogonal to
each othef26] If X € R™™ is the standardized data matrix with zero mean and unitevavith the scale
parameter vectossand S as the mean and variance vectors, respectively, where n denotes the sampls



number and m represents the variable number. Defining thara®/aniatrix R is the first step

obtain PCA: ‘
1 JARIE
R = —1XTX. (2)
n f—
Thenaccomplishin§ingulaiValue DecompositiofsVD) decomposition on R is as follows: 100
R =VAVT, 2

where NIrepresents a di agpatineadal eigeavalues as decreasisgi(st i ng o
A, > -+ > A, > 0). Columns of matrix V are the eigenvectors of R. Based on r principal eigenvalues, the
transformation matrik € R™*" is generated by choosing r eigenvectors or columns of V. The space of

the measured variables is turned into the reduced dimensidoy apetciP:

T = XP. ©)

The columns of P are called loading and items of T are called scores. Scores are the values of the original
measured variables that have been converted into the reduced dimen$iifj guaceding tdeq.
(3) the scores catso be turned into the original space as follows

X =TPT. )
The residual matrix E is calculated as:

E=X-X ©)
Finally, the original data space can be computed as

X =TPT +E. )

The important part of the implementation of PCA is choosing the number of principal components,
which should be done carefully becaws$ellustrates the main source of variability and E represents
the variability known as noj28] Several methodsegroposed for choosing the number of principal
components. SCREE proceduned Cumulative Reant Variance @/) approach are the most
populamethods.

A plot of the eigenvalues is built in descending ortlee BZREE proceduf@8] which is a graplat
approach that detects the knee in the curve. The number of kileeploh indicates the count of
principal components. CPV is the other meff28j, [30]which determinethe percent variance
(CPV(r = %90) calculated by the first r principal congrus as follow81}

r A
CPV r) = &=L
D trace(R)

Hajarian et al.| J. Appl. Res. Ind. Eng 10(1) (2023) 912

™

2.1| Multivariate Statistical Process Contrabasedon PCA

After constructing a PCA model based on the historical data collected, it is necessary to have an
instrument that controls variation. It is possible to plot the multivariate control charts using the
HotellingT? andSquare Prediction Err(BPE)or Q to cetect the faulDeterminingwo orthogonal
subspaces of the original space can decrease the monitoring of these twavanab@s (

Thesignificanwvariation and the random noise in the data can be controifedriay/Q, respectively.
TheT? statistic can be calculated for each new observation x by:

T? = xTPA;'PTx, )
whereA,i s t he squared matrix constructed by the fir

mentioned, P is r eigenvectors or columns of V. The upper noafideit forr? is acquired using the
F-distribution
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rin—-1
Tozc = ( )Fa,r,n—rr (9)
n-r

wherer i s the number of the principal components
level of significance. A violation of the threshold would mean that variations of the system are out of
control. Another statistic is the SPE or Q thatheanitor the portion of the measurement space related

to the lowest An eigenvalues. In fact, the Q statistic is calculated as the sum of squares of residuals.

Q=xT(I-PPT)x, (10)
wherel is the identitynatrix

The upper confidence limit for the Q carcaleulated from its approximate distribution:

Ca20:05  9,hg hg—1) 1 20,0 SN
Q. = 01— + 222 ) o1)ho, hy=1- 123,eizz)\;, (1)
j=r+1
whereC, is the value ohe normal distribution withea | e v e | significance. A

wouldindicatehat an unusual event has occurred that had changed the covariance structure of the mode
(28]

Monitoringand fault detection based on the PCA model considers two steps:

1. Off-line:Acquire training data, collected under normal operation, this matrix must be normalized to zero
mean and unit variance with the scale parameter veetndsS as the mean and variance vectors,
respectively. Then, we should implement PCA algorithmigigmaue and eigenvector and determine
the number of principal components and finally the upper control linfitsafod Q statistics.

2. Online:

- Get a new instance and scale it using the scale parameter veeiuss.

- CalculateT?and Q statistics usig the result of PCA model.

- When the value of statistics is compared to thresholds, the violation is interpreted as an alarm.
- Repeat from step A.

Themonitoringprocess with PCA is indicatedrig. 2

T — T

Fig. 2. Monitoring process with PCA method diagranf32].



2.2| Multivariate Statistical Process ControBasedon MWPCA

The process parameters, such as the mean or covariance, change with time, making the proce TONRJE
stationary33] Several complement&$PMmethods have been introduced to tackle thevanyeng

issueThree classes of approacheRetursivérincipal Component Analy§RPCA), MWPCA and

IPCAwere applied to develop PCA methods to addresstationary dat@4] 102

Ketelaere et dI35]investigated PCRased statistical processnitoring methods in terms of time
dependent and higlimensional data, including MWPCA and RBEPRPCA techniques update the
model for evemcreasing data consisting of new samples without discarding thesoldlithough

RPCA is theoretically simple, it has been successipithyed for process monitoripwever, its
implementation might not be easy for two main reasons: tg@vieig data set on which the model

is updated, which eventually slows dderspeed of adaptation as the data size increases. RPCA also
consists of older data that are unrepresentative of thetiyiregg process. The forgetting factor cannot

be easily selected without a priori knowledge of likely fault conditions when givemvigight older
sample$36] The MWPCA method can tackle some of the limitations mentioned above by gathering a
sufficient number of data points in the timedow to help build an adaptive process. Specifically,
MWPCA removes older samples to choose the new sampkantaqurehe current operation process.
Hence, for windowizeH, the data matrix at time ts= (x,_y.1, X-H42, - - -, %)’ @nd, at time+# 1, it is

X 1= (X_pa2, X—pass - - -, Xi01) - The observations in the new window can betosdxdain the updated

Xi+1 @nds,,, [37] The window includes a number of samples to cover enough process variation forg
modeling and monitoring purposes. Thus, window size is important. If a high number of samples seleg}
for the window, the MWPCA comptita speed reduces drastically. If the result data used to enhance G
the computational efficiency is in a smaller window size, the relationship between the process variabigs
will be important. If the model's adaptability to the process changes ragidig, diffitult to notice iy
abnormal behavior, and the narrow window will be @skgng et dl6] determinedhe window size
needed to estimate tlé-statistic accurately. This was done according to the convergende of the
distribution to the F disbution suggesting that minimum window sizes should be greater than <
approximately 10 times the number of variables. The monitoring process with MWPCA is indicated i’
Fig. 3lt is worth noting that ovditting might be observed in MWPCA and a slow ramld oot be
detected. As a result of the introduction-sfapahead prediction, MWPCA is based on the application
delay. This approach is implemented using a model esdintiated to predict the system behavior at
time t+ V and observe the likelyufts. This step is used to ensure that the model does nrataper

to the data and that it can detect faults that develop over time and are identified as regular observatio
at each time poifi36], [38].

) (2023) 9D
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Fig. 3. Monitoring process with MWPCA method digram [32].
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2.3| Multivariate Statistical Process Contrabased a IPCA

In adaptive methods, the monitoring models are updated by new sample and the neanghtime
information is added to the monitoring model to recognize between the normalhyingeand slow
ramp fault processes. Another approadPGa\.

Unlike theadaptive method, this method presents a novel approach in which the monitoring model is
constant. When the PCA model implements\tangng process data, the PCs are alsodiyiag. This
method introduces a new parametémaementaPrincipal Compant(IPC). IPC calculate as follows:

IPC; = mean(PC; k - L:k)) - PC; k- W - 2L:k - W - L). (12)

The IPC is proposed to define the variations of the PCs. IPCs explaaryingeinformation. L indicates
the number of PCs used to calculate the mean subtractedndiodiiés the interval of the two moments
(W > L). A good introduction to IPCA can be foun{3®] IPCA model contains two steps as follows:

1. Offline:

I. Acquire training data set A, which is collected under normal operation. This matrix must be normalized
to zero mean and unit variance with the scale parameter sfgnidr$S as the mean and variance
vectors, respectively.

II. Construct the conventional PCAoael with training data set, using the eigenvalue decomposition
algorithm without reducing the dimension, and keep the loading matrix P.and PCs

[ll. Compute the IPCs accordinggg. (12)in dataset A, and then compute the correspofitfinfjeach
sample wit the IPCs according Ey. (13)

IT? = IPCI AR IPC;. (13

IV. Use theKernel Density EstimatiaiKDE) algorithm to define the control lindit; and CL ofiT> as
well as the threshold.; of IPC; with the 99% confidence level.

2. Online step:

I. CollectN; normal online sampleshereN, > W + 2 = L. Normalize the samples through the means
and variances of the training dataset A, and compute the PCs with the loading matrix P.
II. Collect a new online sample. Normalize the sample with the meansrases \adribe training dataset
A and calculate the PCs with the loading matrix P of the PCA model.
.  ComputePC; of thei’ sample with the PCs of the forward W +2*L samples thEmgh?2)
IV. Compute the statistit?of thei”sample with th&PC; of thei sample througkg. (13)
V. |If IT? > CL, then a fault may be present in the process. Otherwise, the sample is a normal one. In
addition, whenPC; >CL;, the correspondingC; ; is replaced byC,_; ..
VI. Repeatl{) o (ll).

The monitoring process with IPCA is indicatdelgn4.
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S
GTs are designed for many different purposes. In the industngréhegmmonly used to drive o
compressors to transport gas through pipelines and generators that produce electid€d) ptjer w
In the past, the use of GTs has traditionally been limited to generating power during times of peal@

demand. Still, nowadatf®y are being used in combined cycle puasets for baseload production
[42] Consequently, their availability, as well as reliability, plaficarsigole in these machinébhe
development of th&T in recent years has been facilitated coosiderably by three factors:

I.  Metallurgical developments that can be used to apply high temperatures in the combustor and turbi
components
Il. Increased underlying knowledge of aerodynamics and thermodynamics
[ll. Designing and simulating turbine airfoilscamobustor and turbine blade cooling configurations by
computer software

Hajarian et al%J. Appl. Res. |

Fig. 5. Siemens V94.2 GT, from left to right: compressor, combustion chamber, turbd&].

After compressing the air in the compressor, the fuel will be injected into it andarowiitiistrease

the temperature of the g&srbinelnlet Temperatur€lIT) is theaverage temperature of the flue gas

that will face the first stage of turbine blades. During the expansion of the flue gas in the turbine, the
pressure and temperaturd déicrease and the flue gas will leaveithi@e withTET. The overview

of a V94.2 GT manufactured by Siemens is shdw. i.
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If TIT could be increased, GT's efficiency and specific power would improve. Nonetheless, there is a
technological limit tdesigning and producing turbines that can withstand larger TIT. Since TIT is too hot
to be measured directly, it is usually calculated by measuring TET. Both TET and TIT have a profile on
their section due to the flue gas stream's rotation and turbimargze2 GTs, TET is being measured

by six temperature transmitters to show a detailed profile. GT manufacturers use various methods tc
calculate the TIT regarding the measured TET. The operator keeps the GT in a protected condition by
monitoring the TET.

The TET of an IraniaGT company is used to show the behavior of the methods throughout this study.
As shown irFFig. 6the data consists of six sensors, with each sensor represenkigathe942 GT
measured approximately with 1500uteintervals.

Data
482 400
[IEREN
Data
460 475
|

Data
520 528
[NREN

Data
404 502

LI

Data
Data

=
o 2
= 2

W*Ww/ - Wﬂa—*ﬁ#ﬂwﬁwﬂf
= 2
Time Time

Fig. 6. Trends of TET data for normal process

These data were collected when all parameters were under control. Statistical tests were implemented
detect the behavior of the data. These data astatmmary following the testkiviatkowskdPhillip
SchmiddShin(KPSS. In this subsection, a static PCA model was applied on TET data for controlling the
behavior of GT and early detecting fault.

PCA model was introduced into that data along with the results of the obseBiatieral data was
present, missing data methods were not used. Preprocessing is normally done in various fields. The ty,
of preprocessing depends on the type of process. In the case of tladdl BO special preprocessing is
necessary; standardizing data was the only necessary procedure. After static PCA was applied to the
TET data, three components were retained following the CPV criteriait- @hd Qstatistics were

plotted. The first 400 observations were used to fit the underlying moctaisierable change in the
vibration intensity of any of the sensors during this period was observed. The estimated model wa:s
evaluated against the vibelhaved data observed beferd@0, and the confidence limit was set to 99%.
Therefore, a distinctiaa madéetween phase |, whiobhcurs when> 400, anghase 1lAs shown in

Fig. 7 conventional PCA cannot be a good instrument for TET data since the mean of data changes ovel
time, and static PCA created a model with the first bunch of data andbMatowpdate the model over

time. As a result, the model generates a false alarm, despite the fact that these changes are an esse
element of the system. The first chart from the Igft @ntrol chart and the second chart indicate
monitoring byQ.



As explained in the previous section, the MWPCA basedtepaiiead prediction and IPCA were
applied to th&ET data to solve this probleheT? andQ-statistics regarding MWPCA based on V
stepahead were plottedkig. 8Considering the points mentioned in the previous section, the opinion
expert window size and delay size were 400 and 40, respectively. The confidence limit was set to 9
The firg chart from the left i52 control chart and the second chart indicate monitoriQg by

T2
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Fig. 7. Monitoring performance of conventional PCA for normal process
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Fig. 8. Monitoring performance of MWPCA based on 3étep-ahead for normal process.

Also, the IPCA method was applied to TET data. As shadwig.ifithe PCs are alson-stationary
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because the TET data is tiwaeying. The red lines represent the means of all PCs, and as can be seen,

the PCs gradually deviate from the means. IPCs are computedEQr¢i@hand the parameters L
and W are set as 6 and 40, respactiMet results of IPCs were plotteim 10This figure shows

IPCs remained around mean and a statistic made by the IPCs will not increase slowly for the normal
timevarying process.
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ThenIT? was plotted ifrig. 11.
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A good fault detection technique should have robust against the training data set and react quickly in

fault detection. The robustness is measured by computiradsthé\larm Ra{EAR) upon fault free
testing data set. Promptness fault detection idfepgaby calculatinQelay Time DetectiofDTD)

upon faulty testing data set. Accordingdq14), aFARwas calculatdd4]

FAR =

Number of normal samples above the limits

*100.

total number of normal sample

The results show that both MWPCA based estegahead and IPCA methods overcome- non
stationary in this cadeable $hows the percentage of false alarms rashand that IPCA performs

better than MWPCA based orsié¢pahead.
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Table 1.FAR percentage
MWPCA based on Vstep-ahead IPCA

T2 5.3% 3.5%
Q 4%

Two types of faults were added deliberately to check the power of MWPCA bastepahedd
predictionand IPCA in finding fault early.

Fault 1L Stepchange of second TET idroduced at the 1001st sample.

Fault 2. Linearramp with 0.3 increments of second TET again is introduced beginning from the 1001st.
As it was explained in the previous sectiom?thetistic describes the useful information about system
variation, and Q statistic represents model error or noise information. In case of a problem, the covarianc
structure of the model will be altered and the statistics can represent it. The VRMIRSA based on
V-stepahead are shownhings 12and13
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Fig. 12. Monitoring performance of MWPCA based on-8tep-ahead for process with fault 1.
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Fig. 13. Monitoring performance of MWPCA based on-8tep-ahead process with fault 2.



The results of IPCA are presenteBligg 14and15 The DTD index was used to compare these two

methods:

DTD = fault detection time — fault accorance time.
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Fig. 14. Monitoring performance of IPCA process with fault 1
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Fig. 15. Monitoring performance of IPCA process with fault.2

As shown inTalle 2 both of the methods easily detected thecsiapge process in time. Also, these

charts can distinguish the normal t#uaeyingand slowampfault processes.

(15)
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But according tdable, slow ramp fault can be detected more quickly by the IPCA model in this case

based on the TET data.
Table 2. Detectiontime delay.

MWPCA based on VStepAhead IPCA
T Q T2
Fault 1 0 0 0
Fault 2 18 11 9

4 | Conclusion

Early fault detection can play an important role in the reliability and availabilisy ©herefore,

providing a monitoring approach is necessary to guarantee early detection of faulty conditions before

they lead to a forced plant shut down. The eifigiand specific power of GT would be improved if

TIT could be increased. Since the TIT is too hot to be measured directly, it is usually calculated by

measuring TET. This study used an appropriateilada approach for early fault detectio®0$.
To detect faults, datiiven approaches rely on productdifele data rather than fimtnciples

models. Hence, dadaiven methods can be used for lsgEe and complex systems; they are also
cheap and inexpensive. PCA model is one of thérdeiamethods. Still, unlike simulated data, actual
data has ambient and system characteristics, and these parameters do not provide stationary data over
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time. Finding an approach for early detection is important. In this study, the PCA model is implemented
on $x TET sensors, but it is not a suitable approach due to thstationary data. For this purpose,
MWPCA based on-stepahead and IPCA are implemented on data. MWPCA basestapalead is

a novel monitoring approach for retationary TET data. MWP®Ased on \stepahead is an adaptable
approach since it can update the monitoring model and control limit when the newly monitored sample is
detected as a normal one. On the other hand, in the IPCA approach, the monitoring model remains
unchanged and ugks new statistic call&tf to monitordata.

The results reveal that these approaches are data compatible and can detectgedtagt in real time.
However, when it comes to incremental ramp faults, the IPCA approach performs better. According to
TET data behavior which is nstationary andhanges over time, a suitable approach has been
recommended for early fault detection of turbine gas. In the future, there'll be more work to be done about
how monitor higkdimensional, nestationary, and autocorrelation data 1&¥s. It is also suggested

find the root of the faults by new fault isolation method and compare their results with classical methods.
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