[1] Cannon, J. R., Lin, Y., & Wang, S. (1991). Determination of a control parameter in a parabolic partial differential equation. The anzim journal, 33(2), 149–163. DOI:10.1017/S0334270000006962
[2] Akbarpour, S., Shidfar, A., & Saberinajafi, H. (2020). A Shifted Chebyshev-Tau method for finding a time-dependent heat source in heat equation. Computational methods for differential equations, 8(1), 1–13. https://cmde.tabrizu.ac.ir/article_9450_316d610f8aa0b862c298dff9ad145fab.pdf
[3] Saadatmandi, A., Dehghan, M., & Campo, A. (2006). The Legendre-tau technique for the determination of a source parameter in a semilinear parabolic equation. Mathematical problems in engineering, 2006. https://doi.org/10.1155/MPE/2006/70151
[4] Dehghan, M., Shafieeabyaneh, N., & Abbaszadeh, M. (2021). A local meshless procedure to determine the unknown control parameter in the multi-dimensional inverse problems. Inverse problems in science and engineering, 29(10), 1369–1400. DOI:10.1080/17415977.2020.1849180
[5] Mohebbi, A., & Dehghan, M. (2010). High-order scheme for determination of a control parameter in an inverse problem from the over-specified data. Computer physics communications, 181(12), 1947–1954. https://www.sciencedirect.com/science/article/pii/S0010465510003541
[6] Shidfar, A., Zolfaghari, R., & Damirchi, J. (2009). Application of sinc-collocation method for solving an inverse problem. Journal of computational and applied mathematics, 233(2), 545–554.
[7] Tatari, M., & Dehghan, M. (2007). Identifying a control function in parabolic partial differential equations from overspecified boundary data.
Computers & mathematics with applications,
53(12), 1933–1942.
https://doi.org/10.1016/j.camwa.2006.01.018
[8] Hazanee, A., Lesnic, D., Ismailov, M. I., & Kerimov, N. B. (2019). Inverse time-dependent source problems for the heat equation with nonlocal boundary conditions. Applied mathematics and computation, 346, 800–815. https://www.sciencedirect.com/science/article/pii/S0096300318309251
[9] Ewing, R. E., & Lin, T. (1991). A class of parameter estimation techniques for fluid flow in porous media. Advances in water resources, 14(2), 89–97.
[10] Hohage, T. (2006). Fast numerical solution of the electromagnetic medium scattering problem and applications to the inverse problem. Journal of computational physics, 214(1), 224–238.
[11] Hussein, E. M. (2019). Effect of fractional parameter on thermoelastic half-space subjected to a moving heat source. International journal of heat and mass transfer, 141, 855–860.
[12] Ismailov, M. I., & Çiçek, M. (2016). Inverse source problem for a time-fractional diffusion equation with nonlocal boundary conditions. Applied mathematical modelling, 40(7-8), 4891–4899.
[13] Kolodziej, J. A., Jankowska, M. A., & Mierzwiczak, M. (2013). Meshless methods for the inverse problem related to the determination of elastoplastic properties from the torsional experiment. International journal of solids and structures, 50(25-26), 4217–4225.
[14] Li, F. L., Wu, Z. K., & Ye, C. R. (2012). A finite difference solution to a two-dimensional parabolic inverse problem. Applied mathematical modelling, 36(5), 2303–2313.
[15] Xiao, C., Liu, J., & Liu, Y. (2011). An inverse pollution problem in porous media. Applied mathematics and computation, 218(7), 3649–3653. https://doi.org/10.1016/j.amc.2011.09.006
[16] Hazanee, A., Lesnic, D., Ismailov, M. I., & Kerimov, N. B. (2015). An inverse time-dependent source problem for the heat equation with a non-classical boundary condition. Applied mathematical modelling, 39(20), 6258–6272. https://doi.org/10.1016/j.apm.2015.01.058
[17] Zolfaghari, R., & Shidfar, A. (2015). Restoration of the heat transfer coefficient from boundary measurements using the Sinc method. Computational and applied mathematics, 34(1), 29–44. https://doi.org/10.1007/s40314-013-0102-y
[18] Zolfaghari, R. (2013). Parameter determination in a parabolic inverse problem in general dimensions. Computational methods for differential equations, 1(1), 55–70.
[19] Xiong, Z., Deng, K., Liu, Z., Liu, Y., & Yan, X. (2015). The finite volume element method for a parameter identification problem. Journal of ambient intelligence and humanized computing, 6(5), 533–539. https://doi.org/10.1007/s12652-014-0238-7
[20] Khan, M. N., Siraj-ul-Islam, Hussain, I., Ahmad, I., & Ahmad, H. (2021). A local meshless method for the numerical solution of space-dependent inverse heat problems. Mathematical methods in the applied sciences, 44(4), 3066–3079. https://doi.org/10.1002/mma.6439
[21] Ashpazzadeh, E., Lakestani, M., & Razzaghi, M. (2017). Cardinal Hermite interpolant multiscaling functions for solving a parabolic inverse problem. Turkish journal of mathematics, 41(4), 1009–1026.
[22] Grimmonprez, M., Marin, L., & Van Bockstal, K. (2020). The reconstruction of a solely time-dependent load in a simply supported non-homogeneous Euler–Bernoulli beam. Applied mathematical modelling, 79, 914–933. https://www.sciencedirect.com/science/article/pii/S0307904X19306699
[23] Siraj-ul-Islam, & Ismail, S. (2017). Meshless collocation procedures for time-dependent inverse heat problems. International journal of heat and mass transfer, 113, 1152–1167.
[24] Lakestani, M., & Dehghan, M. (2010). The use of Chebyshev cardinal functions for the solution of a partial differential equation with an unknown time-dependent coefficient subject to an extra measurement. Journal of computational and applied mathematics, 235(3), 669–678.
[25] Liao, W., Dehghan, M., & Mohebbi, A. (2009). Direct numerical method for an inverse problem of a parabolic partial differential equation. Journal of computational and applied mathematics, 232(2), 351–360.
[26] Saadatmandi, A., & Dehghan, M. (2012). A method based on the tau approach for the identification of a time-dependent coefficient in the heat equation subject to an extra measurement. Journal of vibration and control, 18(8), 1125–1132.
[27] Yang, X., Jiang, X., & Zhang, H. (2018). A time–space spectral tau method for the time fractional cable equation and its inverse problem. Applied numerical mathematics, 130, 95–111.
[28] Bhrawy, A. H., & Alofi, A. S. (2013). The operational matrix of fractional integration for shifted Chebyshev polynomials. Applied mathematics letters, 26(1), 25–31.
[29] Atabakzadeh, M. H., Akrami, M. H., & Erjaee, G. H. (2013). Chebyshev operational matrix method for solving multi-order fractional ordinary differential equations. Applied mathematical modelling, 37(20-21), 8903–8911. https://doi.org/10.1016/j.apm.2013.04.019
[30] Doha, E., Bhrawy, A., & Ezz-Eldien, S. (2013). Numerical approximations for fractional diffusion equations via a Chebyshev spectral-tau method. Open physics, 11(10), 1494–1503.
[31] Bhrawy, A. H., & Zaky, M. A. (2015). A method based on the Jacobi tau approximation for solving multi-term time–space fractional partial differential equations. Journal of computational physics, 281, 876–895.
[32] Davoodi, F., Abbas Nejad, A., Shahrezaee, A., & Maghrebi, M. J. (2011). Control parameter estimation in a semi-linear parabolic inverse problem using a high accurate method. Applied mathematics and computation, 218(5), 1798–1804.