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Abstract 

  1 | Introduction  

Natural disasters strike the world at various times of the year, killing countless people and causing 

massive financial losses to governments [2]. Floods, earthquakes, tsunamis, hurricanes, tornadoes, 

meteorite strikes, etc., are among natural disasters. 

Any of these natural disasters can have certain adverse effects depending on their magnitude and 

Location. Accordingly, it is crucial to prepare for, plan for, predict, and take preventative measures 

in the event of a natural disaster [3]. Catastrophes, as previously stated, cause significant loss of life 

and property in societies and nations. Thus, getting proper emergency logistics planning in place to 

cope with natural disasters and crisis management is critical. Such disasters are unexpected and 

unpredictable in nature as science and technology advance, necessitating the availability of 

preventative plans as well as post-disaster emergency responses. Therefore, the minimal resources 

           Journal of Applied Research on Industrial Engineering 

             www.journal-aprie.com 

J. Appl. Res. Ind. Eng.  Vol. 10, No. 3 (2023) 427–453. 

  Paper Type: Research Paper 

Introducing a Fuzzy Robust Integrated Model for 

Optimizing Humanitarian Supply Chain Processes 
Meysam Donyavi Rad1, Ehsan Sadeh1,* , Zeinolabedin Amini Sabegh1, Reza Ehtesham Rasi2 

 

1 Department of Management, College of Human Science, Saveh Branch, Islamic Azad University, Saveh, Iran; 

meysam.donyavirad@yahoo.com; e.sadeh2018@gmail.com; drsajadamini@yahoo.com. 
2 Department of Industrial Management, Qazvin Branch, Islamic Azad University, Qazvin, Iran; rezaehteshamrasi@gmail.com. 
 

Citation: 

 Donyavi Rad, M., Sadeh, E., Amini Sabegh, Z., & Ehtesham Rasi, R. (2023). Introducing a fuzzy robust 

integrated model for optimizing humanitarian supply chain processes. Journal of applied research on 

industrial engineering, 10(3), 427-453. 

Accepted: 01/09/2021 Revised: 19/07/2021 Reviewed: 10/06/2021 Received: 07/05/2021 
 

                                       

The natural disasters of the last few decades clearly reveal that natural disasters impose high financial and human costs on 

governments and communities. Concerns in this regard are growing day by day. Making the right decisions and taking 

appropriate and timely measures in each phase of the crisis management cycle will reduce potential damage at the time of the 

disaster and reduce the vulnerability of society. Therefore, in this research, a mathematical model of crisis logistics planning 

considering the problem of primary and secondary crisis in disaster relief is introduced, which is the innovation of this research. 

In the primary crisis, the goal is to provide services and relief goods to crisis areas, and in the second stage, the secondary crisis 

that occurs after the primary crisis seeks to provide relief to crisis centers and transfer the injured to relief centers.  Therefore, 

this research proposes a mathematical fuzzy ideal programming model in two primary and secondary crises. In the primary 

crisis, the goal is to provide services and relief goods to crisis-stricken areas. The secondary crisis, which occurs after the primary 

crisis, aims to support crisis-stricken centers and move injured people to relief bases in the second step. According to the 

proposed model, Bertsimas-Sim’s fuzzy programming that formulation proposed by Bertsimas and Sim [1] and robust approach 

we initially used. The Epsilon constraint method was used to solve the low-dimensional model. Multi-objective meta-heuristic 

algorithms have been designed to handle the computational complexity of large-scale real-time problems. Multiple comparisons 

and analyses have been proposed to assess the performance of the model and problem-solving capabilities. The results indicate 

that the proposed approach can be applied and implemented to develop a real-world humanitarian logistics network. 

Keywords: Critical logistics, Primary and secondary crises, Fuzzy robust integrated programming, Meta-heuristic algorithm. 

Licensee Journal 

of Applied Research on 

Industrial Engineering. 

This article is an open 

access article distributed 

under the terms and 

conditions of the Creative 

Commons Attribution 

(CC BY) license 

(http://creativecommons.

org/licenses/by/4.0). 

mailto:dastam66@gmail.com
https://doi.org/10.22105/jarie.2022.284946.1323
http://www.journal-aprie.com/
https://orcid.org/0000-0002-9120-7984


 

 

428 

D
o

n
y
a
vi

 R
a
d

 e
t 

a
l.

|
J.

 A
p

p
l.

 R
e
s.

 I
n

d
. 

E
n

g
. 

10
(3

) 
(2

0
2
3
) 

4
2
7
-4

5
3

 

 

available should be distributed among victims in the most efficient manner possible to address their 

most pressing needs [4]. Natural disasters, such as floods and earthquakes, have struck many countries, 

including our country, with varying degrees of severity, resulting in significant financial and human 

losses. Clearly, planning for a post-disaster emergency response is essential, as it further improves the 

efficiency and effectiveness of rescue operations. A major focus of relief responses and reactions would 

be to minimize the loss of life and property by having preparations and plans in place to cope with the 

implications of disasters, as well as raising public awareness. When devising these plans, one thing to 

keep in mind is that the nature of natural disasters like earthquakes necessitates a swift and efficient 

response. 

To put it another way, in such a complicated and emergency situation, the decision-maker must conduct 

rescue operations and resolve the injured’s situation quickly and efficiently. To achieve this important 

goal and take timely action, it appears that having access to an effective and systematic pre-defined 

program with all of the required activities, sequences, and communications is required [5]. Thus, 

logistical preparation for the transportation of critical items needed in affected areas is one of these tasks 

that are also very significant. Aid provision to disaster-stricken regions, the importance of the 

distribution of relief goods, and the evacuation of the injured is essential and strategic, as increased 

efficiency of transportation of goods and casualties has a great effect on the number of survivors after 

the disaster [6]. Consequently, the majority of disaster relief problems have focused on optimizing 

routing decisions and locating ground vehicles with a variety of modeling approaches. Helicopters are 

used for contingency purposes due to their widespread use in medical emergencies and disaster relief. 

In this research, the importance of disaster relief, taking humanitarian medical aid, vaccinations, and 

other auxiliary products, such as tents, blankets, medicines from located warehouses and distribute them 

to affected areas following the sudden occurrence of natural disasters and for evacuation operations, the 

relocation of the wounded from affected areas and transferring them to hospitals, are taken into account 

sites. The aim is to find a series of routes that start and end at hospitals and take the shortest flight time 

possible. Another goal is for helicopters to use as little fuel as possible. Humanitarian supply chain 

management should be able to respond to a crisis in the shortest amount of time possible. The “last-

mile delivery problem,” which is becoming more prevalent in disaster relief, is also addressed in this 

study, in addition to the last step of the relief supply chain. Thus, a mathematical model based on last-

mile distribution concepts will be considered in this research. This research aims to establish a new 

model for rapid response to natural disasters in the process of rapid relief to [affected] regions. The 

development of such measures focused on the phase of rapid response to disasters while considering 

real limitations is one of the fuzzy robust integrated model goals in this study. In this research, the 

collection and distribution of medical aids, vaccines and other auxiliary items such as tents, blankets, 

medicine and, … From the warehouses we have located to the damaged places after the sudden 

occurrence of natural disasters, and for evacuation operations, we consider the removal of the injured 

from the damaged areas and their transfer to hospitals. The goal is to determine the set of routes that 

have the shortest flight time, which should start from hospitals and end in hospitals, and also the other 

goal is to minimize the amount of fuel consumption by helicopters.  

Efficient humanitarian supply management must be able to respond to the situation as quickly as 

possible and in the shortest possible time frame. 

2 | Literature Review 

Since critical logistics are so crucial in relief efforts, this section examines international research in crisis 

logistics. The following is a study of research based on the interpretation of studies published in recent 

years in journals. According to Rodriguez [7], to alleviate distress, resource provisioning for disaster 

victims must be established, as well as proper planning for these activities. To cope with crises, crisis 

management brings together several organizations and shares resources. As a consequence, successful 

operations are highly reliant on cross-organizational collaboration. Chapman [8] argued that it’s vital to 

ensure that post-disaster relief operations are well-organized and effective and the affected population’s 
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basic needs are met. However, uncertainty also affects all facets of rescue operations in the aftermath of a 

disaster. The location of relief distribution centers, as well as public awareness of these locations, are critical 

for the pace and efficiency of relief operations. Yu [9] often used the cost of deprivation as a primary 

economic measure of human misery in the context of emergency supplies (logistics). An enhanced method 

for the effective and fair allocation of critical resources in emergency supplies has been proposed, which 

incorporates this economic agency to account for human suffering. 

To explain the disaster response process, a dynamic planning model for a retransmission problem of 

extracted multi-period resource allocation is presented, with specific attention to human distress caused by 

delayed delivery. Vahdani [10] proposed a multi-objective two-stage integer mathematical model in which 

the establishment of distribution centers and warehouses with varying capacities, as well as decisions about 

products stored in warehouses and distribution centers built in the first step, were taken into account. Due 

to emergency restrictions, operational preparation was undertaken in the second step to route and 

distribute merchandise in affected areas, increasing overall expense, travel time, and route reliability. Then, 

two metacognitive algorithms, NSGA-II and MOPSO, were used to check the accuracy of the 

mathematical model and the performance of the proposed algorithms by numerical samples. The results 

of the algorithms are presented for 35 different problems. Mohammadi et al. [11] developed a two-level 

model for the location of transport points and distribution centers of relief goods in earthquake situations. 

The first level involves locating relief facilities and transport points, and the second level includes routing 

for transporting the injured and bodies to certain pre-determined points. In addition, three scenarios 

(Masha fault, Rey fault, and North fault) with probabilities of 0.35, 0.30, and 0.35 are considered based on 

the conditions of Tehran faults. Finally, the Epsilon constraint method and GAMZ software were used to 

solve this model as it was multi-objective in nature. According to the findings, ten points should be chosen 

for transport point establishment along highways. Zahiri et al. [12] created a multi-level model under 

uncertainty for planning relief goods distribution centers. Uncertainty is taken into account in parameters 

like demand and facility capacity, treated as triangular fuzzy. 

The inventory volume of each warehouse, the number of products flow from the retailer to each warehouse 

and from there to the affected area are among the research variables. This research yielded the following 

conclusions: 1) supplier/warehouse capacity is inversely correlated with the overall cost, and growing 

warehouse and supplier capacity reduces costs in this model, and 2) penalty cost for unsatisfied demand 

plays an important role in system efficiency. By raising the penalties, all requirement points can be covered. 

Salehi et al. [13] proposed a probabilistic multi-period model for designing a blood distribution network in 

the aftermath of an earthquake. A number of blood derivatives, such as plasma and possible platelets, are 

also in demand. In this research, a three-level blood supply chain is considered, including: 1) donors, 2) 

blood collection centers, and 3) blood transfusion base. The proposed two-level model is proposed for the 

city of Tehran, before and after the earthquake. The number of temporary blood collection facilities is 

calculated at the first level, and post-earthquake scenarios, including the distribution of blood products, 

are run at the second level. Finally, the performance of the model is validated by Monte Carlo simulation. 

Khatami et al. [14] proposed a probabilistic two-level model for crisis management before and after an 

earthquake. The first level of this model involves locating relief stations, and the second level involves 

allocating these stations to crisis-stricken regions. The number of goods stored and shortage volume in 

each center are among the decision variables of this research. A potential earthquake in Tehran was used 

to assess the accuracy of the proposed multi-commodity, multi-period model. In their research, Zokaee et 

al. [15] introduced a three-level (tier) supply chain that included suppliers, relief distribution centers, and 

affected areas. This study aimed to improve victim satisfaction while also lowering prices; for this purpose, 

certain penalties are considered in the event of a shortage of products. Robust optimization is used to solve 

the proposed model, which has uncertainties in demand and cost parameters. The Alborz area, which is 

prone to earthquakes and other natural disasters, was used as a case study in this research. Douglas et al.  
[16] proposed a two-level inventory (warehouse) distribution model in the disaster relief supply chain. One 

of their innovations has been location risk. The transportation vehicles used in this research are 

heterogeneous and have varying capacities. To demonstrate the efficacy of the model, they performed a 

case study in Brazil. They used an advanced algorithm to solve the case study. Cavdur et al. [17] developed 
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a two-level model for distributing relief goods in earthquake-prone areas to those affected. This research 

aims to reduce the distance traveled as well as to minimize the amount of unmet demand. Some scenarios 

based on the time of the disaster and environmental situations, such as traffic, have been defined to 

achieve this aim. Consideration of supply and demand equilibrium, service level, and productivity of 

manufacturing operation are among the innovations of this research. Finally, the proposed earthquake 

model is based on a case study in Turkey. Xu et al. [18] used statistical modeling and electronic systems 

to locate earthquake shelters after acquiring geographic information.  

The proposed model is of the P-middle type, and it aims to maximize coverage while minimizing the 

distance to the shelter. The proposed algorithm involves three steps: 1) selection of candidate shelters, 

2) analysis of the coverage range of each shelter, and 3) selection of the final shelter site. The results 

obtained from the implementation of the model in Yangzhou indicated the accuracy and precision of 

the proposed model. Ouyed and Allili [19] in her research considers a six-level chain including blood 

donors, blood collection centers, laboratories, blood centers, hospitals and accident centers. In order to 

investigate the uncertainty in the model parameters, the possibility planning method has been used. The 

results of numerical analysis indicate the good performance of the possibility method compared to the 

definitive method and the possibility of 0.9 has the best performance compared to other values. Ling et 

al. [20] introduced the mathematical model of the medical equipment supply chain for the prevention 

and control of the COVID-19 epidemic, which aimed to maximize the overall satisfaction of medical 

equipment and minimize the total cost of planning. 

Madani et al. [21] presents a multi-stage, multi-objective back-and-forth relief network that considers 

the location of hospitals, local warehouses, and hybrid centers that the hospital warehouse center is in 

the pre-disaster stage. In the post-disaster phase, the routing of relief goods in the forward path is 

considered. On the way back, there are some vehicles that can transport the injured after delivery. 

Combined transportation facilities will transport the injured to hospitals and combined centers. 

Depending on the degree of difficulty, a Non-dominated Sorting Genetic Algorithm (NSGA-II) with 

Simulated Algorithm (SA) and Variable Neighborhood Search (VNS) is proposed to solve the proposed 

problems. Hallak and Miç [22], in a case study conducted north of Aleppo in Syria to locations of the 

relief warehouses. At first, human and economic criteria were selected by three experts and then the 

weight of the criteria was determined by Fuzzy Analytic Hierarchical Process (F-AHP). Finally, 

warehouses were evaluated and ranked by MULTIMOORA technique as Multi-Criteria Decision 

Making (MCDM) method. Abazari et al. [23], in their research, in the pre-disaster stage, they determined 

the location and number of relief centers with a specific inventory level, and then after the disaster based 

on the distribution program, the amount of Relief Items (RI) that should be transferred to the Demand 

Points (DP) and the number of the required equipment is determined. Objective functions minimize 

the total distance traveled by RI, the total cost, the maximum transport time between relief centers and 

DP, and the number of perished items. Momeni et al. [24], reducing response time with high reliability 

has been introduced as the main goal of their research. In this research, after the disaster, the latest 

information on the condition of the roads is collected by drones and motorcycles then this information 

analyzed by disaster management to determine the probability of each scenario. By evaluating and 

analyzing the collected data, route repair teams are sent to increase the reliability of the route and in the 

final stage, they allocate RI to the DP. 

Sarma et al. [25], in their research, they have introduced a three-step model in which the demand is done 

with the highest priority by local agencies in the first step and other remaining demands by national and 

international agencies in the second step along with the restoration of local agencies in the third step is 

done. To illustrate the performance of their proposed model, they have provided a numerical example 

that has tested its convergence using LINGO software and CPLEX optimization solvers. In Dachyar 

and Nilsari [26], the goal of his research design improvement in disaster relief distribution information 

system by utilizing the Internet of Things (IoT). The method used in this research is the development 

of a structure system with Entity-Relationship Diagram (ERD) and Data Flow Diagram (DFD). This 

study reduces the cycle time of the disaster relief distribution process at the rate of 59.4% and proposes 
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an information system design that is expected to improve accountability in the disaster relief distribution 

system. In Cao et al. [27], they presented a fuzzy two-level optimization model using Wenchuan earthquake 

data. This study presents the problem as a fuzzy tri-objective bi-level integer programming model to 

minimize the unmet demand rate, potential environmental risks, emergency costs on the upper level of 

decision hierarchy and maximize survivors’ perceived satisfaction on the lower level of decision hierarchy. 

Table 1 summarizes the study assessment based on the evaluation of international research on critical 

logistics. 

Table 1. A review of international literature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The application of relief logistics in crises induced by natural disasters will be addressed in this study, based 

on the above-mentioned national and international studies. The need to make swift decisions and carry out 

operations with minimal resources has contributed to developing a type of knowledge known as crisis 

management. In this regard, research undertaken on recent crises in various parts of the world indicates 

that the need to investigate and model successive developments is greater than ever. As previously 

mentioned, such incidents neutrally occur in a cascading fashion as a chain of interrelated disasters. They 
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are referred to as primary and secondary crises in the literature on crisis management because the 

occurrence of a crisis in one region triggers a secondary crisis in the regions affected by the primary 

crisis. 

A secondary disaster, such as a flood crisis, is possible after a primary earthquake crisis that destroys 

infrastructure, including water supply facilities. Thus, steps must be taken to locate, route, and allocate 

relief distribution centers, relief bases, temporary shelters, and optimal routes to reach the affected areas.  

Given the nature of relief in major consecutive events and the importance of relief pace during the relief 

management process in the current model, an effort has been made to minimize relief time as much as 

possible in both primary and secondary crisis phases. This is achieved in the primary crisis by locating 

facilities to deliver RI to affected areas and routing to transport wounded people to medical centers. It 

is assumed that a secondary crisis occurs in the same area as the primary crisis, and it is impossible to 

relocate for the deployment of equipment to respond to the second incident. Following the secondary 

crisis outbreak, we would concentrate on minimizing relief time and transferring people whose homes 

have been demolished to shelters, optimizing routing for the relocation of homeless people, and 

maximizing relief coverage, to carry out more equitable operations. As discussed in the research 

literature, most studies have discussed pre-disaster components or disaster occurrences in the present 

case, and yet no research has been conducted on secondary disaster. Therefore, in this research, a new 

mathematical model in the field of secondary disaster analysis is presented, which is much more effective 

in terms of the volume of destruction than the primary disaster. 

3 | Problem Description and Formulation 

Following natural disasters, the most significant factor in determining the effectiveness of relief 

measures is the pace at which relief facilities and goods are made available in the affected region. 

According to the above, the rate of transfer of the injured are transported to treatment facilities and the 

homeless to temporary shelters may also be indicative of the speed at which relief is provided. Another 

aspect that causes more and more injured people to be satisfied is the equitable distribution of relief in 

the affected areas. This is especially critical when disasters like floods strike, which typically impact a 

wide geographic area and necessitate balancing relief services across all affected areas. 

We consider a four-level supply chain structure when shipping RI to affected areas (Fig. 1). The key 

warehouses for relief supplies can be found on the first level. These warehouses are permanent or 

temporary facilities whose number and location are identified prior to the disaster. Relief distribution 

centers, shelters, and temporary medical centers are located on the second level. The number and 

potential location of these facilities are pre-determined. The best are chosen to be activated from among 

these locations to finally minimize the time it takes to transport relief goods and wounded people to 

medical centers. Disaster-stricken areas make up the third level. The precise number of casualties is 

unknown immediately after a disaster. Hence, demand for relief goods, as well as subsequent voluntary 

public contributions and support, are considered uncertainty parameters. Donations from the general 

public (voluntary public contributions) are sent to distribution centers. Warehouses contain a basic 

inventory of different relief goods, and government assistance is sent to warehouses at the start of the 

relief period. 
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Fig. 1. Relief network investigated in this research. 

3.1 | Assumptions 

The assumptions of the model are as follows: 

I. The number and location of key warehouses are well-defined. 

II. The number and candidate location for temporary distribution centers (midpoints), medical centers, and 

shelters are well-defined. 

III. The number and location of affected areas are well-known after the disaster. 

IV. Supply points or warehouses have a certain capacity for receiving and sending goods. 

V. Midpoints, or temporary distribution centers, shelters, and temporary medical centers, have a certain 

capacity to receive and send supplies and casualties. 

VI. Network arcs are linking ways from supply points to distribution centers, from distribution centers to 

affected points, from affected points to shelters and medical centers, and from supply points to affected 

points. 

VII. Various types of relief goods are considered. 

VIII. A multi-period mathematical model is considered. 

IX. The products’ volume and weight are well-defined. 

X. Each vehicle has a certain transportation capacity. 

XI. Each mode of transportation has its own set of routes to follow. 

XII. Roads can be blocked after a disaster. 

XIII. Affected point demand is taken into account as a reliable uncertainty parameter. 

XIV. Since primary and secondary crises are possible, the response phases to primary and secondary crises 

   will be scheduled separately. 

XV. A secondary crisis has a certain probability of occurring, but it may not occur in the same region even 

after the primary crisis. 

XVI. A two-stage crisis occurs, with the second stage occurring after the first. 

XVII. People who have been injured are separated into two categories: those who need medical attention and 

those who need shelter. 

3.2 | Notations 

Indexes 

I: the warehouse node. 

J: the temporary procurement center node. 

K: the node of the damaged place in the primary and secondary disasters. 
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M: the set of candidate nodes of the temporary medical center. 

N: the shelter node. 

L: the type of vehicles (i.e., trucks and helicopters).  

C: the relief commodity.  

D: the type of injury (i.e., injuries classification based on treatment or their transfer to shelters). 

S: the scenario in the primary and secondary disasters–two scenarios are considered in the mathematical 

model, which are the first scenario (an earthquake as the primary disaster and flood as the secondary 

disaster), and the second scenario (an earthquake as the primary disaster and fire as the secondary 

disaster). 

Parameters  

: the probability of scenario s in the primary and secondary crises. 

 : the transfer-shipment time of vehicle L between nodes i and j. 

  : the transfer-shipment time of vehicle L between nodes j and j’. 

 : the transfer-shipment time of vehicle L between nodes j and k. 

: the transfer-shipment time of vehicle L between nodes k and k’. 

: the transfer time of injured individuals of type d from demand node k to shelter n in the secondary 

disaster. 

: the transfer time of injured individuals of type d from demand node k to medical center m in the 

primary disaster. 

: the relief time in the primary disaster. 

: the relief time in the secondary disaster. 

: the demand for commodity c in node k under scenario s. 

: the amount of commodity c that can be supplied by node i. 

: the number of injured individuals of type d in node k in the primary and secondary disasters. 

: the capacity of shelter n for receiving injured individuals of type d in the secondary disaster. 

: the capacity of medical center m for receiving injured individuals of type d in the primary disaster. 

: the volumetric capacity of temporary procurement center j. 

: the percentage of injured individuals type d in disaster center k. 

: is a large number. 
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Decision parameters 

: the amount of commodity c supplied from I and stored in node I, by vehicle l under scenario s. 

: the amount of commodity c sent by temporary procurement center j to procurement center j’ 

through vehicle L under scenario s. 

: the amount of commodity c transported by vehicle L from node j to node k under scenario s. 

: the amount of commodity c transported by vehicle L from center k’ to center k under scenario s. 

: the arrival time of vehicle L in disaster center k under scenario s. 

: the stored amount of commodity c in node k under scenario s. 

: the number of injured individuals type d transferred by vehicle L from node k to medical center 

m under scenario s. 

: the number of injured individuals type d transferred by vehicle L from node k to shelter n under 

scenario s. 

: the shortage of commodity c in node k under scenario s. 

: the number of the unhandled injuries type d in node k under scenario s. 

: is 1 if a temporary procurement center is established in node j under scenario s, otherwise, it is zero. 

: is 1 if a medical center is established in node m under scenario s, otherwise, it is zero.  

: is the positive deviation from the goal considered by the objective function i. 

: is the negative deviation from the goal considered by the objective function i. 

: is 1 if shelter n is established under scenario s, otherwise, it is zero. 

: is 1 if vehicle L moves from supplier i to temporary procurement center j under scenario s, otherwise 

it is zero. 

: is 1 if vehicle L moves from temporary procurement center j to temporary procurement center j’ 

under scenario s, otherwise it is zero. 

: is 1 if vehicle L moves from temporary procurement center j to disaster center k under scenario s, 

otherwise it is zero.  

: is 1 if vehicle L moves from disaster center k to disaster center k’under scenario s; otherwise it is 

zero. 

: is 1 if vehicle L moves from disaster center k to medical center m under scenario s, otherwise it is 

zero. 

: is 1 if vehicle L moves from disaster center k to shelter n under scenario s, otherwise it is zero.  
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3.3 | Mathematical Modeling 

 

The first objective function is to minimize vehicle routing scheduling (time) for the phase of responding 

to the primary crisis and the location of temporary relief logistics centers during the primary crisis, while  

the second objective function is to minimize the time it takes to move wounded people to shelter during 

the secondary crisis. 

 

 

The third objective function is to minimize the golden relief time and movement of the wounded to a 

temporary medical center in the secondary crisis. 

The fourth objective function is to maximize the coverage of disaster-stricken areas by routing vehicles, 

transferring relief goods, and transferring wounded people in secondary crises. 

Table 2. The objective function identifier of the problem is as follows. 

 

 

3.4 | Fuzzy Programming 

 

In Constraint (5), the volume of merchandise passing between the warehouse and the temporary 

procurement centers should be less than the transportation vehicles’ capability. 

 

  1MIN Z C   

'

1 ' 2 3 4 6 5  * * * * * *s lij lijs ljj ljk ljks lkk ljkk s knd lkns kmd lkmslijjs
i j k l m n

p T X X Tc X Tcc X U X z X  

 
     

 
  

(1) 

  2MIN Z C   

   

(2) 

 
   

 
  (3) 



 



 
        
 
 
  (4) 

 Objective Function Method 

 
 
Primary 
crisis 

Minimizing the amount of time 
it takes to transport relief 
supplies and transfer injured 
people to medical centers 

Location of the temporary procurement (logistics) center 
Location of the shelter 
Location of the medical center 
Optimal routing between the warehouse and the 
temporary procurement center 
Routing between temporary procurement centers 
(transfer shipment) 
Routing between procurement center and crisis centers 

 
Secondary 
crisis 

Minimizing the time it takes for 
injured people to be transferred 

to a shelter. 
Maximizing the coverage of 
crisis-stricken areas 

Routing the transportation of the injured people to the 
shelter 
Allocation of temporary warehouses to crisis centers and 
shelter centers to crisis-stricken areas 



    (5) 



    (6) 



437 

 

In
tr

o
d

u
c
in

g
 a

 f
u

z
z
y
 r

o
b

u
st

 i
n

te
g

ra
te

d
 m

o
d

e
l 

fo
r 

o
p

ti
m

iz
in

g
 h

u
m

a
n

it
a
ri

a
n

 s
u

p
p

ly
 c

h
a
in

 p
ro

c
e
ss

e
s

 

 
In Constraint (6), the volume of merchandise submitted to temporary procurement centers should be 

smaller than the available storage space to temporary distribution centers. 

In Constraint (7), according to this constraint, the volume of goods arriving at each temporary procurement 

center from a warehouse or other temporary procurement centers should be directed to the crisis center, 

or excess goods may be sent to other temporary procurement centers.  

Demands of crisis centers are received either directly from supply centers (the sender), or they must be 

satisfied by equipment sent to another crisis center. On the other side, crisis centers may store inventory 

or require a deficit. 

Constraint (9) transfer of the injured people from every region struck by a primary crisis to medical centers. 

In Constraint (10), the injured people from any region struck by a secondary crisis can be taken to shelter 

centers by equipment that delivers goods. 

In Constraint (11), this constraint specifies the number of wounded persons. 

In Constraint (12), the number of injured people transferred to medical centers must be smaller than the 

admission capacity of the medical center. 

In Constraint (13), the number of injured persons who have become homeless due to a secondary crisis and 

need to be moved to shelter centers must be smaller than the admission capacity of the shelter. 

According to Constraint (14), the pre-secondary crisis timetable for shipping relief supplies transversely must 

be shorter than the permitted time. 

Constraint (15) specifies that both transport and displacement times in secondary crisis management should 

be shorter than the permitted time. 

 

       (7) 

 

       (8) 

   (9) 

   (10) 

      (11) 

  (12) 

  (13) 

  
    

 (14) 

  
      (15) 
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In Constraint (16), there is limited communication between routing and the volume of merchandise 

shipped from the supplier to the temporary procurement site. 

 

In Constraints (17), there is limited communication between routing and the volume of merchandise 

shipped from the supplier and temporary procurement to the temporary procurement site. 

In Constraints (18), there is limited communication between routing and the volume of merchandise 

shipped from the temporary procurement center to disaster-stricken areas. 

In Constraints (19), there is limited communication between routing and the volume of merchandise 

shipped from the temporary procurement center and disaster-stricken areas to disaster-stricken areas. 

 

Constraint (20) specifies the limited number of times the equipment will leave the supplier. Based on this 

constraint, the equipment can only depart the supplier once and move toward the temporary 

procurement center. 

 

Constraint (21) limited number of times equipment arrives at the temporary procurement center. 

 

Constraint (22) states that the number of arrivals to temporary procurement centers should be equal to 

the number of departures from these centers, as they do not store transportation vehicles. 

 

Constraint (23) limited number of times equipment is brought into the crisis center. 

 

 

Constraint (24) constrained construction of temporary procurement centers. 

 

 

Constraint (25) constrained construction of temporary medical centers. 

  (16) 

  (17) 

  (18) 


   (19) 

  (20) 





 



 


 (21) 

 

       (22) 

  (23) 



    (24) 

  (25) 
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Constraint (26) requiring early routing between suppliers and temporary procurement centers 

Constraint (27) requiring early routing between temporary distribution centers and disaster-stricken areas. 

Constraint (28) routing between the disaster-stricken area and the medical center. 

Constraint (29) routing between the crisis-stricken area and the shelter, as well as the erection of the shelter 

center. 

In Constraint (30), the equipment transportation time for distributing goods among crisis area and the 

golden time for relief should be less than 48 hours. 

According to Inuiguchi and Ramık [42], the above model can be rewritten as 

As previously mentioned, the model proposed in the previous section is a fuzzy linear model. This section 

will use robust programming and Bertsimas-Sim approach to add demand uncertainty to the model.  

Thus, Constraint (8) will be modified to the Bertsimas model. Hence, the proposed model will be linear. 

According to the findings of this research, customer demand is one of the significant parameters whose 

values can surpass nominal values. Therefore, taking this parameter into account in uncertain situations 

will help the proposed model get closer to the problem reality. Customer demand uncertainty will be 

addressed using robust programming and the Bertsimas-Sim approach.  

The robust optimization approach looks for solutions that are either optimal or near-optimal and are likely 

to be justified. One of four approaches to considering uncertainty in robust programming is the Bertsimas-

Sim approach. We will briefly discuss this method in this section. The following linear programming model 

is considered for this purpose: 




   (26) 







   (27) 

  (28) 








 (29) 



  



    (30) 

       

     

 

   
  
 
 

  





 





 
(31) 
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In this model, it is assumed that only the right-hand coefficients in the constraints, i.e., matrix A, have 

non-crisp values, and the entries of this matrix, i.e., s, fluctuate in the    range, where 

 and  represent the nominal values and maximum deviation of parameter , respectively.  

Bertsimas and Sim’s proposed robust model is in the form of Eq. (33). 

 

 

 

In these equations, and  are dual slack variables, and , or the uncertainty budget, represent the degree 

of conservatism chosen based on the importance of the constraint as well as the decision-maker’s risk-

taking. The mathematical model presented in the demand section is taken as fuzzy by the proposed 

procedure. Thus, the demand-associated constraint is modified as follows: 

 

 

 

 

 

4 | Findings  

The relief logistics and crisis management are of paramount importance since the disaster response 

phase in crisis management must occur in the shortest possible time. The emergence of primary crises, 

according to evaluations, also triggers and intensifies secondary crises. The longer the response phase 

of the primary crisis is postponed, the more detrimental the effect of the secondary crisis will be on the 

crisis-stricken region. In this problem, one of the fundamental principles under consideration when it 

comes to primary and secondary crises is humanitarian logistics. There are four levels to this evaluation: 

Warehouses for the storage of relief supplies in large quantities, temporary procurement centers to 

support the logistical processes of delivering relief goods to crisis-stricken areas during both primary 

and secondary crises, crisis-stricken areas in need of prompt and effective treatment, and medical centers 

responsible for treating the injured people during the primary crisis, and shelter centers responsible for 

treating the injured people during the secondary crisis. Since critical incidents occur in both the primary 

and secondary stages, two types of transportation equipment are used in this evaluation: land and 

airborne. The volume of portable RI, as well as the cost and timing of relocation, all influence the 

equipment selection. Two scenarios have been considered likely in this evaluation. A major earthquake 

is expected in the first scenario. The occurrence of one of the flood or fire components is considered in 

the second scenario or secondary incident. Transportation capacity and golden relief time are the two 

fundamental constraints that are considered for transportation equipment. 

In addition, the formulated mathematical model is multi-objective. The first objective [function] is 

vehicle routing time for the crisis response phase. This evaluation seeks to minimize the time it takes to 

transport the relief cargo, provide relief to the wounded, and move them to temporary medical centers. 


 (32) 

  

 




   (33) 

     

     





       

       

 

 

   

(34) 
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The second objective function is to minimize the golden time for relief, with a maximum of 48 h. The 

third objective function is to minimize routing during the secondary crisis and relocate victims to pre-

determined shelters. In general, natural disasters are so complex that humans are still unable to predict the 

exact time of a disaster, despite the implementation of thousands of prevention techniques in the form of 

networks all around the world and continuous data analysis using powerful machines. This section will 

evaluate and analyze the results of the model. 

4.1 | Numerical Examples 

An example with random data was examined to validate the model’s accuracy, according to the modeling. 

Thus, the most important parameters of the model are: 

I. Time spent transporting equipment L from the ith warehouse to the jth node (in min). 

Table 3. Time spent on transporting from the warehouse to the 

middle node. 

 

 

 

 

 

This parameter represents the time it takes for the shipment from the supplier to the temporary 

procurement center in the primary crisis scenario. Depending on the volume of demand, relief supplies are 

distributed to temporary procurement centers. 

II. Time spent transporting equipment L from the jth node to the  th node (in min). 

Table 4. Transfer shipment time between j and X. 

 

 

 

 

 

 

 

Table 4 indicates the length of transportation based on primary and secondary incidents during the primary 

crisis. Following the secondary crisis, the same strategy is followed for a shorter time. As we all know, 

during the primary crisis, procurement centers’ stockpiles (inventory) are larger than the needs of crisis-

stricken regions. Hence, in the event of a secondary crisis, inventory is transferred between temporary 

 
J1 J2 J3 J4 

L1.S1 12 15 15 14 
L1.S2 13 14 15 12 
L1.S3 12 13 13 15 
L2.S1 14 12 13 14 
L2.S2 14 12 13 14 
L2.S3 15 13 14 12 
l3.S1 14 12 15 14 
l3.S2 14 13 13 12 
l3.S3 13 13 13 14 
l4.S1 12 15 13 13 
l4.S2 14 13 13 12 
l4.S3 12 14 14 13 

 
J1 J2 J3 J4 

L1.J1 - 8 10 10 
L1.J2 8 - 11 8 
L1.J3 11 9 - 10 
L1.J4 13 11 11 - 
L2.J1 - 10 12 12 
L2.J2 13 - 9 13 
L2.J3 9 11 - 10 
L2.J4 11 9 11 - 
l3.J1 - 9 11 13 
l3.J2 9 - 13 9 
l3.J3 9 10 - 13 
l3.J4 10 12 9 - 
l4.J1 - 9 11 8 
l4.J2 12 - 11 10 
l4.J3 11 10 - 10 
l4.J4 11 11 10 - 
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Procurement centers to reduce the response time phase to the secondary crisis. Thus, relief supplies 

arrive at crisis centers in a shorter period of time during the secondary crisis phase.  

III. Time spent transporting equipment L from the jth node to the kth node (in min). 

Table 5. Time spent transporting equipment L from the 

jth node to the kth node. 

 

 

 

 

 

 

 

This parameter is set in the event of a primary or secondary crisis. Since the transport distance does not 

change in either case, the transport time remains constant. Two types of road vehicles (vans and trucks) 

and two types of airborne equipment (helicopter and quadrotor) are taken into account in this parameter. 

IV. Time spent transporting equipment L from the kth node to the k’th node (in min). 

Table 6. Transfer shipment time for k. 

 

 

 

 

 

 

According to the definition of transfer shipment status between crisis-stricken nodes during primary 

and secondary crises, the status of transmission of relief goods is considered to be exchanging relief 

goods. Table 6 displays the time spent transporting this parameter. 

V. Time spent transporting a d-type injured person from the kth demand node to the nth shelter during a 

secondary crisis (in min). 

 

 

 
K1 K2 K3 

L1.J1 7 9 9 
L1.J2 5 10 7 
L1.J3 8 11 11 
L1.J4 6 5 11 
L2.J1 12 9 6 
L2.J2 11 10 6 
L2.J3 9 11 5 
L2.J4 9 12 9 
l3.J1 7 9 10 
l3.J2 8 12 11 
l3.J3 7 6 6 
l3.J4 7 8 10 
l4.J1 6 8 11 
l4.J2 9 9 5 
l4.J3 11 8 9 
l4.J4 10 6 11 

 
K1 K2 K3 

L1.K1 6 4 4 
L1.K2 6 7 5 
L1.K3 6 4 7 
L2.K1 7 4 5 
L2.K2 5 6 5 
L2.K3 6 6 5 
l3.K1 5 4 4 
l3.K2 6 5 6 
l3.K3 7 4 5 
l4.K1 5 5 5 
l4.K2 6 6 6 
l4.K3 6 6 6 
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Table 7. Time spent transporting a d-type injured person from the 

kth demand node to the nth shelter during a secondary crisis. 

 

 

 

It is assumed that the wounded need medical attention during the primary crisis. This parameter specifies 

the time it takes for wounded people to be transported to temporary medical centers. 

VI. Time spent transporting a d-type injured person from the kth demand node to the mth medical center 

during a primary crisis. 

Table 8. Time spent transporting a d-type injured person from the kth 

demand node to the mth medical center during a primary crisis. 

 

 

 

This parameter takes into account two different types of injury. M1 injury: during the primary crisis, it is 

assumed that the wounded need medical attention. M2 injury: during a secondary crisis, it is assumed that 

people need shelter and are moved there. 

VII. Demand for the product C in the Kth node under scenario s. 

Table 9. Demand for the product c in the kth node 

under scenario s (θ = 1). 

 

 

 

 

Table 10 introduces the required demand in crisis-stricken areas assumed in two primary crisis scenarios. 

Table 10. Demand for the product c in the kth node 

under scenario s (θ = 2). 

 

 

 

 

 
D1 D2 

K1.N1 15 13 
K1.N2 13 15 
K2.N1 12 14 
K2.N2 14 15 
K3.N1 14 14 
K3.N2 13 15 

 
D1 D2 

K1.M1 14 13 
K1.M2 14 15 
K2.M1 13 12 
K2.M2 14 12 
K3.M1 15 13 
K3.M2 15 15 

 
SS1 SS2 

K1.C1 32 63 
K1.C2 74 42 
K1.C3 44 67 
K2.C1 54 79 
K2.C2 39 36 
K2.C3 50 66 
K3.C1 68 54 
K3.C2 76 57 
K3.C3 66 48 

 
SS1 SS2 

K1.C1 89 81 
K1.C2 89 97 
K1.C3 83 90 
K2.C1 99 86 
K2.C2 92 99 
K2.C3 88 91 
K3.C1 99 91 
K3.C2 87 92 
K3.C3 98 93 
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Table 11 introduces the required demand in crisis-stricken areas assumed in two primary crisis scenarios. 

Table 11. Demand for the product c in the kth node 

under scenario s (θ = 3). 

 

 

 

 

 

Table 12. Demand for the product c in the kth node 

under scenario s (θ= 4). 

 

 

 

  

  

Table 12 introduces the required demand in crisis-stricken areas assumed in two secondary crisis 

scenarios. 

The collected information was divided based on two primary and secondary incident scenarios based 

on incidents, e.g., floods, earthquakes, fires, and hurricanes. According to the papers evaluated, 70% of 

the last 20 events were primary crises, and 30% of primary crises had turned into secondary crises. 

Therefore, the likelihood of scenarios occurring is adjusted. Following the GAMS coding, the following 

conclusions are initially drawn: 

4.2 | Computational Experiments 

We always maximize one of the objectives in solving a mathematical model accurately using the 

augmented epsilon-constraint method, as long as we define the maximum permissible limit for the other 

objectives as constraints. The mathematical representation of a bi-objective problem will be as follows: 

The Pareto edge of the problem can be found by shifting the values of the right-hand side of the new 

constraints of εs. One of the main drawbacks of the epsilon-constraint method is the high volume of 

computations needed since several different  values (p-1) must be tested for each of the objective 

functions translated to constraint. Obtaining the maximum and minimum of each objective function 

without considering other objective functions in the   space is one of the most common 

approaches to implementing the epsilon-constraint method. The range associated with each objective 

function is then calculated using the values obtained in the previous step. If the maximum and minimum 

values of the objective functions are referred to as  and , respectively, the range of each is 

determined as follows: 

 
SS1 SS2 

K1.C1 117 117 
K1.C2 126 136 
K1.C3 109 137 
K2.C1 101 128 
K2.C2 123 120 
K2.C3 121 102 
K3.C1 132 101 
K3.C2 113 129 
K3.C3 102 125 

 
SS1 SS2 

K1.C1 148 160 
K1.C2 168 168 
K1.C3 173 162 
K2.C1 179 161 
K2.C2 167 159 
K2.C3 176 171 
K3.C1 176 143 
K3.C2 170 156 
K3.C3 144 157 

     
(35) 
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The   range is divided into the  range. Then, we can get   different values for using the 

following formula: 

In the equation above, K represents the number of the new point associated with . The above multi-

objective optimization problem can be reduced to 
  single-objective optimization sub-

problems using the epsilon-constraint method. Each sub-problem has an S solution space since they will 

even be more constrained by inequalities related to objective functions . Finally, the following 

values are obtained for each variable: 

Table 13. Parameters of the Epsilon-constraint method. 

 

 

The values of εs are then calculated using Eq. (37). 

Table 14. Epsilon values. 

 

 

 

Finally, we used GAMS software to solve the augmented epsilon-constraint model for each of the obtained 

εs. Table 15 lists the Pareto optimal solutions found: 

Table 15. Pareto optimal solutions in the augmented epsilon-constraint method. 

 

 

 

   
(36) 

     (37) 

r2 72 r3 942 r4 3072 

Li 4 Li 4 Li 4 
NIS2 110 NIS3 258 NIS4 5928 
PISF2 182 PISF3 1200 PISF4 9000 
ϑ 0.0001 ϑ 0.0001 ϑ 0.0001 

 
110 258 5928 

128 493.5 6696 

146 729 7464 

164 964.5 8232 

182 1200 9000 

fourth Objective 
Function 

Third Objective 
Function 

Second Objective 
Function 

First Objective 
Function 

 

5928 258 110 73536 1 
6696 494.1 128.2 80601 2 
7464 729 146.4 87667 3 
8232 964 164 94848 4 
9431 1034 173 96546 5 
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Fig. 2. Pareto boundary of optimal solutions of the first 

and second objective functions. 

 

Fig. 3. Pareto boundary of optimal solutions of the first 

and third objective functions. 

 

Fig. 4. Pareto boundary of optimal solutions of the first and 

fourth objective functions. 

Fig. 5. Pareto boundary of optimal solutions of the second 

and third objective functions. 
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Fig. 6. Pareto boundary of optimal solutions of the second 

and fourth objective functions. 

 

Fig. 7. Pareto boundary of optimal solutions of the third and 

fourth objective functions. 

4.3 | Parameters Tuning 

The use of performance measures is one way to address such problems. The following are some of these 

measures: 

Number of Pareto solutions 

This criterion is the number of output solutions per algorithm execution. This criterion is defined as the 

number of output solutions produced while running each algorithm in comparing several algorithms. 

Obviously, the more Pareto solutions a method has, the more desirable it is. 

Average distance to the optimal solution (Mean Ideal Distance (MID)) 

This criterion is used to determine the average distance of Pareto solutions from the origin of coordinates. 

The lower the value of this criterion, the higher the efficiency of the algorithm, as seen in the following 

equation. 

CPU time 

CPU time is a critical measure in large-scale problems. Thus, the CPU time of an algorithm is used as a 

criterion for evaluating its quality. 



    
   

       



 

(38) 
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Maximum Scattering (MS) 

The distance index is defined as Eq. (35): 

Scattering index of non-dominated solutions (Spread of Non-dominance Solutions (SNS)) 

This index is used to determine the scattering and diversity of the Pareto solutions that have been found: 

 

 

 

4.4 | Results and Comparative Study of Solution Methods 

It is time to design the experiment using the Taguchi method after you have designed the problem. The 

Taguchi method, as previously mentioned, reduces the number of experiments needed to set the 

parameters. We begin by determining the parameters we want to set in each algorithm. Parameter levels 

and orthogonal arrays for experiments are obtained using Minitab software. We tested the algorithms at 

the same determined levels and repeated them ten times after deciding the number of tests for each 

algorithm. The results of these ten experiments were then averaged. Then, we made them unweighted, 

plotted S/N diagrams, and determined the better parameters. We must first obtain and note the levels 

of each algorithm. To do so, relevant papers were studied, and candidate levels were identified from 

among them, as presented in Table 16. 

Table 16. Various levels for the parameters of each algorithm. 

 

 

  

 

Finally, the experiments were designed, and the L9 orthogonal arrays were chosen for the NSGA-II and 

NRGA algorithms using the Minitab 16 software. Response values for the Taguchi method were 

obtained after running the algorithms for each of the preceding experiments. Table 17 illustrates these 

values and orthogonal arrays. 

Table 17. L9 orthogonal array and the computational results of the NSGA-II and NRGA algorithms. 

 

 

 

 


   (39) 

 









   

(40) 

Algorithm 
  

Algorithm 
Parameters 

Parameter Level 
Level 1 Level 2 Level 3 

NSGA-II Pc 0.7 0.8 0.9 
Pm 0.05 0.1 0.15 
N-pop 50 100 150 
Max-iteration 2*(i+j+k+l+o) 3*(i+j+k+l+o) 4*(i+j+k+l+o) 

NRGA Pc 0.7 0.8 0.9 
Pm 0.05 0.1 0.15 
N-pop 50 100 150 
Max-iteration 2*(i+j+k+l+o) 3*(i+j+k+l+o) 4*(i+j+k+l+o) 

Test Pc Pm N-pop Max-Iteration NRGA Response NSGA-II Response 

1 1 1 1 1 6.4234e-006 4.497e-006 
2 1 2 2 2 9.5085e-006 9.3753e-006 
3 1 3 3 3 6.7366e-006 3.857e-006 
4 2 1 2 3 4.3413e-006 7.0235e-006 
5 2 2 3 1 5.3981e-006 9.5885e-006 
6 2 3 1 2 9.4061e-006 1.594e-005 
7 3 1 3 2 5.9087e-006 3.8218e-006 
8 3 2 1 3 5.5662e-006 4.3919e-006 
9 3 3 2 1 7.6662e-006 1.417e-005 
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Fig. 8. Signal-noise diagram of the NSGA-II algorithm. 

 

Fig. 9. Signal-noise diagram of the NRGA algorithm. 

Following the design of the experiment and setting of the parameters, the appropriate parameters in each 

algorithm are now defined, and it is time to implement and compare the algorithms for the created 

problems. 

Table 18. Computational results of the algorithms for 12 sub-problems. 

 

 

 

 

 

  

4.5 | Sensitivity Analysis 

Fig. 10 to Fig. 12 show the problem in various dimensions for a clearer understanding of certain Pareto 

charts. 

 

Problem 
NPS CPU Time MID 
NSGA-II NRGA NSGA-II NRGA NSGA-II NRGA 

1 12 8 52.8815 58.4439 1.4909 2.3656 
2 12 8 115.6659 129.4496 1.119 1.1781 
3 15 14 199.8113 220.8354 2.1143 2.0267 
4 8 12 302.7046 342.9649 3.6118 2.1146 
5 11 7 746.2813 835.6521 3.6959 2.612 
6 11 15 989.7469 1071.5596 3.1876 2.8049 
7 6 7 1154.2441 1289.9778 5.0146 5.4399 
8 10 15 1939.626 2179.4638 5.8759 5.6609 
9 9 18 4644.4177 4215.4629 4.8438 4.797 
10 17 19 5114.7147 4704.4016 3.9634 3.708 
11 10 20 8779.6802 8592.3094 5.8276 4.0531 
12 20 14 12039.6386 12803.8985 4.8701 6.3874 
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Fig. 10. Pareto chart for the low-dimensional (small-scale) problem. 

 

Fig. 11. Pareto chart for the mid-dimensional (medium-scale) problem. 

 

Fig. 12. Pareto chart for the high-dimensional (large-scale) problem. 

According to the information provided: 

NSGA-II was chosen as the best alternative on a small scale, followed by the NRGA algorithm. NRGA 

was chosen as the best alternative on a medium scale, followed by the NSGA-II algorithm. The NRGA 

algorithm was chosen as the best alternative on a large scale, followed by the NSGA-II algorithm. 

5 | Managerial Insights 

Natural disasters such as earthquakes, floods, hurricanes, and droughts strike various parts of the globe 

each year. Personal and financial losses are often associated with the occurrence of these natural 

disasters. Since the magnitude and scope of these disasters are often high, the demand for rescue 
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operations is often uncertain. The number of relief centers available to meet the city’s needs in normal 

conditions is often insufficient to meet demand at the appropriate time. Hence, the statistical fuzzy ideal 

programming model was presented in this study, which assesses the frequency of primary and secondary 

crises as well as accurately assesses and analyses the relief situation. Finally, using the epsilon-constraint 

method and metaheuristic algorithms NSGAII and NRGA, the proposed mathematical model was 

evaluated and analyzed to determine its validity. The findings showed that the above two algorithms are 

very effective in crisis management and significantly improve relief processes. 
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