Document Type : Research Paper


1 Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2 Department of Mathematics, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.


We developed a DEA-based resource re-allocation model based on environmental DEA technology for organizations with a central decision-making environment. The proposed model considered a weak disposability axiom for undesirable outputs and combined Data Envelopment Analysis (DEA) with Multiple-Objective Programing (MOP). The objective was to find the appropriate re-allocation model in order to save energy and reduce environmental pollution, so that the next steps could be taken toward improvement. Given that reducing the inputs and outputs of inefficient units is sometimes not achievable and does not seem logical, for the reduction in the values to be logical and achievable, we divided the Decision-Making Units (DMUs) into different levels of efficient frontier using the context-dependent DEA technique. For this purpose, the model was designed to move the DMUs from the current frontier to the efficient frontier of the previous layer, which has better efficiency conditions, or keep them on their own frontier. In addition, the opinion of the central decision maker regarding the amount of reduction in the inputs and outputs was expressed using Goal Programing (GP) in a way that does not make the model infeasible. By implementing the model in 8 regions of the world, suggestions were made regarding the amounts of energy saving and CO2 pollution reduction based on the conditions determined by the central decision maker aiming improve the efficiency of inefficient units in the next step.


Main Subjects

[1]     Charnes, A., Cooper, W. W., & Rhodes, E. (1979). Measuring the efficiency of decision-making units. European journal of operational research, 3(4), 1–339.
[2]     Cook, W. D., & Seiford, L. M. (2009). Data envelopment analysis (DEA) - Thirty years on. European journal of operational research, 192(1), 1–17. DOI:10.1016/j.ejor.2008.01.032
[3]     Amirteimoori, A., & Shafiei, M. (2006). Characterizing an equitable omission of shared resources: A DEA-based approach. Applied mathematics and computation, 177(1), 18–23. DOI:10.1016/j.amc.2005.10.031
[4]     Wu, J., An, Q., Ali, S., & Liang, L. (2013). DEA based resource allocation considering environmental factors. Mathematical and computer modelling, 58(5–6), 1128–1137. DOI:10.1016/j.mcm.2011.11.030
[5]     Korhonen, P., & Syrjänen, M. (2004). Resource allocation based on efficiency analysis. Management science, 50(8), 1134–1144. DOI:10.1287/mnsc.1040.0244
[6]     Fang, L., & Zhang, C. Q. (2008). Resource allocation based on the DEA model. Journal of the operational research society, 59(8), 1136–1141. DOI:10.1057/palgrave.jors.2602435
[7]     Du, J., Liang, L., Chen, Y., & Bi, G. (2010). DEA-based production planning. Omega, 38(1–2), 105–112.
[8]     Lozano, S., & Villa, G. (2004). Centralized resource allocation using data envelopment analysis. Journal of productivity analysis, 22(1–2), 143–161. DOI:10.1023/b:prod.0000034748.22820.33
[9]     Hosseinzadeh Lotfi, F., Noora, A. A., Jahanshahloo, G. R., Gerami, J., & Mozaffari, M. R. (2010). Centralized resource allocation for enhanced Russell models. Journal of computational and applied mathematics, 235(1), 1–10. DOI:10.1016/
[10]   Yu, M. M., Chern, C. C., & Hsiao, B. (2013). Human resource rightsizing using centralized data envelopment analysis: Evidence from Taiwan’s Airports. Omega (United Kingdom), 41(1), 119–130. DOI:10.1016/
[11]   Lozano, S., Villa, G., & Canca, D. (2011). Application of centralised DEA approach to capital budgeting in Spanish ports. Computers & industrial engineering, 60(3), 455–465.
[12]   Amirteimoori, A., & Kordrostami, S. (2012). Production planning in data envelopment analysis. International journal of production economics, 140(1), 212–218.
[13]   Hosseinzadeh Lotfi, F., Hatami-Marbini, A., Agrell, P. J., Aghayi, N., & Gholami, K. (2013). Allocating fixed resources and setting targets using a common-weights DEA approach. Computers and industrial engineering, 64(2), 631–640. DOI:10.1016/j.cie.2012.12.006
[14]   Sun, J., Wu, J., Liang, L., Zhong, R. Y., & Huang, G. Q. (2014). Allocation of emission permits using DEA: Centralised and individual points of view. International journal of production research, 52(2), 419–435. DOI:10.1080/00207543.2013.829592
[15]   Wu, J., Zhu, Q., & Liang, L. (2016). CO2 emissions and energy intensity reduction allocation over provincial industrial sectors in China. Applied energy, 166, 282–291. DOI:10.1016/j.apenergy.2016.01.008
[16]   Wu, H., Zhang, D., Chen, B., & Yang, M. (2018). Allocation of emission permits based on DEA and production stability. Infor, 56(1), 82–91. DOI:10.1080/03155986.2017.1327629
[17]   Zhou, P., Ang, B. W., & Poh, K. L. (2008). Measuring environmental performance under different environmental DEA technologies. Energy economics, 30(1), 1–14. DOI:10.1016/j.eneco.2006.05.001
[18]   Shi, G. M., Bi, J., & Wang, J. N. (2010). Chinese regional industrial energy efficiency evaluation based on a DEA model of fixing non-energy inputs. Energy policy, 38(10), 6172–6179. DOI:10.1016/j.enpol.2010.06.003
[19]   Wang, K., Zhang, X., Wei, Y. M., & Yu, S. (2013). Regional allocation of CO2 emissions allowance over provinces in China by 2020. Energy policy, 54, 214–229. DOI:10.1016/j.enpol.2012.11.030
[20]   Li, H., Yang, W., Zhou, Z., & Huang, C. (2013). Resource allocation models’ construction for the reduction of undesirable outputs based on DEA methods. Mathematical and computer modelling, 58(5–6), 913–926. DOI:10.1016/j.mcm.2012.10.026
[21]   Zhou, Z., Xu, G., Wang, C., & Wu, J. (2019). Modeling undesirable output with a DEA approach based on an exponential transformation: An application to measure the energy efficiency of Chinese industry. Journal of cleaner production, 236, 117717. DOI:10.1016/j.jclepro.2019.117717
[22]   Sueyoshi, T., & Yuan, Y. (2015). China’s regional sustainability and diversified resource allocation: DEA environmental assessment on economic development and air pollution. Energy economics, 49, 239–256. DOI:10.1016/j.eneco.2015.01.024
[23]   Seiford, L. M., & Zhu, J. (2002). Modeling undesirable factors in efficiency evaluation. European journal of operational research, 142(1), 16–20.
[24]   He, F., Zhang, Q., Lei, J., Fu, W., & Xu, X. (2013). Energy efficiency and productivity change of China’s iron and steel industry: Accounting for undesirable outputs. Energy policy, 54, 204–213. DOI:10.1016/j.enpol.2012.11.020
[25]   Yang, H., & Pollitt, M. (2009). Incorporating both undesirable outputs and uncontrollable variables into DEA: The performance of Chinese coal-fired power plants. European journal of operational research, 197(3), 1095–1105. DOI:10.1016/j.ejor.2007.12.052
[26]   Reinhard, S., Lovell, C. A. K., & Thijssen, G. (1999). Econometric estimation of technical and environmental efficiency: an application to dutch dairy farms. American journal of agricultural economics, 81(1), 44–60. DOI:10.2307/1244449
[27]   Ali, A. I., & Seiford, L. M. (1990). Translation invariance in data envelopment analysis. Operations research letters, 9(6), 403–405.
[28]   Scheel, H. (2001). Undesirable outputs in efficiency valuations. European journal of operational research, 132(2), 400–410. DOI:10.1016/S0377-2217(00)00160-0
[29]   Färe, R., Grosskopf, S., Lovell, C. A. K., & Pasurka, C. (1989). Multilateral productivity comparisons when some outputs are undesirable: A nonparametric approach. Review of economics and statistics, 71(1), 90–98. DOI:10.2307/1928055
[30]   Färe, R., Grosskopf, S., & Hernandez-Sancho, F. (2004). Environmental performance: an index number approach. Resource and energy economics, 26(4), 343–352.
[31]   Zhou, P., Ang, B. W., & Poh, K. L. (2006). Slacks-based efficiency measures for modeling environmental performance. Ecological economics, 60(1), 111–118.
[32]   Shao, L., Yu, X., & Feng, C. (2019). Evaluating the eco-efficiency of China’s industrial sectors: A two-stage network data envelopment analysis. Journal of environmental management, 247, 551–560. DOI:10.1016/j.jenvman.2019.06.099
[33]   Madadi, S., Lotfi, F. H., Jelodar, M. F., & Rostamy-Malkhalifeh, M. (2022). Centralized resource allocation based on energy saving and environmental pollution reduction using data envelopment analysis models. Business informatics, 16(1), 83–100. DOI:10.17323/2587-814X.2022.1.83.100
[34]   Seiford, L. M., & Zhu, J. (2003). Context-dependent data envelopment analysis - Measuring attractiveness and progress. Omega, 31(5), 397–408. DOI:10.1016/S0305-0483(03)00080-X
[35]   Färe, R., & Grosskopf, S. (2004). Modeling undesirable factors in efficiency evaluation: Comment. European journal of operational research, 157(1), 242–245. DOI:10.1016/S0377-2217(03)00191-7
[36]   Chung, Y. H., Färe, R., & Grosskopf, S. (1997). Productivity and undesirable outputs: A directional distance function approach. Journal of environmental management, 51(3), 229–240. DOI:10.1006/jema.1997.0146
[37]   Yu, M. M. (2004). Measuring physical efficiency of domestic airports in Taiwan with undesirable outputs and environmental factors. Journal of air transport management, 10(5), 295–303. DOI:10.1016/j.jairtraman.2004.04.001
[38]   Zaim, O. (2004). Measuring environmental performance of state manufacturing through changes in pollution intensities: A DEA framework. Ecological economics, 48(1), 37–47. DOI:10.1016/j.ecolecon.2003.08.003
[39]   Tyteca, D. (1996). On the measurement of the environmental performance of firms - A literature review and a productive efficiency perspective. Journal of environmental management, 46(3), 281–308. DOI:10.1006/jema.1996.0022
[40]   Wu, J., Zhu, Q., An, Q., Chu, J., & Ji, X. (2016). Resource allocation based on context-dependent data envelopment analysis and a multi-objective linear programming approach. Computers and industrial engineering, 101, 81–90. DOI:10.1016/j.cie.2016.08.025
[41]   Hosseinzadeh Lotfi, F., Jahanshahloo, G. R., Ebrahimnejad, A., Soltanifar, M., & Mansourzadeh, S. M. (2010). Target setting in the general combined-oriented CCR model using an interactive MOLP method. Journal of computational and applied mathematics, 234(1), 1–9. DOI:10.1016/
[42]   Yang, J. B., Wong, B. Y. H., Xu, D. L., & Stewart, T. J. (2009). Integrating DEA-oriented performance assessment and target setting using interactive MOLP methods. European journal of operational research, 195(1), 205–222. DOI:10.1016/j.ejor.2008.01.013
[43]   Bal, H., & Orkcu, H. H. (2007). A goal programming approach to weight dispersion in data envelopment analysis. Gazi university journal of science, 20(4), 117–125.
[44]   Bal, H., Örkcü, H. H., & Çelebioǧlu, S. (2010). Improving the discrimination power and weights dispersion in the data envelopment analysis. Computers and operations research, 37(1), 99–107. DOI:10.1016/j.cor.2009.03.028