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Abstract

This paper provides an integrated model for-ativge assembly flow shop scheduling problem and distribution thror
vehicle routing in a soft time window. Sdjx@dInteger Linear ProgrammifigILP) model has been proposed with
the objective of miniming the total cost of distribution, holding of products, and penalties of violating delivery
windows. To solve this problem, an improved-imataistic algorithm based\Winale Optimization Algorith(kVOA)

has been developed. The main innovatidhe study include considering soft time window, seqdeperdent setup
time, delivery time window, heterogeneous vehicles, holding costs of final products, and unrelated assembly
A comparison of the integrated and-imiegrated model in a casedy of industrial gearboxes production shows the
the integrated model compared to theintegrated model has saved 15.6% and 13.6% in terms of delay time anc
costs, respectively. Computational experiments also indicate the efficiency df WipAoireconverging to optimal
solution and achieve better solution in comparison @ethetic AlgorithnGA). The results show that increasing the

setup time can lead to an increase in total costs. It can be said that the increase of setupdithe caredsgon of
time jobs. Also, the costs increased aetireasinthe transport fleet capacity-89%. The reason for this is that by
reducing the capacity of vehicles, the model has to use more vehicles.

Keywords Sentence Twstage assembWehicle routing, Whale optimization algorithm, Genetic algorithm.

1 | Introduction
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In today's competitive environment, manufacturing companies are seeking to minimize costs to
succeed in supply chains. Integrating supply chain decisions is one ofsthiegosethods.

Efficient supply chain design involves complex issues such as inventory management, productior
scheduling, and order distributifij. On the other hanélexibility and timely delivery are essential

to customer satisfaction [[2]the nonintegrated approach, the manufacturing section prefers fewer
preparations to reduce production costs, and more transportation travels to redud@rdelivery
while the distribution section prefers less transportation travels with larger volumes to reduce
distribution costs. In addition to the conflict between these two, this approach causes an increase ir
the costs of both sections and the entire systemheélother hand, integrating production and
distribution schedules can reduce system costs. Production and distribution are complex problems
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and therefore their integration will increase the complexitypbtiiem Howeverijt is expected that
total cos$ be reduced by integrating the production and distribution @o{&F4.

The objective of this study is to determine order production and distribution schedule and routes that
minimize total company costs including fixed costs of using vehicbte wavel costs, earliness and
tardiness penalties, as well as holding costs. In this study, after modeling the integrated production an
distribution problem, it will be compared with the-integrated model. Thé&/hale Optimization
Algorithm(WOA) will be also used as a new and efficient algorithm for production and distribution. The
other sections of this study are as follows:

Section 2 wilbresentelevantiterature Section 3 will describe the problem and define the mathematical
model. In Section she used metaeuristic algorithms will be introduced and developed. Section 5 of the
study contains some experiments and a case study to evaluate the performance of the proposed model &
comparison of the performance of the proposed algorithms., Eivaltpnclusion and suggestions for

the future will be presented in the last section.

2 | Literature Review

The twoestage assembly flow shop is one of the most widely used scheduling problems in n@nufacturi
industries. Potts et al. {8l demonstrated the utility of this problem. By studying tistagmassembly
scheduling problem with the makespan objective function, they proved that the problemdsiNRe

first stage due to the existeatevo machines. Lee et al.8¢chis problem to assemble a fire engine.

They used a branch and bound algorithm for thestwge assembly scheduling problem with the
makespan objective function and analyzed their boundary error by presenting three heuristic approache
In another studyAllahverdiand Al-Anzi [10] investigated queries scheduling in a distributed database
system. In this regard, many-veadld problems can be modeled using thestage assembly scheduling
problem. Therefore, the tvetage assembly problem can be coesgids a general case of the flow shop
problemTozkapan et al. [1d¢scribedhis problem with the performance measure of total weighted flow
time. With creating a lower bound, they obtained good results for problems of logical scale and proposet
a heustic algorithm for large scale proble®iahverdi and Alnzi [L(J studiedhe problem presented

by Tozkapan et al.]Jlusingtotal completion time. They developed three algorithms, including Tabu
Search (TS), Hybrid Tabu Search (HTS), and SimAfatedling(SA). Computational experiments
showed that although the CPU time of all three algorithms was approximately the same, and HTS
improved the error rate by 60 and 90 percent compared to TS aesh8étjvely. Sung and Kim [13]
addressed the problerhszheduling a twstage mulinachine assembly flow shop. They proposed a
branch and bound algorithm and an efficient heuristic algorithm to minimize the sum of completion times.
Allahverdiand Al-Anzi [10] alsoconsidered the problem withditeria ofmakespan and maximum
tardiness, and proposed three heuristic algorithms, including Particle Swarm Optimization (PSO), TS an
Selfadaptive Differential EvolutigftDE). The analyses showed that both SDE and PSO had better
performance than TS, but PSO perfance was betterah SDE.Koulamas and Kyparisj$4]
generalized the twatage problem to the thrstage assembly scheduling problem regarding collection
and transportation with the goal of minimizing the makespan. They also proposed several heuristic
algorithms and evaluated the woaste ratio bound of those algorithms.

Zhangand Tang [15] integrat®deventive Maintenan(®M) with the problem of twstep assembly
scheduling by presentinlflixed Integer Linear Programm{MJLP) model. To solve the problem, they
proposed an iterative greedy algorithm based on PM ameuvistics Mixed Constrained Machine
Preventive Maintenan@@CMTPM) and Net Economic Hybrid PreventiaintenancéNEHPM).
Numerical results showed that thepps®ed Iterated Greedy Preventive Mainter{dBE&1) embedded

with NEHPM andocal reference search performed better than the other 9 intelligent rRetitbdgazy

et al [16] addressed the issue of distributed assembly timing with distributepl teatsequences
(DTSAFSPSDSTSs) withlihe aim of minimizing makespan. They used the Iterated Greedy algorithm to



solve this problem effectively. Numerical experiments showed that the Improved Iterated Greedy
algorithm offers the best solutions in most cases.

Hatami et al. [17] generalized the model profms&ulamas and Kyparisis [13)}, considering ‘JAR[E
sequencdependent setp times. Their mathematical model aimed to minimize the weighted sumof———
the mean flow time and maximum tardiness. They proposed titbragSA and TS, to solve the 58
problem and compared their performance. Andrés and Hatami [18] formulated two mathematical
models to solve the thretage assembly flow shop problem. Their objective was to minimize the total
completion time by consideritig sequenedependent setup time in the first and third stages. Their

results showed that they could find optimal solutions for problems=@ih(number gjobs) and m

=4 (humber of partsMalekiDarounkolaei et al. [1Bjvestigated this problem by considering the
sequencdependent setup time in the first stage as well as the blocking times between successive stages.
They proposed a SA algorithm to solve the problem with the objective function of minimizing the
weightedsum of the two objectives of the makespan and the mean completiDalfamnget al. [20]

studied the problem by considering the sequaepemdent setup time and transportatioegtirmheir

objective function included minimizing the sum of total weeiglguared earliness, total weighted

squared tardiness, number of tardy jobs and makespan. For solving the problem, they used a hybgid
Genetic Algorithn{GA) and concluded that for jobs more than 10, the results were not comparable 8
between Lingo 8 and thgbridGA.

Mozdgir et al. [21] considered the problem ofstage assembly scheduling with-identical
assembly machines with the objective function of minimizing the weighted sum of the two criteria o
mean completion time and makespan. They propbgedic variable neighborhood search heuristic

to solve the MILP model. Tian et al. [22] considered the problem with two criteria of mean completio
time and makespan, and proposBikerete Particle Swarm Optimiza{ibSO) algorithm to solve

the problen. The results of that study indicated the efficiency of DPSO. Allatai@3] studied

the problem by assuming setup times as zero and the objective function of minimizing total tardines
They proposed two versions of the SA algorithm, two veoficlagid theorpased SA, an insertion
algorithm, and &A to solve the problem. The results showed that one version of the SA combined
with PIA had a better performance than the other algoriiats/erdi and Aydilek [12loposed two

new algorithms foa twastage assembly scheduling problem considering separate setup times an
compared four existing algorithms. The results of the analysis indicatesl ¢hatr of theébest
algorithm idess than other algorithms by 5d8%6. Navaei et al. [24], adsliressed the problemby
considering several nmentical assembly machines and the makespan objective function. They
developed a MILP model and proposed a h§#algorithm to solve the problem.

EngT0(1) (2023
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Shoaardebili and Fattafd5] studied the threstage asswly flow shop scheduling problem
simultaneously with machine availability constraints and two objective functions of minimizing the sum
of weighted tardiness and earliness and minimizing total weighted completion times. Analyses indicated
that of the twdNSGA 1l and MOSA algorithms proposed, NSGA Il had a better performance. Komaki
and Kayvanfar [26] studied the-stage assembly scheduling problem with identical assembly machines
and the release date of jobs. The objective function of their model esigamakhey proposed a

Grey Wolf Optimizer (GWO) algorithm to solve the problem. The analyses showed that the GWO
algorithm exhibited better performance than the other morkenaweth algorithms. The twatage
assembly scheduling problem has developedny ways over timéllahverdi and AAnzi [10]
considered the problem with m machines in the first stage and the objective function of the total
completion time. They developed three heuristic approaches, consisting of an HTS, aN&RE, and
Selfadaptve Differential Evolution(NSDE) algorithm to solve the problen€omputational
experiments showed that NSDE had better performance than the other two algorithms.

Wang et al. [27] considered the-stame assembly flow shop scheduling problem with biatehyde
to one customer. For solving the problem with the objective function of minimizing the weighted sum
of average arrival time at the customer and the total delivery cost, they proposed two heuristic methods
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based on SPT and LPT andew hybrid metseuristic (HGAOVNS). Thecomputational results showed

the superiority of the HGAVNS metaheuristic algorithm. Kazeet al. [28] studied the problem of
two-stage assembly flow shop scheduling with identical assembly machines and batch delivery. The
objective was to schedule jobs considering batches that would minimize the sum of tardiness and delive
costs. They prapsed the Imperialist Competition Algorithm (ICA) ldghrid Imperialist Competition
Algorithm(HICA) to solve théMILP model. Their computational results indicated the superiority of the
HICA algorithm in terms of the objective function but the ICA digorieeded a comparably less time

for implementation. Jung et al. [29] considered thstagye assembly flow shop scheduling problem to
assemble products with dynamic comporsires and makespan objective function. In their MILP
model, they considerecthetup time to process the components of a new product. They proposed three
GAs with different chromosome representations to solvestaigeproblems. Wu et al. [30] addressed

the twastage flow shop scheduling problem using three machines andniith pésnomenon. Their
objective was to minimize the total completion time and used the branch and bound algorithm to solve
smaliscale problems. In addition, six versions of the 8@@&lgorithm were proposed for smaiid

largescale problems andréle different data types. In addition, ANOVA was used to evaluate the
performance of the proposed algorith@eli and Davoodi[31] presented a coordinated model of
production and distribution with a constant rate of demand in the supply chain. Thegddevelo
algorithms including SA refrigeration simulationBiographyBased OptimizatioBBO) algorithm.
Numerical results showed better performance of BBO algorithm.

Basir et al. [32] considered the problem eftage assembly with batch delivery presentedMixed

Integer Linear Programmi(gILP) model with the aim of minimizing the weighted number of tardy jobs
and the sum of delivery costs. They proposed-staggedmproved Genetic AlgorithifiGA) with a
hierarchical decisianaking approachyavari and Isvandi [33] integrated the-dtage assembly
scheduling problem by ordering the parts needed to process the components. They deelbped a
model to minimize the sum of the total weighted completion time, parts ordering, and holdi&y cost. T
proposed &A and the computational results showed that the integrated approach improved the supply
chain performarmcup to 8.16%. Luo et al. [Bfestigated a twatage assembly scheduling problem to
minimize makespan considering separate setup filmey proposed a hybrid branch and bound
algorithm. Their computational results showed that the algorithm performed better than one of the
available methods. Talens et al. [35] addressed the problestafévassembly scheduling with identical
assemlyl machines and the objective function of minimizing total completion time. They presented two
heuristic algorithmef CHuva and BSCua. The computational results showed that the proposed
heuristic methods had better performance than the available heuristic ones. Lin and Chen [36], provided
dynamic scheduling of tystage assembly flow shop to minimize the total tardiness as a Miskov de
process. Aroximal Policy OptimizatigPPO) algorithm was developed to efficiently train agent using
production data. Hosseini et al. [37] investigatedstag® production system consists of a fabrication
stage followed by an assembly stagexdvier, a heuristic algorithm and two proper lower bounds were
introduced as references to evaluate the performance of the proposed heuristic algorithm.

In a study, Masruroh et al. [38] addressed the issue g@fratutit production planning and integtate
distribution in the product supply chain network. Their proposed model has two stages, the first of which
is determined in order to maximize the profit of production, delivery and inventory planning for each
product. Then, in the second stage, the pr@ction schedule is optimized to minimize the total start

up costs. Numerical results showed a significant reduction in costs and an increase in annual profits. Bas
on literature review section the literature review table is as follows
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In none of the previous studies, the-stage assembly flow shop problem has been integrated with the E
distribution of orders through vehicle routing. However, distribution detaggons are highly 3

dependent on production stage decisions, and their integration can lead to minimizing total system costs.
Therefore, the main innovation of the current study is to provide a new mathematical model and
solution for the problem of twsiage assembly flow shop and vehicle routing. Other innovations in the
study include considering soft time window, seqdepemdent setup time, delivery time window,
heterogeneous vehicles, holding costs of final products, and unrelated assembly Simaehines.
production, assembly, and vehicle routing decisions are-ddirsmartd operational, it is not advisable

to use exact solutions that need a long time to perform. Therefore, an improved and-heveistieta

methods will be used in this studyr this purpose, the Improved Whale Optimization Algorithm
(IWOA) is proposed and applied for the first time to integrate-stag® assembly flow shop and

vehicle routing.

3 | Problem Description and Proposed Mathematical Model

In this section, the struce of the problem is first described in detail. In the next step, after introducing
the symbols, integrated and4ategrated mathematical models are presented.
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3.1 | Problem Description

The problem under study involves decision making in three aet¢@®thcluding production, assembly,

and distribution. In the different production systems, these three areas are performed sequentially an
successively and independent planning and optimization are performed for each area. Integratin
production, asseryband distribution decisions is a novel approach that hasldesssed in this study

and has been introduced aslttiegrationof Production AssemblyandDistribution(IPAD) problem.

First, the IPAD model is introduced, and then theimegrated maal is presented. In the integrated
model, it is assumed that at moment 0, J jobs are present in the production system. Each job represents
order. Each order has an independent | components, each of which requires independent processing. Eas
process iperformed on a specific machine. It is important to note that there is a séependent

setup time for each job to be processed. Therefore, determining the sequence of jobs has a substant
effect on the completion time of different jobs.

Once all theomponents of each job are processed, they should be assembled on one of the | unrelatec
machines in the second stage. Since vehicles are available at the completion time of the last job (Cma
each product is held in a temporary warehouse after compfedissembly. Therefore, the assembled
products must be held in the warehouse until the start of loading and distribution. This holding is costly
for the company and it is necessary to plan the production and assembly in such a way that the holdin
timeand costs of the orders are minimized.

In the distribution stage, there are V vehicles with limited capacity in the system. Each vehicle has a fixe
cost as well as a variable cost per 1 km distance traveled. At this stage, time is a crucialigiitaneEach

has a time window for delivering orders. Servicing outside this time window will impose stupendous costs
on the company. Therefore, at this stage, attempts will be made to determine an optimal route for eacl
vehicle that will lead to the least oosthe route and the least penalties of violating the time witiglow.
lillustrates the structure of this problem schematically.

Other assumptions are as follows:

I.  All orders are available in the system at time zero.
II.  All production and assembly macharesavailable since time zero.
lll.  Preemption is not allowed on any machine.
IV. Machine idle time in the first stage is not allowed.
V. Processing time and machine setup time for all jobs are predetermined.
VI. The assembly time of each job is definitgpettketermined.
VII. In the distribution stage, the delivery of orders to customers has a specific time.
VIIl.  Travel time is the same for all vehicles.
IX. Each customer has a soft time window whose violation imposes costs on the company.

1 Stage Assembly Warchouse Heterogeneous Customers
1 Machines Machines vehicles

S S i S IV
i L. — ‘\%’

[T

‘ /'g'a—o]g/ ¥
! I|/' y ‘\ 1
Job Components Final Product

Fig. 1. Schematiaepresentation of the integration of twestage assembly flow
shop and vehicle routing.



In this section, based on the considered assumptions, a dis{pitmdiation integrated mathematical

model is presented.

3.2 | Notations

We used the following notats to formulate the problem.

Table 2. Model notations.

Notation Description

Indices

i, ii Index of manufacturing machine or the component related to each order in the first s
i =12,», I

Ji Index of job(order) or manufactured prodyct 1,2, , .

r Index of position (rank) of orders in the sequence

[ Index of nonidentical assembly machines in the second btag#,2,» , L

v Index of vehicles

e,q,k Index of nodes, O for origin node (production locatianufacturer) and one node for eau
customere={G¢ ¢1, », K =0,1,2, »,

Parameters

P Processing time of component i of order (job) j in the first stage

ST, Setup time of machine i for jotafter jobji at position r

a; Assembly time ajfrder j on assembly machine | in the second stage

ho, Cost of holding order j in warehouse after assembly

av,, Itis 1 if the node e can be serviced by the device v, otherwise 0

Ca, Capacity of vehicle v

pn;, Demand of customer k for order |

cQo,., Travel cost between node e @navith vehicle v

ti, . Travel time between node e a@dvith vehicle v

S Service time for customer k

[ed, ,1d] Service time window of customer k

ep, Order delivery earliness penalty of customer k

Ip, Order delivery tardiness penalty of customer k

Notation Description

fc, Cost of using vehicle v

M A large number

Decision Variables

ijr
erl
erﬁ

C'I'jr
C

ijr
Start,

max

rl

ETx
LT,

e

Itis 1 if processing of job j starts on machine i at position r of the first stage, otherwis
Itis 1 if the order j in the pbsition r of the first stage is assembled on the assembly m
I in the second stage, otherwise 0

Itis 1 if vehicle v travels to §e; e), otherwise .0

Completion time obp j on production machines at position r

Completion time of the processing of the machine i of job j in the first stage on the
production machines at position r

Start time of the processing of the component i of order j in the first stage on the pro

machines at position r
Completion time of the assembly of last job in the second stage

Completion timef the assembly of order at position r on the assembly machine | in tt
second stage.
Earliness of vehicle v while arriving at customer k

Tardiness of vehicle v while arriving at customer k
Arrival time of vehiclhe to nodee.
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3.3 | Mathematical Model Formulation

‘JAR_[E According to the paranees and variables defined, a Mithdel will be developed for the problem.
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= .. .
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(o)) e T
5 a-= g & W, ¢Ca, forallv.
£ k=1j 2 " ) (19)
e k

According to the parantees and variables definedjlaP model will be developed for the problem.

ET,2ed § W, -, forallk&v. 20



LT, 2p, dd, forall ké&v. (21)

vk

Xijr,erl,ere, areBinary Variables for all i,j,r,1,e,v. (22)

‘JAR[E

Cmax,Crl"ir,Stalrtijr,Cijr,ETvk,LTvk,Gd,pvk2 0 forall i,j,r,k,1,v. (23)

TheObjective Fundtigoonsists of five terms; the first and second terms of which are to minimize the64
total costs of routing and vehicle usage, respectively. The third and fourth terms calculate the total
penalties for earliness and tardiness of the delivery time windatiyedgpEne fifth term minimizes

the cost of holding orders in the warehouse of final pro@Qaetstraints é)d(3)indicate that each

job in each processing is processed only in a specific priority and vice versa; each position contains only
1 job.Constraint (4)ates that the position of each component of a given job must be the same in all
machines. In other words, a unique position is assigned to each job, which is the same in processing all
of its components. Based@©anstraint (8) job shodl only be in one position of the assembly machine
sequence. In addition, the index of job j in the first stage (r) is transferred to the second stage according
to this relationConstraint (lates that the start time of processing job j on machipesitain r is

higher than the completion time of the job preceding job j on machine j (job at pbkifiotijr=1.

In other words, the processing of job j on the machine i at position r can begin immediately after theg
job at position-i. is completedin Constraint (The completion time of job j on machine i is calculated.
Accordingly, the completion time of each job on each machine equals the sum of the start time, set
time and processing tin@onstraint (B)dicates that the completion timgalf j at the production

stage is equal to the completion time of the last component of job Cohisimaint (Sates that the
decision variable CTjr takes value only if Xijr=1. Basé&buosiraint (1@he completion time of
assembly of the order placed at the first position of the assembly machine is equal to the completi
time of production its components plus its assembly time. B&3edstraint (11he completion time

of the assembly of jobsthe second position and thereafter equals the maximum completion time of
the previous job and the completion time of the production of the components of the job at that position
plus the completion time of the job at the positi@onstraint (1&Iclates the completion time of

the assembly of the final order. Base@amstraint (13)e customer e is served only by one of the
authorized vehicles. Baseddamstraint (14t)is not possible to create a suly. Based ofonstraint

(15) if arrivalat the node of customer e takes place by vehicle v, the exit from it must take place onl
by vehicle vConstraint (16)mputes the arrival time of the vehicle at each node based on the time -
traveled by the vehicle and the origin node. The start tingevahicle's transportation is equal to the
completion time of the last order. This Constraint is shotq {17) According tdConstraint (18)
each vehicle can remain in the origin node or, if necessary, can depart from the origin node to at mo
oneof the customer nodes. The capacity constraint of each vehicle is slwwstramt 18onstraints
(20)and(21)calculate the earliness and tardiness of each vehicle, resfEnistelynts (22)d(23)
represent the type of decision variables.

Bng10(1) 23)&
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3.4| Linearization

Given the nonlinearity of ti@onstraints,(@)and(11) the following describes how to linearize these
Constraints and consider them in the model.

The following variables are used to linearize nonlinear constraints:

xx,. 1 Binary variable for linearizi@gnstraint)(7
a,: Binary variable for linearizi@gnstraint (8)

B, The variable required to linea@anstraint (11)



The nonlinearimg factor inConstraint (iB)xx_, =X_ X Constraint (i8) replaced by the following

ij’r ijr” Cijie-17

‘ relations.
JAR[E XX, ¢ er for all i,j,ji,r. (24
65 X ¢ X for all i,j,jir. (25)
XX, 2 XAljr 4Xijir_1 T for all i,j,ji,r. (26)
Cijr =Start -Iaxxln . ” o )éijr *Pij for all i,j,r. 27)

According to theelatlorCT max{ } Constraint (B) a nonlinear equation. For linearization, this

relation is replaced by the following Constraints

CT - C, 2 M(1 o) forallijr, (28)
CT -C, ¢M(1 &) forallijr (29)
CWCIJr +M(1 -, ) forallj,i,ij,r;i 1. (30
'aE‘ =a, 4 foralljr. (3D

The nonlinearizing factor of theonstraint (18}, =Z, CT, . They can be linearized by considering the

following relations

ﬁjrl ¢ erl.M for all j,r,l, (32
B, ¢CT, forallj,rl, (33)
B2 CT, -(1 erl).M for all j ,r,1. (34)

3.5 | Non-Integrated Model

This section presents a Antegrated model. In this approach, first the mathematical model of production
and assembly (first stage) is optimized. Then the optimal solution, as a paraamsterrésl to the
mathematical model of the distribution (second stage). By optimizing the second stage model, the be:
distribution of orders among customers is determined. The first stage mathematical model consists of th
following relations

n R (
MinZl1=3 &ho, émax €T, - &.9; f (39
j=1r % 1 -
Constraint8)(6) Constrain{8)to (10) Constraiit2) andConstrain{®4}(34) which CTjr and Zjrl are
decision variables as described above.

After optimizing the first stage model, theax value is transferred to the second stage model as a
parameter. This model includes the following constraints

VvV K K vV K K Vv K Vv

Mmzz a a goem i + afCaWVOei + @k aTvk + lpé_‘Ta..'
v=le Hej (= vileg1l = k 1v= k=1v=1 (36

Integration of two-stage assembly flow shop scheduling and vehicle routing using improved whale optimization algorithm

Constraints (3)) which Wvee’, Wvoe” and ET,, are decision variables as described above.



3.6 | Solution Methods
In this section, the proposed solutions method whith@#£e improvedVOA, andGA are presented. { JARIE

3.7 | Whale Optimization Algorithm (WOA) 66
Whales areetaceans with a long tail. The interesting thing about whale life, which is the inspiration for
this algorithm, is the way of feeding and hunting in humpback whales, known as bubble netting. In this

fishes that are inside the air wall move toward the center of the circular bubble territory due to fear, and
immediately the whale swallows many of them while rising from the water. This algorithm vehs propose
by Mirjalili and Lewis [39]. According to the WOA, humpback whales are able to detect and surround
the prey's positioBecause the optimal position in the search space is unclear, the WOA assumes that
the best available solution is the target preyoinainear to it. Once this point is determined, the
search for other optimal points and the updating of position is continued. This belkaveseisted

by the following equations.

D =X (t) X(b)]. 37
(t+1) x(t) AD. (38)

In the above equations, t represents the iteration of the algorithm, C and A the coefficients«ectors,
the besbbtained position, and X the current Whale positishould be noted that the valueXo# is
updated in each iteration. The following equations are used to determine A and C values

A=2ar -a. (39

C=2r. (40)

Where, as avector that controls the variation of the solutions and its initial value is 2 that neay reduc
to 0 in different iterationsis also a random vector ranging from 0 to 1. To implement the WOA, it is
necessary to define the position of the whales baagdstified solution to the problem. In this study,

the position of each whale is defined as a set consisting of 4 different vectors. These vectors are defired
as follows. The first vector is a vector containing J cells that shows the sequencd tfgebscells .9
take numbers ranging from 0 to 1. Ordering the numbers from largest to smallest can determine thg
sequence of jobs. The second vector is a vector of J cells ranging from 0 to 1. This vector shows tlg
assignment of jobs to assembly machiwmededcribe it more clearly, suppose there are three assembly @
machines. Cells with valuagsging from 0 to 0.334 (1 divided by 3) are assigned to assembly machine 1.
Cells ranging from 0.334 to 0.664 (2 divided by 3) are assigned to assembly mddhinty2th@se

ranging from 0.664 to 1 are assigned to assembly machine 3. The third vector is a vector with E cells
ranging from O to 1. Each cell, depending on its value, represents the assignment of the customer to a
vehicle. The way customers arégasd to machines is exactly in accordance with the procedure
described for assigning jobs to machines. For example, if there are two machines, cells with a value of
less than 0.5 are assigned to machine 1, and cells with a value greater thann2d &renassime 2.

The fourth vector has a length of E that shows the priority of customers in visits. Customer priority is
determined by ordering the numbers of this vector from largest to smallest. For example, if the number
of orders is 3, the number agsembly machines is 2, the number of vehicles is 2, and the number of
customers is 3, four vectors relating to a hypothetical solution are accoabi@ to

I.| 3. Appl. Res. Ind. Eng 10(1) (2023)683

Table 3 An example of a justified solution in the WOA.

Vector1 0.26 0.48 0.64
Vector 2 0.35 0.27 0.95
Vector3 0.17 0.84 0.35
Vector4 0.53 0.37 0.18

According to the first row, the sequence of jobs on different production machi@els is 3he
assembly stage, according to the second row, orders 1 and 2 are assigned to assembly machine 1 and
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order 3 to assembly machinn2he distribution stagag¢cording to the third row, customers 1 and 3 are
assigned to the first machine and customer 2 to the second machine. To determine the order of custome
visits by vehicle 1 §iti order of customers 1 ands3e the fourth rovkccording to this row, thmuimber

related to customer 1 is greater than that related to customex 8.&8),8s0 customer 1 is first visited

and then customer 3 is visited. For vehicle 2, because it visits only one customer, the customer priority |
not applicable.

3.8 | Improved Whale Optimization Algorithm

Despite the suitability of the WOA search algorithm, this algorithm converges quickly in some cases. Alsc
this algorithm greedily seeks to improve the existing set of solutions, which causes the algorithm to trap i
local opima. Due to the problems mentioned for the WOA search algorithm, the necessary changes will
be made in the following to develop this algorithm and increase its efficiency. This development is inspirec
by the study of Alinaghian and Goli [40].

I. Inthe stewf generating a new solution in the WOA algorithm, each cell of the solution vector is randomly

generated from the values of the best existing solution, accokljsg ¢87and(38) But in the new
method, first a vector is generated fronttmbination of all existing solutions and then new solutions
will be generated with its help and based on a random process.

II.  The procedure for setting parameter a exits from the uniforrdfrod2 to Gand will be set in such a
way that the components bétnew solution move towards the best possible solution.

lll. In order to update the set of solutions, first the answers are sorted according to the value of the objective
function. Then the solutions that have the following two characteristics are removtiee $emnof
solutions1) have a weak objective funct@nhave similar solutions in the set of solutions.

In order to better understand the developed-hmidstic algorithm, the IWOA algorithm is described
step by step considering these changes.

Stepl Determining the problem parameters and the algorithm

Step 2 Generating random initial valdesthe set of problem solutions and calculating the value of the
objecive function of each of them(&p).

Step 3 Generating new solutions

FDR, =max,l{M}. (42
’ ‘le - Xn‘

D:‘c.xr (t) —X(t)‘. (42)

X(t+1) X_(t) AD. (43)

In this relationf(x;) and x, are respectively the value of the objefttivetion and the value of the |

component of the new solution, ars{o(,.) and x, are respectively the value of the objective function

and the value of thé tomponent of thehjexisting solutian

xj=f(worst) -f(best). (44)
p=——c . (45)
2n

a’=01 Y1 p). (46)



In the above equations, f (best) and f (worst) are the efthesobjective function and the worst
solution in the set of exi st iisnptpcediodquationsa3a and espec
40 to complete the process of generating new sollgigridshows the flowchart of the IWOA JARIE
algorithm. Moreover, the pseudocode of IWOA is illustrafdd@ihm.

S o8
|

e
i

C
T
C
C
C
A 4

Fig. 2. The flowchart of proposed IWOA.

Algorithm. 1. The pseudocode of proposed IWOA.

Bahmani et al.| J. Appl. Res. Ind. Eng 10(1) (2023)&83

1. Randomly initide tha whale population (X)
2. Evaluate the fitness value of each whale
3. Specify the best search agént
4. While t<Max_iter
2- Calcul ate ab
- Calculate FDR and seléct
8. For each search agent
9. Generate new solution using Eqs.-(8@) and save it a6 (t+1) .
10. End for
E EvaluateX (t+1)
13. UpdateX’
End while
Report X’

3.9 | Genetic Algorithm

The most important characteristicG#netic Algorithn{GA) is simplicity. The steps of t8& are

illustrated irAlgorithm3. First, the solution to the problem is definedhexform of a chromosomal

structure (codingRy introducing the fitness function, the quality of solutions in each chromosome is
expressed as a number. Then, a specific number of chromosomes is generated randomly (or quasi
randomly). These chromosomeskamvn as the primary population and are evaluated based on the
fitness function. Now, two chromosomes are selected for reproduction and using these two
chromosomes, a new chromosome is generated (mating). With a specific probability, a number of genes
of some chromosomes are changed. Performing the selection, mating and mutation steps creates a hew
population (generation) of chromosomes. If the chromosomes converge to the optimal response, the
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reproduction operation will be stopped. Otherwise, each gemeiifitbe produced from the previous
generation until the desired solution is obtained or the stop critéhieralyorithm is applied [3[4],
[42].

First, a coding system should be defined. This coding system is called the chromosome. The&chromoson
used in this study is a chromosome with real numbers between 0 and 1. The structure of this chromosom
is exactly the same as that proposed for the WOA.

Next, it is necessary to create the initial population. This initial population is randomly igetherated
range between 0 and 1. Then the fithess value of each solution is calculated. The fitness value exactly eq
the total cost of production, assembly, and distribution. Then, a set of solutions is selected as the parer
using the roulette wheel mmad. Of the parents, two new solutions (children) are generated from each
two parents (P1 and P2) using linear combination. For this purpose, one pasaraetermly generated

in the range of-$igma, + sigma] (the sigma is the control parameter that should be set). Then, new
solutions (SPInd SP2) are generated byEbe (47)to (48).

SP1=aPl {1 a)P2 47
SP2=aP2 {1 «)PL. (48)

In such circumstances, it can be assured that the solutions are the perfect combination of the parent
solutionsFinally, it is checked that the cells of SP1 and SP2 take a value between 0 and 1. If a cell takes
value less than 0, it is changed tbacell takes a value greater than 1, it is changed to 1. This operation

is performed witlthe Probabilityof CrossovefPC) in each iteration. Then the mutation is performed.
Therefore, a cell is selected from a chromosome, and then its value idseplaaedom value. This
operation is performed witte probability oimutation (prinin each iteration. In the next stage, a number

of solutions will be selected equal to the number of Pop size from the set of available solutions (parents
Crossover soligins, mutation solutions) and included in the next iteration. The flowchart of proposed
GA is asig 3.

Fig. 3. The general structure of the GA.
3.10 | ComputationalResults
The aim of this section is fourfold: 1) to validate scallt mathematical mtsi@) to investigate the

efficiency of proposed solution metha@)sto present a case stuayd 4) to conduct and report a
sensitivity analysis



3.11 | Validation ofMathematical Models

To validate the integrated mathematical model and thlegugsdic algorithms, a snsadale numerical ‘JAR[E
example is implemented in this section and the results are presented. The data in this numerical example

has been designed in a way that the optitnibaacan be clearly understood. The goal is to produce _
three types of gearboxes, shown by the symbols A, B, and C. The factory produces and sends forZ\Q)
customers in cities C1 and T&ble 4hows data on customer demand, production and assembly times,

and holding costs for each product. It should be noted that each time unit is considered to be 5 minutes.

Table 4. Data on processing and assembly times and holding cost of final products.

Job A B C
The demand for customer 1 for each products 2 7 0
The demand of customer 2 for each products o 1 4

Processing time of componerdrimachine 1 in the firststage 1 1 1
Processing time of component 2 on machine 2 in the firststa 2 2 2
Assembly time on the first assembly machine in the seconds 3 3.2 2.2
Assembly time on the second assembly machine in the secol 2.7 2.6 1.4
The holding cost of each unit of product in the warehouse 1 1 1

3)683

In the production stage, there is a setup time for the production of each component of the different
gearboxes. Sequewependent setup time for all jobs is defined as one unit of time. This company usesS
one type of vehicle to deliver products to cuswrifiis vehicle has a capacity of 100 units and a fixed
cost of 50 units. The variable costs of applying vehicles are also SraiMen5mhe data ifable 5
shows the distance between the factory and customer location. In this case, 1 monetast imit of
considered for each unit of travel time.

Table 5. Data on travel time between different nodes.
Factory E1 E2

Factory O 40 85
El 40 0 133
E2 85 133 0

In addition, the delivery time windows and other data on customer delivery are Bhloe®6in

Bahmani et al.| J. Appl. Res. Ind. Eng 10(1)

Table 6. Data ondelivery time window, service time, and earliness and
tardiness penalties of customer delivery.

Customer El E2
Delivery time windov [50,60 [20, 60
Service time 1 0.6
Earliness penalty 5 5
Tardiness penalty 15 17

We used a PC with Core 15 CPU processor under the windows 8.1 operating system with 4GB of RAM.
The mathematical MIP model of the problem was implemented in GAMS software and solved with
CPLEX 24.0.1 solver. The proposed algorithms were coded by MATIZABL 2 fftware. The above

data was entered the GAMS optimization software as the parameters of the integrated mathematical
model, and then the model was optimized. The optimal solution to the problem is equal to 2468.1
monetary units. The Cmax value is @oln the production stage, the optimal sequence of jobs is
defined as-2-3. Fig 4 shows the scheduling of jobs on different machines.
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1|2]3]4]5]6]7]8

Fig. 4. Scheduling of jobs in the production stage in the integrated model.

In the assembly stage and in the optimal solution, job 2 is assigned to assembly machine 1, and jobs 1 &
3 to the assembly machin€&ig.5 illustrates the scheduling of these jobs during the assembly stage.

M1 .

M2 N - J5

3 35 4 45 5 55 6 65 7 75 8 85 9 95 10

Fig. 5. Assemblyscheduling in integrated model.

As Fig 3illustrates, each job is assembled immediately after its production is completed, which confirms
the accuracy of results. According to manual calculations, the Cmax value is 9.4, which confirms the validi
of the results. In the following, the routing of vehicles between customers is $pgéifikdtrates the

created tour.

@ Customer @ Factory

Fig. 6. The optimal solution of product distribution in the integrated model.

After comparing the arrival time of vehicle to eastomer with its time window, it is revealed that the
earliness and Tardiness delivery of orders to customer 1 and 2 are 0.6 and 122.4, respectively.

Data analysis shows the accuracy of the outputs, and the study of similar solutions shows that the lowe
possible cost is 2468.1. Therefore, the mathematical model and its results can be considered as reliable
the next stage, it will be necessary to investigate the validity of the WOA and GA. So, the problem define
is optimized by each of WOA, IWOA aBd in this sectionFig 7 illustrates the convergence of the

WOA. AlsoFig.8illustrates the convergence of IWOA and filkéd® shows the convergence of GA.
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Fig. 8. The convergence ofWOA.

As illustrated ifrig 8, WOA obtained the objective function of 2600 in its first iteration. After various
iterations, this value reached 2468iteiation13. Moreover, ifrig 9, IWOA is converged to the
optimal solution after 8 iterations. This suggests that WOA and IW@Anvange to the optimal
solution of the problem after a small number of iterations, and therefore its results will be valid. |
addition, the proposed improvement for WOA leads to speed up the convergence in about 60%.

Bzhmani et al.| J. Appl. Res. Ind. Eng 10(1) (2023)683
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Fig. 9. The convergence oGA.

As ca be seen ifig 9, theGA was able to converge to the overall optimal solution of the problem.
Therefore, the results of this algorithm will be valid. The difference between the WOA, IWOA and GA
is that the WOA and IWOA converged to the optimal solaften 13 and 8 iterations respectively,

but the GA reached this convergence after 57 iterations. Therefore, the IWOA was strongest in this
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regard. While the WOA and IWOA started at the range of 2600, the GA started at the range of 2481.
Therefore, the comvgence rate of the WOA and IWOA was higher. In other words, the improvement
that the WOA and IWOA is equal to 2601568.F 118.9. By dividing this phrase by 13 iterations, the
convergence rate of the WOA is obtained as 9.1 and dividing by 8 itdratotmms/grgence of IWOA is
obtained as 14.8. In other words, an average cost reduction of 14.8 units occurred per iteration befor
convergence in IWOA. This index is equal t0-2488.% 12.9 for théGA and the convergence rate is

0.22. In other words, élGA produced an average improvement of 0.22 units per iteration before
convergence.

3.12 | Investigating theEfficiency of ProposedSolution Methods

In this section of the computational results, the performance of WOA, IWOA and GA will be investigated.
In this regard, initially 40 instances in small, medium and large scales are generated. Data on these proble
is shown inrable .7The valuesf the parameters for each of the instances are randomly generated from
continuous uniform distribution. The lowmit and the upper limit of each parameter are shdvaie

8.

These problems were optimized in the GAMS environment for exact solution optimization, and in the
MATLAB environment with WOA, IWOA and GA. The time limit for optimization was considered a
3600 seconds. The results are preseniieabia 9In this table, Z represents the value of the objective
function, T (in seconds) is the solution time, and Gap (%) is the relative error compared to exact method
(GAMS).

Table 7.Scale of generated instances.

Size Samples | J E V L
P1 2 3 3 1 2
P2 3 3 3 1 2
Smalkcale P3 3 4 3 1 2
P4 3 4 4 1 2
P5 3 4 5 2 3
P6 5 5 5 3 3
pP7 4 5 5 2 3
Median scal¢ P8 5 6 6 2 3
P9 5 7 7 3 4
P10 6 8 9 3 3
P11 10 10 10 4 5
P12 12 15 11 5 6
P13 14 17 15 6 7
P14 16 20 17 7 9
P15 18 23 19 9 10
P16 20 25 20 10 11
P17 25 27 25 13 13
P18 30 30 27 15 14
P19 40 40 35 20 20
P20 50 50 40 30 25
P21 60 60 50 30 30
P22 70 70 60 40 35
P23 80 80 70 40 40
P24 90 90 80 50 45
Large scale P26 100 100 90 50 50
P26 110 100 100 60 55
P27 120 120 110 60 60
P28 130 120 120 70 65
P29 140 140 130 70 70
P30 150 140 140 80 75
P31 160 160 150 80 80
P32 170 160 160 90 85
P33 180 180 170 90 90
P34 190 180 180 100 95
P35 200 200 190 100 100

P36 210 200 200 110 105




Table 7.Continued.

Size Samples | J E V L
P37 220 210 210 110 110
P38 230 210 220 120 115
P39 240 220 230 120 120
P40 250 220 240 130 125

Table 8. Upper and lower limits of parameter values.

Parameters

Lower Bound Upper Bound

Transportationime

Service time
Assembly time
Demand

Production time

Holding cost

Earliness penalty
Tardiness penalty
The cost of travel
Vehicle fixed cost
Vehicle capacity

Lower limit of theime window 20
Upper limit of the time windov 90

Setup time

20
0.5
1.4
0

1

1

3
10
30
50
1000

1

140
1
3.4
5

4

4

5
20
135
60
1200
90
140
2

Table 9. Results of optimization of various problems

GAMS WOA IWOA GA
é Z T Z T Gap Z T Gap Z T Gap
£

35}

0

P1 24681 1.02 24681  0.69 0.00% 2468.10 0.74 0.00% 24681  3.43  0.00%
P2 25276 283 2527.6  4.88 0.00% 2527.60 4.88 0.00% 2527.6  6.06  0.00%
P3 27686 6.47 28116 511 1.53% 2811.60 553 1.53% 2847.8 7.34 2.78%
P4 18028 2052 1867.8  5.31 3.48% 1860.20 582 3.09% 1956.7  7.53  7.87%
P5 3176.2 176.41 3257.7  5.59 2.50% 3203.40 577 0.85% 3261.6 7.81  2.62%
P6 2469.6 870.1 25057  6.67 1.44% 249310 7.31 0.94% 2539.1 8.82  2.74%
P7 24942 3600 25946  7.11 3.87% 2590.90 7.16 3.73% 2666.1 891  6.45%
P8 - - 54352  6.77 0.05% 5432.48  6.86 0.00% 5450 8.44  0.32%
PO - - 59259  7.68 0.24% 5911.71 812 0.00% 5991.4 915 1.33%
P10 - - 10449.3 8.24 0.30% 10417.97 8.38  0.00% 10572.8 9.94  1.46%
P11 - - 15559.4 10.23  0.66% 15456.43 11.17 0.00% 163305 12.02 5.35%
P12 - - 401409 1331  0.83% 39809.42 1573 0.00% 41197.2 1572 3.37%
P13 - - 638125 1547  3.40% 63646.83 17.77 3.14% 616454 18.37 0.00%
P14 - - 112338.9 18.3 3.02% 111234.88 18.71 2.05% 108951.5 21.94 0.00%
P15 - - 160383.9 21.86  0.40% 159745.69 23.37 0.00% 167182 2547 4.45%
P16 - - 203856.4 24.36  0.52% 202792.18 28.22 0.00% 206792.5 28.74 1.93%
P17 - - 2244763 29.36  0.81% 222647.77 30.25 0.00% 225363.8 34.39 1.21%
P18 - - 308709 32.02  0.93% 305827.44 37.96 0.00% 310627.1 38.1  1.55%
P19 - - 707211.9 47.04  0.99% 700228.22 50.46 0.00% 722761.3 56.14 3.12%
P20 - - 1393914.€ 69.07  0.71% 138404251 79.83 0.00% 1441985.4 78.4  4.02%
P21 - - 1474033.€ 73.96109 1.95% 1473993.5¢ 86.22 1.95% 1445261.2 8558 0.00%
P22 - - 1514966.5 77.51197 0.78% 1507566.97 90.98 0.30% 1503110.S 100.37 0.00%
P23 - - 1586944.4 83.80926 0.00% 1586944.4F 85.67 0.00% 1690395.2 104.30 6.12%
P24 - - 1648002.2 89.64728 0.43% 1640941.2¢ 95.57 0.00% 1879600.5 104.74 12.70%
P25 - - 1759013.2 90.45446 0.00% 1759013.3¢ 96.16 0.00% 2097065.S 121.79 16.12%
P26 - - 1859640.€ 97.89633 0.00% 1859640.77 99.07 0.00% 2334516.7 132.68 20.34%
P27 - - 1898552.4 103.3518 0.00% 1898552.37 118.97 0.00% 2446831.C 149.12 22.41%
P28 - - 1958180.2 108.4347 0.82% 1942096.9: 114.81 0.00% 2449723.4 161.90 20.72%
P29 - - 2068810.¢ 123.0877 0.00% 2069128.6: 140.90 0.02% 2657742.2 191.73 22.16%
P30 - - 2084668.5 131.1225 0.00% 2097761.3¢ 142.28 0.62% 2834937.€ 207.59 26.47%
P31 - - 2120083.1 143.3223 0.00% 2130588.5( 143.42 0.49% 2908072.7 230.02 27.10%
P32 - - 2271524.2 153.0421 0.36% 2263271.4¢ 180.52 0.00% 3178261.€ 232.05 28.79%
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Table 9. Continued.
GAMS WOA IWOA GA
Z T Z T Gap Z T Gap Z T Gap

2280345.1 171.9941 0.29% 2273815.41 188.03 0.00% 3563090.8 262.49 36.18%
- - 2294721.4 206.2778 0.06% 2293410.52 234.82 0.00% 3722680.6 290.42 38.39%
- - 2432103.7 214.6102 0.00% 2442126.30 246.32 0.41% 4022717.4 338.17 39.54%

TUTUT
3 3 Sisamples
a s w

P36 - - 2538269.z 220.4266 0.25% 2531966.67 252.29 0.00% 4112688.6 359.08 38.44%
P37 - - 2548623.€ 251.7006 0.54% 2534978.60 266.94 0.00% 4621513.2 384.91 45.15%
P38 - - 2696561.2 294.6928 0.86% 2673321.19 328.58 0.00% 4715799.6 411.56 43.31%
P39 - - 2941324.t 318.2205 0.02% 2940708.34 367.36 0.00% 5162264.5 465.35 43.03%
P40 - - 2990058.C 329.2949 0.61% 2971686.19 384.68 0.00% 5183784.6 541.62 42.67%
Average 1155917 90.54822 0.82% 1153416.53: 100.941 0.48% 1646829.41 132.055 14.50%

As seen, GAMS was only able to optimize 7 problems. Moreover, the average WOA solution time is 90.5.
seconds and its average error is 0.82%. These indices are 100.94 and 0.48% in the IWOA. The fir
comparisons demonstrate that the proposed improvenu=ntddend better solutions with lower costs.

The average GA solution time is 132.05 seconds and its average error is 14.23%. Therefore, the IWO,
performed better in terms of both solution time and error in comparison to GA too. It should be noted
that thegap% obtained is based on the comparison of each approach with the exact solution method
(GAMS).

Fig 10 illustrates the comparison of solution times of GAMS andhewgtatic methods for seven
GAMSsolvable problemBig 11illustrates the comparisofisolution times of metzeuristic methods

for the 40 solved problems, dfid 12shows the comparison of the values of the objective functions for
the two metdneuristic methods.
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Fig. 10 Comparison of solution times of GAMS and metheuristic algorithms in small scale.
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Fig. 11 Comparison of solution times between metheuristic algorithms in a test problem.
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As can be seen, for all solved instances, GA's solution time was longer than the WOA and IWOA.

Moreover, for solving largeale problems, tli@A exhibited better performance than WOA only in
problems 13 and 14, and in other problems, WOA provided aobgtdive function. On the other

hand, IWOA spend more time than WOA but its convergence faster and achieve more quality solutions.

Therefore, the efficiency of IWOA compared to WOA and GA could be well explained.

4| Case Sudy

To conduct validation, thimtegrated and neintegrated mathematical models presented were

ig 10(1) (2023)&83

implemented in an industrial gearbox manufacturing factory in Iran. The results will be presented in th§

section. This industrial gearbox factory is located in Ar city and producesfiggqdmxes. These

nd.

gearboxes are shown with the symbols A, B, C, D, E, F and G. The factory produces and sends products

to six customers in the cities of As, Ta, Kh, Sh, Sm ahdble. 1presents customers demand data,
production and assembly timesl halding costs for each product. It should be noted that each unit

of time is considered to be 5 minutes.

In the production stage, there is a setup time for the production of each component of the different
gearboxe§.able 14hows the setup time of egaihnon each machine. According to this table, the setup
time of each job is determined dependent on the previous job in the sequence. For example, if job A
processed immediately after job B, the setup time for job A is two time units. These tjoadare e

all machines.

Table 10. Data on processing and assembly times, and holding costs of final products.

Job

A

@]

m

®

Demand of customer 1 of products

Demand of customer 2 of products

Demand of customer 3 of products

Demand of customer 4 of products

Demandof customer 5 of products

Demand of customer 6 of products

Processing time of component 1 on machine 1 in the first
Processing time of component 2 on machine 2 in the first
Processingme of component 3 on machine 3 in the first s
Processing time of component 4 on machine 4 in the first
Processing time of component 5 on machine 5 in the first
Processing time of component 6noachine 6 in the first sta
Processing time of component 7 on machine 7 in the first
Assembly time on the assembly machine in the second s
The holding cost of each unit of product inlagehouse

P WRWOWWWWRWWEFLPNORLNm
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o

2
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This company uses 3 types of vehicles to send products to customers. The capacity and fixed cost of

using these vehicles are shownainle 12T'he variable costs of using vehicles are accordiaflto

13 The data iTable 1dhow the distance between the factory and the customer locations. In this case,
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for each unit of time (5 minutes), a distance of 5 km is travelled. One monetargsinig opsidered
per one monetary unit.

Table 11. Data on sequenegependent setup time.

B C D E F G

OmMmOOw>
PRRNPR PR RP>
NRPRRPRERNN
NRPNR R R R
PRPRPRPNNN
RPRPRPNNRPN
RPRRRRERRR
NNN PR R PP

Table 12. Data on capacity and fixed cost of vehicles.

Vehicle Type 1 2 3
Capacity 100 150 320
Fixed Cost 500 600 1000

Table 13. Data on travel time between different nodes.

Ar As Ta Kh Sh Sm Tr
Ar 0 40 85 65 33 16 20
As 40 O 133 114 7 30 15
Ta 85 133 0 165 121 45 90
Kh 65 114 165 O 105 40 25
Sh 33 7 121 105 O 30 60
Sm 90 30 20 80 30 O 90
Tr 35 20 60 55 33 20 O

The above data was included in the GAMS optimization software as the parameters of the integratec
mathematical model and the model was optimized. The optimal solution of the problem was obtained a:
22462 monetary units. Moreover, the Cmax value wasdhta@ In the production stage, the optimal
sequence of jobs was determined®2-6-3-4-1. Fig 13illustrates the scheduling of jobsdifferent

machines.

1]2]3] 4|5 6]7]s] o1 | 12| 13] 14] 15] 16] 17| 18 21| 22| 23] 24 | 25 |
M1 | J6 | s | | g2 17 E \ 4
M2 | 6 15 12 77 B T4
M3 | J6 5 | |1 7 13
M4 J6 | AE \ J2 J7
M5 | 16 | 15 | [y7 | B ] [ ;.
M6 6 [ 15 ] ]2 \ J7 ‘ AE] | ] ]
M7 | J6 s el T [ B [ g+ ]

Fig. 13 Scheduling jobs in the production stage of the integrated model.

Based on the ¢dined results iRig 13in the optimal solution, different machines have idle times. The
reason for this is that the integrated model seeks to complete the processing of the various component
The important point ifrig 13is that the sequence of jabslefined in a way that all setup times are equal

to its minimum valugig 14illustrates the scheduling of these jobs during the assembly stage.

9l nlw|nlulsls|rs[wln]aln]nluls]sln]zs
Ll |J6 I5 L
L2 | 2 | L | [k
Fig. 14 Assembly scheduling in integrated model.

oo

As illustrated iFig 14, each job is placed in the assembly stage immediately after production, which
confirms the accuracy of the results. In addition, based on manual calculations, the Cmax value is equal
28, which shows the validity of the results. In the followingutivegrof vehicles between customers will

be determined. For this purpose, vehicles 1 and 3 were used. The tours of each vehicle are illustrated



Fig 15 Based on the results, it is clear that all customers were visited once and each vehicle formed a
tour which started and finished in the factory. This also confirms the accuracy of the results.

PO
@
@, o

yenaed
@ Customer @ Factory

Fig. 15 The optimal solution of product distribution in the integrated model.
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To evaluate the results of the integrated model;stadg® model was optimized with data provided in
Tables 15 In the first stage model, after optimization, the sequence of jobs was obtebriz@-as 6
4-3-1 and the Cmax value was equal to 28. ém wibrds, the results of the first stage model are exactly
equal to the results of the integrated model. Then the second stage model was Bigfifézed.
illustrates the optimal routes of the second stage model.

/V@
\ ; y @
) N
Vehicle
@ Customer @ Factory

Fig. 16 Optimal routes in the nonintegrated model.

The results of this section show that the routes formed in thetegrated model are completely
different from those in the integrated model. Therefore, earliness and tardiness can serve as a criter
to determie the superiority of either of the integrated andimiegrated approaches relative to the
other oneTable 14hows comparison of earliness and tardiness as well as production and distribution
costs in the two modelgable 1dhows comparison betweea thfferent costs of the two models.

EBahmani et al.| J. Appl. Res. Ind. Eng 10(1) (2023)&83

As can be seen, both models performed equally well. The reason for this is that the transportation of
products started at 28. Moreover, the lower limit of the time window of all customers is less than this
time. Therefte, it was not possible to create earliness in any of the models. In total, the integrated
model had a tardiness of 142 time units, while thietegmated model had a tardiness of 186. In other
words, the integrated model saves 23.65% in delay timamAmagion of the costs of the two models

shows that the integrated model has a higher fixed cost than-ithiegrated model. However, with
expending higher fixed costs, 2.34% of variable costs will be saved. Regarding delays, the cost of
tardiness is6®8 in the integrated model and 3361 in themegrated model, which the integrated

model is 19.70% better than the-maegrated model. Overall, the total cost of distributing products
among customers is 20196 monetary units in the integrated maeggdrarimately 21760 monetary

units in the nofintegrated model, which about 7% financial savings is obtained in the integrated model.
Therefore, a comprehensive study of the above models shows that the performance of the integrated
model is much bettdnan the noxintegrated model; and simultaneous degisiding on production,

assembly and distribution can significantly minimize system costs, and also increase customer
satisfaction by reducing delays.



Table 14. Earliness and tardiness in integrated and nantegrated models.

Customer C1 C2 C3 C4 C5 C6
JARIE Integrated model Earliness - - - - - .
Tardiness 24 44 21 - 49 4
Non-integrated model Earliness - - - - - -

79 Tardiness 24 19 18 - 57 68

Table 15.Distribution costs in integrated and nonintegrated models.

Earliness Total Distribution  Distribution Delays g)ci)st?rlibution
Total Tardiness Fixed Cost  Variable Cost Cost Cost
Integrated model 0O 142 1500 17968 2698 20196
Non-integrated 0 186 1500 18399 3361 21760
model
Percentage of - 23.65% 0% 2.34% 19.70% 7.31%
Integrated model
superiority

4.1 | Sensitivity Analysis

The purpose of sensitivity analysis is to investigate the effect of fluctuations in important parameters of
the mathematical model on the value of the objective furidtis effect will be examined independently.

In other words, by assuming other parameters constant, the effect of one parameter on the value of the
objective function will be analyzed. In terms of cost factors, this analysis is quite clear. Rluatuations

type of cost have a direct effect on the value of the objective function.

However, some parameters do not have a significant effect on the objective function. These parameter
include setup time and capacity of the transport fleet. The effees@fptirameters on the objective
function will be examined below.

4.2 | Sensitivity Analysis ofSetup Time

In the validation problem, the valoéshe setup time were presented. In this section, the ofalbiss
parameter fluctuate betwe2% and 20% {able 16-ig 17).

Table 16. Sensitivity analysis of setup time.
Percentage change in the param -20% -10% 0% 10% 20%
Objective function value 6050.8 6053.9 6053.9 6054.1 6057.9

6059
6058
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Optimal value of the objective

c
L2
3]
c
=
6053
6052
6051
6050
-30% -20% -10% 0% 10% 20% 30%

Percentage chang of setup time

Fig. 17. Objective function values relative to setup timehanges.



The results ifrig 17andTable 16how that increasing the setup time can lead to an increase in total
costs. It can be said that the increase of setup time increases the completion of time jobs. As sult,
the distribution stage starts laad eventually the customers receive their orders with more deg JARIE
Therefore, the cost of delay in customer delivery increases. It should be noted that minor changes in

this parameter did not influence the value of the objective function and onlyiacsease=of up to

+20% leads to changes. 80

4.3 | Sensitivity Analysis of Transport Fleet Capacity

In the validation problem, the capacity valtiiee transport fleet were presented. In this section, the
valuef this parameter fluctuate betweZdPoand +20%, and iable 1@ndFig 18 the results of
the sensitivity analysis of this parameter are presented.

Table 17. Sensitivityanalysis of transport fleet capacity.

Percentage change in the pararmr -20% -10% 0% 10% 20%
Objective function value 6050.8 6053.9 6053.9 6054.1 6057.9

6120

function

0

optimal value of the objective

6040
-25% -20% -15% -10% -5% 0% 5% 10% 15% 20% 25%

percentage change of the vehicle capacity

Fig. 18 The value of objective function relative to variations in transport fleet capacity.
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As shown irFig 18andTable 1o change occurs in the value of the objective functiorlfdétmup
to +20% fluctuationsThe costs increased with decreasing the transport fleet capa0iy. tbhe
reason for this is that by reducing the capacity of vehicles, the model has to use more vehicles; and as a
result, more fixed costs are imposed on the model, and therefupéntiaé value of the objective

function increases.

5| Conclusion

In this study, the twstage assembly flow shop problem and transport fleet routing were studied. The
key innovation of this research was the integration-stége assembly schedulingvahitle routing

decisions. In this study, the costs of holding, routing, and penalties for violating the time window were
minimized. Therefore, an integrated model and-antsgnated model were presented. An improved
version ofWOA is proposed to optimé the studied problem. Comparison of the integrated model and

the twoestage model showed that the integrated model saved 23.65% of delay time, the integrated model
showed better performance than thedtage model by 13.6% in terms of total costs.

An examination and comparison of the applied solutions showed that in all solved problems, the WOA's
solution time was | e Hosveverhhe proppsedelW@AAeads toabouat 60PGWO A G s
improvement in cost reduction in comparison to WOA. This ls WIQA performs better than GA

in 80% of largscale problems, and GA only provides a better objective function value in 20% of the
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problems (problems 13 and 14). Therefore, the efficiency of the IWOA, compared to the WOA and GA,
can be well approved.

Analysis of the results on the algorithms studied in this study shows that Resuristia algorithms

such as WOA can perform much better and more powerfully than conventional and old algorithms and
provide higher speed and higher quality, and this aigbidgtbe the ability to replace the old algorithms

well. Also, due to the newness of the WOA algorithm, various improvements can be made in it, which car
implement the search process in the WOA algorithm better and more powerfully.

In this study, IWOA algithm have led to improvements in both the neighborhood creation structure and
the choice of answers for subsequent iterations, resulting in a 60% improvement in cost savings over th
WOA. Therefore, it is generally concluded that the IWOA algorithm @anodeced as a new and
efficient algorithm both in terms of optimization speed and quality of the results found, and other
researchers in this field are suggested to focus more on Rely on this algorithm and use its advantages o
other metaheuristic algrithms.

The managementlated achievements of this research show that in factories, integration of decisions
related to production, assembly and distribution can help managers in controlling costs and creatin
coordination between production and distidiouunits. The need for this integration will be intensified
when there are multiple customer orders. In such a situationcubyddinning cannot provide the
necessary coordination among production, assembly, and distribution, and it is nec=sgdoydatas

scientific tools. This research can be a comprehensive decision making for managers of manufacturin
organizations. The limitations of the research are as follows:

I. The metéheuristics algorithms require access to a computer system equipfeadunes such as high
RAM and CPU.

. As there was no official database for some par
help. The questions about the travel costs for each route have been categorized and the estimated cos
have beeentered into the mathematical model.

To develop this research, it is suggested that uncertainty in customer demand be considered as possibilis
programming or robust optimization. It is also recommended to include planning on product waste and
supply ofraw materials in the problem. Regarding the solution methods, it is suggested that a heuristic

algorithm be developed for the problem, and also othehengtstic algorithms suchRgnnerRoot
Algorithm(RRA) be used to solve this problem.
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