Document Type : Research Paper

Author

Department of Mathematics, Semnan Branch, Islamic Azad University, Semnan, Iran.

Abstract

In this paper, a hybrid method based on a linear programming model for solving Multi-Attribute Decision-Making (MADM) problems by combining two new methods, the COmplex PRoportional ASsessment (COPRAS) and the Multi-Objective Optimization Ratio Analysis (MOORA) and also using the concept of discrimination intensity functions are presented. Further interaction with the Decision Maker (DM) to determine the weights of the attributes and calculate the weights by solving a linear programming problem without determining the predetermined weight are two of the advantages of the new method. In the proposed method, for each alternative, attributes are weighted with optimism for that alternative, and then alternatives are ranked through efficiency intervals. The proposed method is implemented on a real-world problem derived from the subject literature and compared with other MADM methods. The difference in the final results is evident due to the consideration of more details in determining the rankings.

Keywords

Main Subjects

[1]     Soltanifar, M. (2021). An investigation of the most common multi-objective optimization methods with propositions for improvement. Decision analytics journal, 1, 100005. https://doi.org/10.1016/j.dajour.2021.100005
[2]     Zavadskas, E. K., Antucheviciene, J., & Kar, S. (2019). Multi-objective and multi-attribute optimization for sustainable development decision aiding. Sustainability (switzerland), 11(11), 3069. https://doi.org/10.3390/su11113069
[3]     Hwang, C. L., & Yoon, K. (1981). Methods for multiple attribute decision making. Multiple attribute decision making: methods and applications a state-of-the-art survey, 186, 58–191. https://link.springer.com/chapter/10.1007/978-3-642-48318-9_3
[4]     Mahmoodi Sharif, M., Rahimian Asl, M. M., & Maleki, M. H. (2022). Futures studies of Iran’s Oil industry supply chain with emphasis on internal factors. Journal of decisions and operations research, 7(2), 240-258. (In Persian). DOI:10.22105/dmor.2021.288357.1409
[5]     Rao, C. M., Kumar, B. B. A., & Subbaiah, K. V. (2021). Application of MCDM/MADM approach entropy-TOPSIS in turning of AA6061. International journal, 9(2), 146–149.
[6]     de Souza, D. G. B., dos Santos, E. A., Soma, N. Y., & da Silva, C. E. S. (2021). MCDM-based R&D project selection: A systematic literature review. Sustainability, 13(21), 11626. https://www.mdpi.com/2071-1050/13/21/11626
[7]     Nikjo, B., Rezaeian, J., & Javadian, N. (2015). Decision making in best player selection: An integrated approach with AHP and extended TOPSIS methods based on WeFA freamwork in MAGDM problems. International journal of research in industrial engineering, 4(1), 1–14.
[8]     Subha, V. S., & Dhanalakshmi, P. (2020). Some similarity measures of rough interval Pythagorean fuzzy sets. Journal of fuzzy extension and applications, 1(4), 304–313.
[9]     Jafari, H., & Ehsanifar, M. (2020). Using interval arithmetic for providing a MADM approach. Journal of fuzzy extension and applications, 1(1), 57–65.
[10]   Ghaziyani, K., Ejlaly, B., & Bagheri, S. F. (2019). Evaluation of the efficiency by DEA a case study of hospital. International journal of research in industrial engineering, 8(3), 283–293.
[11]   Ebrahimi, E., Fathi, M. R., & Sobhani, S. M. (2023). A modification of technique for order preference by similarity to ideal solution (TOPSIS) through fuzzy similarity method (a numerical example of the personnel selection). Journal of applied research on industrial engineering, 10(2), 203–217. DOI:10.22105/jarie.2022.296088.1359
[12]   Mozaffari, M. reza, Dadkhah, F., & Abbasi, M. (2022). Decision making unit projections in fully fuzzy problems using value efficiency analysis. Journal of decisions and operations research, 7(Special Issue), 1-17. (In Persian).
[13]   Alinezhad, A., & Khalili, J. (2019). New methods and applications in multiple attribute decision making (MADM) (Vol. 277). Springer.
[14]   Tavana, M., Soltanifar, M., & Santos-Arteaga, F. J. (2023). Analytical hierarchy process: Revolution and evolution. Annals of operations research, 326(2), 879–907.
[15]   Soltanifar, M., & Sharafi, H. (2022). A modified DEA cross efficiency method with negative data and its application in supplier selection. Journal of combinatorial optimization, 43(1), 265–296.
[16]   Sharafi, H., Soltanifar, M., & Lotfi, F. H. (2022). Selecting a green supplier utilizing the new fuzzy voting model and the fuzzy combinative distance-based assessment method. EURO journal on decision processes, 10, 100010. https://doi.org/10.1016/j.ejdp.2021.100010
[17]   Soltanifar, M. (2021). The voting linear assignment method for determining priority and weights in solving MADM problems. Journal of applied research on industrial engineering, 8(Special Issue), 1–17.
[18]   Shirouyehzad, H., Tavakoli, M. M., & Badakhshian, M. (2016). The linear assignment method for ranking of organizations with service quality approach: a case study of hotels in city of Isfahan. Journal of applied research on industrial engineering, 3(1), 49–57.
[19]   Soltanifar, M., & Heidariyeh, S. A. (2020). Employee performance evaluation using a new preferential voting process. Innovation management and operational strategies, 1(3), 202-220. (In Persian). 10.22105/imos.2020.259781.1000
[20]   Azizi Nafteh, M., & Shahrokhi, M. (2022). Presenting COPRAS multi-criteria group decision making method using interval and punctual type 2 fuzzy sets. Journal of decisions and operations research, 7(2), 355-372. (In Persian). DOI:10.22105/dmor.2021.297965.1459
[21]   Torkavannezhad, M., Tohidi, G., Daneshian, B., Maghbouli, M., & Moddarres Khiyabani, F. (2023). Pseudo inefficiency in multi-period systems: a DEA-based approach. Innovation management and operational strategies, 4(1), 28-37. (In Persian). DOI:10.22105/imos.2022.312571.1179
[22]   Darvishi Selokolayi, D., & Heydari Gorji, S. (2021). A new approach to the economic problem of dumping based on game theory with grey parameters. Innovation management and operational strategies, 2(1), 14-29. (In Persian). DOI:10.22105/imos.2021.278942.1039
[23]   Zavadskas, E. K., Kaklauskas, A., & Šarka, V. (1994). The new method of multicriteria complex proportional assessment of projects. Technological and economic development of economy, 1(3), 131–139.
[24]   Mishra, A. R., Rani, P., Pandey, K., Mardani, A., Streimikis, J., Streimikiene, D., & Alrasheedi, M. (2020). Novel multi-criteria intuitionistic fuzzy SWARA–COPRAS approach for sustainability evaluation of the bioenergy production process. Sustainability, 12(10), 4155. https://doi.org/10.3390/su12104155
[25]   Rani, P., Mishra, A. R., Deveci, M., & Antucheviciene, J. (2022). New complex proportional assessment approach using Einstein aggregation operators and improved score function for interval-valued Fermatean fuzzy sets. Computers & industrial engineering, 169, 108165. https://doi.org/10.1016/j.cie.2022.108165
[26]   Amudha, M., Ramachandran, M., Sivaji, C., Gowri, M., & Gayathri, R. (2021). Evaluation of COPRAS MCDM method with fuzzy approach. Data analytics and artificial intelligence, 1(1), 15–23.
[27]   Patil, S. B., Patole, T. A., Jadhav, R. S., Suryawanshi, S. S., & Raykar, S. J. (2022). Complex proportional assessment (COPRAS) based multiple-criteria decision making (MCDM) paradigm for hard turning process parameters. Materials today: proceedings, 59, 835–840.
[28]   Chaurasiya, R., & Jain, D. (2022). Pythagorean fuzzy entropy measure-based complex proportional assessment technique for solving multi-criteria healthcare waste treatment problem. Granular computing, 7(4), 917–930.
[29]   Mishra, A. R., Rani, P., Mardani, A., Pardasani, K. R., Govindan, K., & Alrasheedi, M. (2020). Healthcare evaluation in hazardous waste recycling using novel interval-valued intuitionistic fuzzy information based on complex proportional assessment method. Computers & industrial engineering, 139, 106140.
[30]   Hezer, S., Gelmez, E., & Özceylan, E. (2021). Comparative analysis of TOPSIS, VIKOR and COPRAS methods for the COVID-19 Regional Safety Assessment. Journal of infection and public health, 14(6), 775–786.
[31]   Rani, P., Mishra, A. R., Krishankumar, R., Mardani, A., Cavallaro, F., Soundarapandian Ravichandran, K., & Balasubramanian, K. (2020). Hesitant fuzzy SWARA-complex proportional assessment approach for sustainable supplier selection (HF-SWARA-COPRAS). Symmetry, 12(7), 1152. https://doi.org/10.3390/sym12071152
[32]   Rani, P., Mishra, A. R., & Mardani, A. (2020). An extended Pythagorean fuzzy complex proportional assessment approach with new entropy and score function: Application in pharmacological therapy selection for type 2 diabetes. Applied soft computing, 94, 106441. https://doi.org/10.1016/j.asoc.2020.106441
[33]   Roy, J., Kumar Sharma, H., Kar, S., Kazimieras Zavadskas, E., & Saparauskas, J. (2019). An extended COPRAS model for multi-criteria decision-making problems and its application in web-based hotel evaluation and selection. Economic research-ekonomska istraživanja, 32(1), 219–253.
[34]   Kumari, R., & Mishra, A. R. (2020). Multi-criteria COPRAS method based on parametric measures for intuitionistic fuzzy sets: application of green supplier selection. Iranian journal of science and technology, transactions of electrical engineering, 44(4), 1645–1662.
[35]   Brauers, W. K., & Zavadskas, E. K. (2006). The MOORA method and its application to privatization in a transition economy. Control and cybernetics, 35(2), 445–469.
[36]   Dhanalakshmi, C. S., Mathew, M., & Madhu, P. (2021). Biomass material selection for sustainable environment by the application of multi-objective optimization on the basis of ratio analysis (MOORA). Materials, design, and manufacturing for sustainable environment: select proceedings of icmdmse 2020 (pp. 345–354). Springer.
[37]   Thakkar, J. J. (2021). Multi-objective optimization on the basis of ratio analysis method (MOORA). Multi-criteria decision making, 336, 191–198. https://doi.org/10.1007/978-981-33-4745-8_11
[38]   Hidayat, A. T., Daulay, N. K., & Mesran, M. (2020). Penerapan metode multi-objective optimization on the basis of ratio analysis (MOORA) dalam pemilihan wiraniaga terbaik. Journal of computer system and informatics (JOSYC), 1(4), 367–372.
[39]   Paul, T. R., Saha, A., Majumder, H., Dey, V., & Dutta, P. (2019). Multi-objective optimization of some correlated process parameters in EDM of Inconel 800 using a hybrid approach. Journal of the brazilian society of mechanical sciences and engineering, 41, 1–11.
[40]   Habibi, A. N., Sungkono, K. R., & Sarno, R. (2019). Determination of hospital rank by using technique for order preference by similiarity to ideal solution (topsis) and multi objective optimization on the basis of ratio analysis (MOORA). 2019 international seminar on application for technology of information and communication (ISEMANTIC) (pp. 574–578). IEEE.
[41]   Ngemba, H. R., Richardo, R. R., Nur, R., Rusydi, M., Lopo, C., Nu, M., & Febrina, A. P. (2021). Implementation of the multi-objective optimization method based on ratio analysis (MOORA) in the decision support system for determining the deneficiary of BPJS health contribution assistance (case study: Loru Village, Sigi regency). Tadulako science and technology journal, 2(1), 26–31. https://doi.org/10.22487/sciencetech.v2i1.15577
[42]   Mitra, A. (2021). Application of multi-objective optimization on the basis of ratio analysis (MOORA) for selection of cotton fabrics for optimal thermal comfort. Research journal of textile and apparel, 26(2), 187–203.
[43]   Khan, A., & Maity, K. P. (2016). Parametric optimization of some non-conventional machining processes using MOORA method. International journal of engineering research in africa, 20, 19–40.
[44]   Shihab, S., Khan, N., Myla, P., Upadhyay, S., Khan, Z., & Siddiquee, A. (2018). Application of MOORA method for multi optimization of GMAW process parameters in stain-less steel cladding. Management science letters, 8(4), 241–246.
[45]   Rizk-Allah, R. M., Hassanien, A. E., & Slowik, A. (2020). Multi-objective orthogonal opposition-based crow search algorithm for large-scale multi-objective optimization. Neural computing and applications, 32, 13715–13746.
[46]   Aytaç Adalı, E., & Tuş Işık, A. (2017). The multi-objective decision making methods based on MULTIMOORA and MOOSRA for the laptop selection problem. Journal of industrial engineering international, 13, 229–237.
[47]   Syahbudin, Z. (2023). Implementation of MOORA Method for determining prospective smart indonesia program funds recipients (Korespondensi). https://repository.uin-suska.ac.id/72052/1/IJEAT_Review_Form_B2860129219.pdf
[48]   Duckstein, L., & Opricovic, S. (1980). Multiobjective optimization in river basin development. Water resources research, 16(1), 14–20.
[49]   Keshavarz Ghorabaee, M., Zavadskas, E. K., Olfat, L., & Turskis, Z. (2015). Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica, 26(3), 435–451.
[50]   Gould, S. J. (1974). The first decade of numerical taxonomy: numerical taxonomy. The principles and practice of numerical classification. In Science (Vol. 183, pp. 739–740). https://doi.org/10.1126/science.183.4126.739
[51]   Shannon, C. E. (1948). A mathematical theory of communication. The bell system technical journal, 27(3), 379–423.
[52]   Krylovas, A., Zavadskas, E. K., Kosareva, N., & Dadelo, S. (2014). New KEMIRA method for determining criteria priority and weights in solving MCDM problem. International journal of information technology & decision making, 13(06), 1119–1133.
[53]   Kaplinski, O., Peldschus, F., Nazarko, J., Kaklauskas, A., & Baušys, R. (2019). MCDM, operational research and sustainable development in the trans-border Lithuanian–German–Polish co-operation. Engineering management in production and services, 11(2), 7–18.
[54]   Öznil, K. I. Ş., Can, G. F., & Toktaş, P. (2020). Warehouse location selection for an electricity distribution company by KEMIRA-M method. Pamukkale üniversitesi mühendislik bilimleri dergisi, 26(1), 227–240.
[55]   Kosareva, N., Zavadskas, E. K., Krylovas, A., & Dadelo, S. (2016). Personnel ranking and selection problem solution by application of KEMIRA method. International journal of computers communications & control, 11(1), 51–66.
[56]   Krylovas, A., Dadelo, S., Kosareva, N., & Zavadskas, E. K. (2017). Entropy–KEMIRA approach for MCDM problem solution in human resources selection task. International journal of information technology & decision making, 16(05), 1183–1209.
[57]   Krylovas, A., Zavadskas, E. K., & Kosareva, N. (2016). Multiple criteria decision-making KEMIRA-M method for solution of location alternatives. Economic research-ekonomska istraživanja, 29(1), 50–65.
[58]   Krylovas, A., Kosareva, N., & Zavadskas, E. K. (2016). Statistical analysis of KEMIRA type weights balancing methods. Romanian journal of economic forecasting, 19(3), 19–39.
[59]   Toktaş, P., & Can, G. F. (2019). Stochastic KEMIRA-M approach with consistent weightings. International journal of information technology & decision making, 18(03), 793–831.
[60]   Cook, W. D., & Kress, M. (1990). A data envelopment model for aggregating preference rankings. Management science, 36(11), 1302–1310.
[61]   Thompson, R. G., Singleton Jr, F. D., Thrall, R. M., & Smith, B. A. (1986). Comparative site evaluations for locating a high-energy physics lab in Texas. Interfaces, 16(6), 35–49.
[62]   Noguchi, H., Ogawa, M., & Ishii, H. (2002). The appropriate total ranking method using DEA for multiple categorized purposes. Journal of computational and applied mathematics, 146(1), 155–166.
[63]   Llamazares, B., & Pena, T. (2009). Preference aggregation and DEA: An analysis of the methods proposed to discriminate efficient candidates. European journal of operational research, 197(2), 714–721.
[64]   Soltanifar, M., & Lotfi, F. H. (2011). The voting analytic hierarchy process method for discriminating among efficient decision making units in data envelopment analysis. Computers & industrial engineering, 60(4), 585–592.
[65]   Soltanifar, M. (2017). A new group voting analytical hierarchy process method. Journal of operational research in its applications (applied mathematics)-lahijan azad university, 14(3), 1–13.
[66]   Soltanifar, M. (2020). A new voting model for groups with members of unequal power and proficiency. International journal of industrial mathematics, 12(2), 121–134.
[67]   Soltanifar, M., & Shahghobadi, S. (2014). Classifying inputs and outputs in data envelopment analysis based on TOPSIS method and a voting model. International journal of business analytics (IJBAN), 1(2), 48–63.
[68]   Sharafi, H., Hosseinzadeh Lotfi, F., Jahanshahloo, G., Rostamy-malkhalifeh, M., Soltanifar, M., & Razipour-GhalehJough, S. (2019). Ranking of petrochemical companies using preferential voting at unequal levels of voting power through data envelopment analysis. Mathematical sciences, 13, 287–297.
[69]   Soltanifar, M., & Shahghobadi, S. (2013). Selecting a benevolent secondary goal model in data envelopment analysis cross-efficiency evaluation by a voting model. Socio-economic planning sciences, 47(1), 65–74.
[70]   Soltanifar, M., Ebrahimnejad, A., & Farrokhi, M. M. (2010). Ranking of different ranking models using a voting model and its application in determining efficient candidates. International journal of society systems science, 2(4), 375–389.
[71]   Soltanifar, M., SHarafi, H., Zargar, S. M., & Homayounfar, M. (2021). Supplier ranking using data envelopment analysis and new cross efficiency evaluation in the presence of undesirable outputs. Journal of new researches in mathematics, 7(32), 35–58.
[72]   Wang, Y.-M., Yang, J.-B., & Xu, D.-L. (2005). A two-stage logarithmic goal programming method for generating weights from interval comparison matrices. Fuzzy sets and systems, 152(3), 475–498.