Document Type : Research Paper


Department of Industrial Engineering, Faculty of Engineering, Yazd University, Yazd, Iran.


The temperature has been a highly discussed issue in climate change. Predicting it plays an essential role in human affairs and lives. It is a challenging task to provide an accurate prediction of air temperature because of its complex and chaotic nature. This issue has drawn attention to utilizing the advances in modelling capabilities. ARIMA is a popular model for describing the underlying stochastic structure of available data. Artificial Neural Networks (ANNs) can also be appropriate alternatives. In the literature, forecasting the temperature of Tehran using both techniques has not been presented so far. Therefore, this article focuses on modelling air temperatures in the Tehran metropolis and then forecasting for twelve months by comparing ANN with ARIMA. Particle Swarm Optimization (PSO) can help deal with complex problems. However, its potential for improving the performance of forecasting methods has been neglected in the literature. Thus, improving the accuracy of ANN using PSO is investigated as well. After evaluations, applying the seasonal ARIMA model is recommended. Moreover, the improved ANN by PSO outperforms the pure ANN in predicting air temperature.


Main Subjects

[1]     Jaseena, K. U., & Kovoor, B. C. (2022). Deterministic weather forecasting models based on intelligent predictors: a survey. Journal of king saud university - computer and information sciences, 34(6), 3393–3412.
[2]     Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.
[3]     Mohamed, T., & Ibrahim, A. (2016). Time series analysis of nyala rainfall using ARIMA method. SUST journal of engineering and computer science, 17(1), 5–11.
[4]     Swain, S., Nandi, S., & Patel, P. (2018). Development of an arima model for monthly rainfall forecasting over khordha district, odisha, india. Recent findings in intelligent computing techniques (pp. 325–331). Singapore: Springer Singapore.
[5]     Li, Z., Zou, H., & Qi, B. (2019). Application of arima and lstm in relative humidity prediction. 2019 IEEE 19th international conference on communication technology (ICCT) (pp. 1544–1549). IEEE.
[6]     Shad, M., Sharma, Y. D., & Singh, A. (2022). Forecasting of monthly relative humidity in Delhi, India, using SARIMA and ANN models. Modeling earth systems and environment, 8(4), 4843–4851.
[7]     Cadenas, E., Rivera, W., Campos-Amezcua, R., & Heard, C. (2016). Wind speed prediction using a univariate ARIMA model and a multivariate NARX model. Energies, 9(2).
[8]     Liu, X., Lin, Z., & Feng, Z. (2021). Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM. Energy, 227, 1–24.
[9]     Afrifa-Yamoah, E. (2015). Application of ARIMA models in forecasting monthly average surface temperature of brong ahafo region of Ghana. International journal of statistics and applications, 5(5), 237–246.
[10]   Dacunha-Castelle, D., Hoang, T. T. H., & Parey, S. (2015). Modeling of air temperatures: preprocessing and trends, reduced stationary process, extremes, simulation. Journal de la société française de statistique, 156(1), 138–168.
[11]   Akdi, Y., & Ünlü, K. D. (2021). Periodicity in precipitation and temperature for monthly data of Turkey. Theoretical and applied climatology, 143(3), 957–968.
[12]   Tran, T. T. K., Bateni, S. M., Ki, S. J., & Vosoughifar, H. (2021). A review of neural networks for air temperature forecasting. Water, 13(9).
[13]   Lai, Y., & Dzombak, D. A. (2020). Use of the autoregressive integrated moving average (ARIMA) model to forecast near-term regional temperature and precipitation. Weather and forecasting, 35(3), 959–976.
[14]   Chen, P., Niu, A., Liu, D., Jiang, W., & Ma, B. (2018). Time series forecasting of temperatures using SARIMA: an example from nanjing. IOP conference series: materials science and engineering, 394(5), 52024.
[15]   Murat, M., Malinowska, I., Gos, M., & Krzyszczak, J. (2018). Forecasting daily meteorological time series using ARIMA and regression models. International agrophysics, 32(2), 253-264.
[16]   Shathir, A. K., Saleh, L. A. M., & Majeed, S. A. A. D. (2019). Forecasting monthly maximum temperatures in kerbala using seasonal ARIMA models. Journal of university of babylon for engineering sciences, 27(2), 223–232.
[17]   Dimri, T., Ahmad, S., & Sharif, M. (2020). Time series analysis of climate variables using seasonal ARIMA approach. Journal of earth system science, 129(1), 149.
[18]   Amjad, M., Khan, A., Fatima, K., Ajaz, O., Ali, S., & Main, K. (2023). Analysis of temperature variability, trends and prediction in the karachi region of pakistan using ARIMA models. Atmosphere, 14(1), 1–14.
[19]   Cifuentes, J., Marulanda, G., Bello, A., & Reneses, J. (2020). Air temperature forecasting using machine learning techniques: a review. Energies, 13(16), 1–28.
[20]   Navazi, A., Karbassi, A., Mohammadi, S., Monavari, S. M., & Zarandi, S. M. (2017). A modelling study for predicting temperature and precipitation variations. International journal of global warming, 11(4), 373–389.
[21]   Lee, J., Kim, C. G., Lee, J. E., Kim, N. W., & Kim, H. (2018). Application of artificial neural networks to rainfall forecasting in the geum river basin, Korea. Water, 10(10), 1–14.
[22]   Mba, L., Meukam, P., & Kemajou, A. (2016). Application of artificial neural network for predicting hourly indoor air temperature and relative humidity in modern building in humid region. Energy and buildings, 121, 32–42.
[23]   Zhang, Y., Pan, G., Chen, B., Han, J., Zhao, Y., & Zhang, C. (2020). Short-term wind speed prediction model based on GA-ANN improved by VMD. Renewable energy, 156, 1373–1388.
[24]   Liu, X., Zhang, C., Liu, P., Yan, M., Wang, B., Zhang, J., & Higgs, R. (2018). Application of temperature prediction based on neural network in intrusion detection of IoT. Security and communication networks, 2018, 1635081. DOI:10.1155/2018/1635081
[25]   Johnstone, C., & Sulungu, E. D. (2021). Application of neural network in prediction of temperature: a review. Neural computing and applications, 33(18), 11487–11498.
[26]   Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm intelligence, 1(1), 33–57.
[27]   Rini, D. P., Shamsuddin, S. M., & Yuhaniz, S. S. (2011). Particle swarm optimization: technique, system and challenges. International journal of computer applications, 14(1), 19–26. imp refer.pdf
[28]   Namazian, A., Ghodsi, M., & Nawaser, K. (2018). Prediction of temperature variations using artificial neural networks and ARIMA model. International journal of industrial and systems engineering, 30(1), 60–77.
[29]   Shiravand, H., & Dostkamiyan, M. (2019). Analysis of temperature fluctuations in the south west of Iran based on general circulation model and neural network (case study: plain and mountainous stations). Iran-water resources research, 15(3), 206–217.
[30]   Karimi, M., Melesse, A. M., Khosravi, K., Mamuye, M., & Zhang, J. (2019). Analysis and prediction of meteorological drought using SPI index and ARIMA model in the Karkheh river basin, Iran. In Extreme hydrology and climate variability (pp. 343–353). Elsevier.
[31]   Aghelpour, P., Mohammadi, B., & Biazar, S. M. (2019). Long-term monthly average temperature forecasting in some climate types of Iran, using the models SARIMA, SVR, and SVR-FA. Theoretical and applied climatology, 138(3), 1471–1480.
[32]   Fahimi Nezhad, E., Fallah Ghalhari, G., & Bayatani, F. (2019). Forecasting maximum seasonal temperature using artificial neural networks “Tehran case study.” Asia-pacific journal of atmospheric sciences, 55(2), 145–153. DOI:10.1007/s13143-018-0051-x
[33]   Kazemi, S. M., Saffarian, M., & Babaiyan, V. (2021). Time series forecasting of air temperature using an intelligent hybrid model of genetic algorithm and neural network. Journal of industrial and systems engineering, 13(3), 1–15.
[34]   Bai, Q. (2010). Analysis of particle swarm optimization algorithm. Computer and information science, 3(1), 180.
[35]   Alireza Goli Hasan Khademi-Zare, R. T. M. A. S. M. S., & Kordestanizadeh, R. M. (2021). An integrated approach based on artificial intelligence and novel meta-heuristic algorithms to predict demand for dairy products: a case study. Network: computation in neural systems, 32(1), 1–35.
[36]   Goli, A., Khademi Zare, H., Tavakkoli-Moghaddam, R., & Sadeghieh, A. (2019). Hybrid artificial intelligence and robust optimization for a multi-objective product portfolio problem case study: the dairy products industry. Computers & industrial engineering, 137(4).
[37]   Jafarian-Namin, S., Goli, A., Qolipour, M., Mostafaeipour, A., & Golmohammadi, A.-M. (2019). Forecasting the wind power generation using Box {textendash} Jenkins and hybrid artificial intelligence. International journal of energy sector management, 13(4), 1038–1062. DOI:10.1108/IJESM-06-2018-0002
[38]   Jafarian-Namin, S., Fatemi Ghomi, S. M. T., Shojaie, M., & Shavvalpour, S. (2021). Annual forecasting of inflation rate in Iran: autoregressive integrated moving average modeling approach. Engineering reports, 3(4).
[39]   Shojaee, M., Imani, D. M., Jafarian-Namin, S., & Haeri, A. (2022). Text mining, clustering, and forecasting horizons ahead in the field of quality and productivity. International journal of productivity and quality management, 37(4), 559–577.
[40]   Godoy-Rojas, D. F., Leon-Medina, J. X., Rueda, B., Vargas, W., Romero, J., Pedraza, C., … & Tibaduiza, D. A. (2022). Attention-based deep recurrent neural network to forecast the temperature behavior of an electric arc furnace side-wall. Sensors, 22(4).
[41]   Eyo, I. J., Adeoye, O. S., Inyang, U. G., & Umoeka, I. J. (2022). Hybrid intelligent parameter tuning approach for COVID-19 time series modeling and prediction. Journal of fuzzy extension and applications, 3(1), 64–80.
[42]   Adetayo Adeniran, A., & Olufunto Adedotun, K. (2018). Trend extrapolation of domestic air travel demand in Nigeria (2018-2030). International journal of research in industrial engineering, 7(4), 468–481.
[43]   Nasiri, H., Taghizadeh, K., Amiri, B., & Shaghaghi Shahri, V. (2017). Developing composite leading indicators to forecast industrial business cycles in Iran. International journal of research in industrial engineering, 6(1), 69–89.