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Abstract 
In this paper, a new type of vehicle routing problem in the valuable commodity transportation industry is modeled 

considering the route risk constraint. The proposed model has two objective functions for risk minimization. In the 

first objective function, three concepts are presented, which are: 1) the vehicle does not travel long distances in the first 

three moves because it carries more money, 2) to serve the same branch on two consecutive days, at the same time 3) 

The bow should not be repeated in two consecutive days. This reduces the possibility of determining a fixed pattern 

for the service and increases the security of the service. In the second objective function, the risk is a function of the 

amount of money, the probability of theft and the probability of its success. Two different meta-heuristic algorithms 

have been used to solve the proposed model, including the genetic algorithm and an ant colony optimization algorithm. 

In computational testing, the best parameter settings are determined for each component and the resulting 

configurations are compared in the best possible settings. The validity of the answers of the algorithms has been 

investigated by generating different problems in various dimensions and using the real information of Shahr Bank. The 

results show that the genetic algorithm provides better results compared to the ant colony algorithm, with an average 

of 0.93% and a maximum difference of 1.87% with the optimal solution. 

Keywords: Risk, valuable commodity, vehicle routing problem with a time window, genetic algorithm, ant colony 

optimization algorithm.  
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1 Introduction 

Vehicle Routing Problem with Time Windows (VRPTW) is one widely used Vehicle Routing Problem 

(VRP) that optimizes product distribution from the manufacturing location or distribution center to the 

market [5]. Each customer must receive service within a certain time interval in this problem. The VRPTW 

aims to optimize routes between the warehouse and customers and minimize waiting time and delay. 

However, contemporary models consider the complexities of the real world, including the cost of 

transportation, travel time dependence on the route traffic, the time window in the collection (pick up cash) 

and delivery, and input data, such as a demand rate that changes dynamically through time. All mentioned 

properties are used to design an appropriate routing strategy [6, 7, 8].  

Hence, the design of a routing strategy based on the concepts and sophistication in today's world has 

become a critical case regarding the risk problem and reducing probable risks in distrusting products, 

hazardous, valuable commodities, and physical money. In other words, security objectives are superior to 

economic ones, so improper planning for the safe and secure distribution of commodities increases the 

time and operational costs of transportation in the system and causes human damage and loss for staff, 

customers, and security forces. Accordingly, CIT vehicle routing indicates that physical transportation of 

cash, coins, and valuable objects from one place is crucial. The nature of portable items always puts banks 

and money-carrying companies at real risk, such as robbery and armed attack. Hence, the present study 

proposes a CIT operation with minimum risk, provided the process is completed within a certain period. 

 

2 Research Background 
The present study examined vehicle routing problems with time windows (VRPTW). VRP is one of the 

important supply chain problems that address commodity distribution. Some studies have been conducted 

on this subject, such as Nasr et al., who studied risk-based vehicle routing models [1]. Soriano et al. 

examined the cash vehicle routing problem by consideration of customer visit time diversification based on 

a multigraph. This research used neighborhood search, which exploits linear penalty function for insertion 

evaluations, efficient local searches, and adaptive destruction rate to balance short routes and security [9]. 

Ghanbarpoor and Zandieh introduced a multi-objective evolutionary model based on the new game theory 

to maximize cash transit security and minimize transportation costs. They generated a bi-objective routing 

problem with time windows that can minimize the risk of cash transit and the route traveled by the CIT 

vehicle. The probability of a thieves' ambush is measured using game theory to better estimate robbery 

risk. 

Moreover, the probability of successful robbery is estimated through multicriteria decision-making 

techniques [2]. Hoogboom et al. addressed the time misalignment of reaching money centers through 

multiple time windows. This study solved the proposed algorithm and four penalty methods through Tabu 

Search [3]. LucaTalarico et al. introduced risk as a proportion of portable money and distance between 

demand points and solved the routing problem is physical money transit security to minimize cost and 

increase security through metaheuristic techniques and local search [11, 12, 13, 14]. Chang Yu Yan et al. 

presented a different view on increased level unpredictability. They used the route-time network technique 

for cash transit routing to minimize cost and increase cash transit security [18]. 

 

2.1 Risk measurement approaches in the transportation network   
According to studies conducted by Chen et al., Parsafard et al., Toumazis and Kwon, Androutsopoulos 

and Zografos, and Kazantzi, the risk is measured based on the Equation (1) in failure mode and effects 

analysis (FMEA), which indicates the probability in effect rate [16, 19, 20].  

 

Equation (1)  Rij = PijCij            

If the risk arises from cash transit, Rij equals the risk of armed attack and money robbery in node ij, and 

if the risk is related to transiting dangerous substances, then Rij equals the risk of dangerous substances 

being released into nature and damaging the environment and population around the incident in node ij. 

The Pij represents the probability of an incident, which is the probability of an armed attack in node ij in a 
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cash transit case and the probability of an accident and release of dangerous substances in node ij in 

dangerous substances transportation case. The term Cij indicates the effect rate of an incident, which is 

money robbery in node ij in a cash transit case, while representing the population rate exposed to the 

incident in node ij when dangerous substances are transported.  

Bola et al. presented equation (2) to calculate the risk of dangerous substances. This equation is the 

same as formula 1, while Equation (2) measures the effect of different parameters on the risk. The term 

 R(σ)r represents the risk of transporting dangerous substances after the customer visits σr in the route r 

and depends on the accident rate TTARr, probability of dangerous substances released after the accidents 

Prelease, explosiveness, and flammability of dangerous substances (α, β), the volume of dangerous 

substances transported by vehicle yij
k, length of arc alij, and the accident’s consequences (PDij) [21]. 

 

Equation (2)        R(σ)r = TTARr ×  Prelease ×  β × ∑(i, j) ∈ σr(yij
k )

α(alij)×PDij
 

 

LucaTalarico et al. designed Equation (3) to measure the CIT risk. This equation is similar to 

Equation (1), while the probability of successful robbery vij has been multiplied by it to make it more 

precise and accurate. The term Di
r shows the cash at the risk of robbery in the route r, and pij represents 

the probability of an armed attack in the node ij.  

 

Equation (3) Rj
r = ∑ pijvijDi

r
(i,j)∈r    

 

Talarico et al. (2015) replaced the probability of accident pij with the distance between two nodes cij. 

They made this change for two reasons: 1) node length is a given parameter in each vehicle routing and is 

simply accessible. 2) no information exists about the accident probability in the node [11, 12, 13, 14].  

Bozkaya et al. introduced a new model for CIT risk measurement using two factors social and 

economic level of the node and the node's use rate.  

Equation (4)   Rijkd =  wUcUUBRIijkd + wScSSERIijkd 

 Rijkd Represents the risk of the node in the day d with vehicle k; UBRIijkd shows the risk index based 

on the node used in the node ij in the day d with vehicle k. The term SERIijkd indicates the social-

economic risk index of node ij with vehicle k;  wU and wS are weights of risk elements and cU and cS 

show the cost of risk elements. According to the mentioned points, some risk equations are inserted into 

the objective function, while others are entered to constraints of vehicle routing problems under the risk 

conditions [4].  

 

3 Research gaps and innovations   
According to the literature review, the models used in the research background have focused on risk 

reduction and security increase. In contrast, the present study has proposed some solutions and points to 

alleviate risk in the frame of a formulated mathematical model that was not considered in previous 

studies. The initiative aspect of this study is the consideration of new concepts and relations to improve 

safety and reduce the risk of providing service for branches. In other words, the present study uses a bi-

objective function to decrease route risk. Three concepts used in the first objective function have not been 

applied in previous studies: 

The vehicle should not travel long routes and arcs in the first three moves when more cash is 

transported; 

A branch must not receive a similar service at the same time in two consecutive days; 

An arc must not be repeated in two consecutive days if possible.  

The second and third options are considered to avoid the same time and service sequence for branches 

on different days. This case decreases the probability of a fixed pattern providing branches with services 

while increasing service security. 

Moreover, the second objective function considers money robbery in the transit process. This function 
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indicates the probability of thieves' attacks and the amount of stolen money. Since all attacks of thieves 

may not be successful, a probability is considered for it, and the risk function is multiplied by the 

successful robbery. 

 

 

 

4 Statement of Problem 
This problem aims to measure optimal routes between treasury and demand points (bank branches) so 

that objective functions (total risk in service route) are minimized. Therefore, the problem assumptions are 

explained as follows: 

- The model of the problem is single-treasury (depot), assuming that CIT vehicles must be settled in 

the treasury location to provide service in all demand routes within a certain time and return to the treasury 

at the end;  

- Each point i is considered as a specific amount of predetermined cash served by a vehicle; 

- Cash volume must not exceed the vehicle roof;  

- Cash-in-transit vehicles are homogenous (15 vehicles), and the capacity of each vehicle may 

indicate the maximum amount of cash or valuable commodity the vehicle is allowed to transit in the frame 

of monetary unit (15 billion Rls) based on the vehicle features. The primary constraint is not the amount of 

cash-in-transit due to the low volume of cash or physical money, while the constraint is the risk that may 

occur in the route; 

- CIT vehicle's stop time in demand points for service providing is 25 minutes, and the maximum 

time for the first three moves of the vehicle must not exceed 30min; 

- The minimum time interval in which a node is visited in two consecutive days is 15min; 

- The allowed time limit to reach nodes equals 360min throughout the day; 

The minimum distance between the treasury (origin) and branches (destination) is almost 1km, and the 

maximum distance between the treasury and branches is almost 30km. 

 
5 Method 

The present study aims to provide a model for branches' cash-in-transit operations with the lowest risk, 

provided that the process is ended within a certain interval. Therefore, the proposed model was bi-

objective and included minimizing the route risk. The model was formulated as a vehicle routing problem 

by consideration of simultaneous pickup and delivery through a specific time window. Moreover, 

metaheuristic GA and ACO algorithms were used to solve the problem. The relevant data were randomly 

selected for all Shahr Bank branches (n=135) in Tehran, Iran. to validate the proposed metaheuristic 

algorithms, parameters were adjusted, and initial solutions were created; then, some trial problems in 

different sizes were randomly generated. The results of these algorithms were compared in terms of their 

solution quality and computation time. Furthermore, the proposed model displays periods based on the 

travel time, service time, minimum time interval, and maximum time limit based on the minute to reach 

the node on different days. 

 
6 Modelling 

This study presents a mixed integer model for single-treasury routing problems considering 

simultaneous delivery and pickup and observing the time window for cash transit. 

 
6.1 Indexes and sets 

N: total number of nodes  

i,j: node index 

D: total number of nods of demand points (branches) 

O: index of origin node (treasury) 

K: total number of vehicles  

k: vehicle index  

R: a set that includes all move counters  
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T: total number of planning horizon days  

t,tˊ: day index  

 

6.2 Parameters 
timeij: the time spent traveling from i to j 

ULi: time of providing service for node i 

Demit: demand of node i in day t for the cash it must receive 

Pickit: demand of node i in day t for the cash it must deliver 

α: minimum time interval when a node is visited in two consecutive days 

MAX: maximum cash-in-transit transported by each vehicle  

αi: maximum time limit to reach node i 

pij: the probability of money robbery in the distance traveled from node i to j 

dij: the amount of robbed money in the distance traveled from node i to j 

vij: the probability of successful robbery in the distance traveled from node i to j 

M: the large number  

 
6.3 Decision variables 

Xijkrt: binary variable that determines whether vehicle k travels the distance from i to j in its move r 

and day t 

Likrt: the amount of money added in vehicle k when reaches node i in its move r and day t 

Pikrt: the amount of money collected in vehicle k when reaches node i in its move r and day 

Sikrt: the time when vehicle k reaches node i in its move r and day 

wˊijttˊ, wijttˊ: ideal variable in which one route from node i to j is not repeated in two consecutive days 

fˊittˊ, fittˊ: the ideal variable in which the time interval of reaching a node is not the same in two 

consecutive days 

hˊijkr, hijkrt: the ideal variable in which a vehicle moves in a short route in the first three moves when 

carrying much money. 

 
7 Model of Problem 
7.1 Risk calculation  

To measure the probability of successful robbery (𝑣𝑖𝑗 ) in the objective function, a fixed risk is not 

considered for all nodes but is measured by using SAW1 , the method from the perspective of thieves. 

This method calculates the utility of nodes based on the weight of criteria (𝑤𝑐) and the superiority degree 

of nodes based on different criteria (𝑟𝑖𝑗
𝑐 ). The equation below indicates how the probability of successful 

robbery in each node is calculated:  

Equation (5)   𝑣𝑖𝑗 = ∑ 𝑤𝑐𝑟𝑖𝑗
𝑐

𝒄   

Decision-making criteria (𝑐) include traffic and congestion, number of cameras, escape route, main or 

side street, one-way or two-way street, and street width. To measure robbery probability, the probability 

of selecting different strategies by thief equals the probability of armed robbery in each node 𝑝𝑖𝑗. To 

calculate this probability, the linear programming model is written from the perspective of the attacker:   

 

Equation (6) 

𝑀𝑖𝑛 = ∑ ∑ 𝑝𝑖𝑗

𝑁

𝑗=0
𝑗≠𝑖

𝑁

𝑖=0

 

 

1 Simple Additive Weighting Method 
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Subject to: 

∑ ∑ ∑ 𝑑𝑖𝑗
𝑘(𝑟)

𝑝𝑖𝑗 ≥ 1

𝑁

𝑗=0
𝑗≠𝑖

𝑁

𝑖=0

𝐾

𝑘

    ∀𝑟 ∈ 𝑅 

 

This equation represents the objective function and minimizes the probability of robbery in each node. 

The constraint term maximizes the thief's gain. 

 

 

 
7.2 Mathematical Modeling 

 

(1) ∑ ∑ ∑ 𝑋𝑖𝑗𝑘𝑟𝑡

𝑟∈𝑅𝑘∈𝐾𝑖∈𝑁
𝑖≠𝑗

= 1              ∀𝑗 ∈ 𝐷 , 𝑡 ∈ 𝑇            

(2) ∑ 𝑋𝑗𝑖𝑘(𝑟+1)𝑡

𝑖∈𝑁
𝑖≠𝑗

≤ ∑ 𝑋𝑖𝑗𝑘𝑟𝑡

𝑖∈𝑁
𝑖≠𝑗

         ∀𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑟 ∈ 𝑅           

(3) ∑ ∑ 𝑋𝑖𝑗𝑘𝑟𝑡

𝑗∈𝑁
𝑗≠𝑖

𝑖∈𝑁

≤ 1            ∀𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇             

 (4) ∑ ∑ 𝑋𝑖𝑗𝑘𝑟𝑡

𝑗∈𝐷𝑟∈𝑅

≤ 1              ∀𝑖 ∈ 𝑜, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇           

(5) ∑ ∑ ∑ 𝑋𝑖𝑗𝑘𝑟𝑡

𝑘∈𝐾𝑗∈𝑁
𝑗≠𝑖

𝑖∈𝐷

≤ 0              ∀𝑟 = 1 , 𝑡 ∈ 𝑇            

 (6) 𝐿𝑗𝑘𝑟𝑡 ≤ 𝐿𝑖𝑘(𝑟−1)𝑡 − 𝐷𝑒𝑚𝑖𝑡 + 𝑀(1 − 𝑋𝑖𝑗𝑘𝑟𝑡)     ∀𝑖, 𝑗 ∈ 𝑁: 𝑖 ≠ 𝑗, 𝑖 ≠ 𝑜 , 𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅 , 𝑡 ∈ 𝑇   

(7)𝑃𝑗𝑘𝑟𝑡 ≥ 𝑃𝑖𝑘(𝑟−1)𝑡 + 𝑃𝑖𝑐𝑘𝑖𝑡 − 𝑀(1 − 𝑋𝑖𝑗𝑘𝑟𝑡)      ∀𝑖, 𝑗 ∈ 𝑁: 𝑖 ≠ 𝑗, 𝑖 ≠ 𝑜 , 𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅 , 𝑡 ∈ 𝑇   

(8)𝑆𝑗𝑘𝑟𝑡 ≥ 𝑆𝑖𝑘(𝑟−1)𝑡 + 𝑡𝑖𝑚𝑒𝑖𝑗 + 𝑈𝐿𝑖 − 𝑀(1 − 𝑋𝑖𝑗𝑘𝑟𝑡)  ∀𝑖, 𝑗 ∈ 𝑁: 𝑖 ≠ 𝑗, 𝑗 ≠ 𝑜 , 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑟 ∈ 𝑅         

(9)𝑡𝑖𝑚𝑒𝑖𝑗𝑥𝑖𝑗𝑘𝑟𝑡 ≤ 𝐿𝐵       ∀𝑖, 𝑗 ∈ 𝑁: 𝑖 ≠ 𝑗 , 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑟 ≤ 3         

   (10) |∑ ∑ 𝑆𝑖𝑘𝑟𝑡 − ∑ ∑ 𝑆𝑖𝑘𝑟(𝑡+1)

𝑟∈𝑅𝑘∈𝐾𝑟∈𝑅𝑘∈𝐾

| ≥∝        ∀𝑖 ∈ 𝐷: 𝑡 ∈ 𝑇    

(11) ∑ ∑ 𝑥𝑖𝑗𝑘𝑟𝑡 + ∑ ∑ 𝑥𝑖𝑗𝑘𝑟𝑡′

𝑘∈𝐾𝑟∈𝑅𝑘∈𝐾𝑟∈𝑅

+ 𝑤𝑖𝑗𝑡𝑡′ − 𝑤ˊ𝑖𝑗𝑡𝑡′ = 1   ∀𝑖, 𝑗 ∈ 𝑁: 𝑖 ≠ 𝑗 , 𝑡, 𝑡′ ∈ 𝑇: 𝑡′ = 𝑡 + 1    

 (12) ∑ 𝐿𝑖𝑘𝑟𝑡

𝑟∈𝑅

≤ 𝑀𝐴𝑋              𝑖 ∈ 𝐷, 𝑘 ∈ 𝐾 , 𝑡 ∈ 𝑇       

(13)𝐿𝑗𝑘𝑟𝑡 + 𝑃𝑗𝑘𝑟𝑡 ≤ 𝑀 ∑ 𝑥𝑖𝑗𝑘𝑟𝑡

𝑖∈𝑁
𝑖≠𝑗

      ∀𝑗 ∈ 𝐷, 𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅 , 𝑡 ∈ 𝑇          

 (14)𝑆𝑗𝑘𝑟𝑡 ≤ 𝑀 ∑ 𝑥𝑖𝑗𝑘𝑟𝑡

𝑖∈𝑁
𝑖≠𝑗

      ∀𝑗 ∈ 𝐷, 𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅 , 𝑡 ∈ 𝑇         

   (15) ∑ ∑ 𝑆𝑖𝑘𝑟𝑡

𝑟∈𝑅𝑘∈𝐾

≤ 𝑎𝑖              𝑡 ∈ 𝑇, 𝑖 ∈ 𝐷        

 (16) Min 𝑧 1  = ∑ ∑ ∑ ∑ ∑ ℎˊ𝑖𝑗𝑘𝑟𝑡

𝑡∈𝑇

3

𝑟=1𝑘∈𝐾𝑗∈𝑁
𝑗≠𝑖

𝑖∈𝑁

+ ∑ ∑ ∑ 𝑓𝑖𝑡𝑡′

𝑡′=𝑡+1𝑡∈𝑇𝑖∈𝐷

+ ∑ ∑ ∑ ∑ 𝑤ˊ𝑖𝑗𝑡𝑡′

𝑡′=𝑡+1𝑡∈𝑇𝑗∈𝑁
𝑗≠𝑖

𝑖∈𝑁

        

(17)  Min 𝑧 1 =  𝑝𝑖𝑗 𝑣𝑖𝑗 𝑑𝑖𝑗              

Constraint (1) ensures that each branch receives service from only one vehicle. Constraint (2) indicates 
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that a vehicle makes the move r if it makes move r+1. Constraint (3) ensures that each vehicle travels at 

most one route (distance between two nodes) in each move. Constraint (4) ensures that each vehicle exits 

the treasury at most once each day. Constraint (5) ensures that the vehicle does not start its travel from 

the branch. Constraints (6) and (7) indicate the association between the cash carried in the vehicle in the 

distance between two consecutive nodes; it also deletes sub-tours. Constraint (8) represents the time spent 

to reach two consecutive nodes. Constraint (9) is one risk-control equation that ensures the vehicles travel 

short routes in their first three moves when they transit a large volume of cash.  

This equation is written as follows:  

 

 

 

𝑡𝑖𝑚𝑒𝑖𝑗𝑥𝑖𝑗𝑘𝑟𝑡 + ℎ𝑖𝑗𝑘𝑟𝑡 − ℎˊ𝑖𝑗𝑘𝑟𝑡 = 𝐿𝐵  ∀𝑖, 𝑗 ∈ 𝑁: 𝑖 ≠ 𝑗 , 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑟 ≤ 3 (18) 

 

Constraint (10) is the second risk controller that ensures an unequal minimum interval that the vehicle 

visits a node in two consecutive days. This equation is designed as follows:  

 

(19) |∑ ∑ 𝑆𝑖𝑘𝑟𝑡 − ∑ ∑ 𝑆𝑖𝑘𝑟𝑡′

𝑟∈𝑅𝑘∈𝐾𝑟∈𝑅𝑘∈𝐾

| + 𝑓𝑖𝑡𝑡′ − 𝑓ˊ𝑖𝑡𝑡′ =∝  ∀𝑖 ∈ 𝐷: 𝑡, 𝑡′ ∈ 𝑇: 𝑡′ = 𝑡 + 1   

 

Linearizing Equation (19): 

 

(19 − 1) ∑ ∑ 𝑆𝑖𝑘𝑟𝑡 − ∑ ∑ 𝑆𝑖𝑘𝑟𝑡ˊ

𝑟∈𝑅𝑘∈𝐾𝑟∈𝑅𝑘∈𝐾

+ 𝑓𝑖𝑡𝑡′ − 𝑓ˊ𝑖𝑡𝑡′ ≥ ∝ −𝑀𝑍𝑡𝑡′     ∀ 𝑖 ∈ 𝐷 , 𝑡 , 𝑡′ ∈ 𝑇: 𝑡′ = 𝑡 + 1   

(19 − 2) ∑ ∑ 𝑆𝑖𝑘𝑟𝑡 − ∑ ∑ 𝑆𝑖𝑘𝑟𝑡ˊ

𝑟∈𝑅𝑘∈𝐾𝑟∈𝑅𝑘∈𝐾

+ 𝑓𝑖𝑡𝑡′ − 𝑓ˊ𝑖𝑡𝑡′ ≤ −∝ +𝑀(1 − 𝑍𝑡𝑡′) ∀ 𝑖 ∈ 𝐷 , 𝑡, 𝑡′ ∈ 𝑇: 𝑡′

= 𝑡 + 1  

 

Constraint (11) is the third risk controller that ensures not repeating a route from i to j within two 

consecutive days. This Equation is formulated as follows:  

 

(20) ∑ ∑ 𝑥𝑖𝑗𝑘𝑟𝑡 + ∑ ∑ 𝑥𝑖𝑗𝑘𝑟𝑡′

𝑘∈𝐾𝑟∈𝑅𝑘∈𝐾𝑟∈𝑅

≤ 1       ∀𝑖, 𝑗 ∈ 𝑁: 𝑖 ≠ 𝑗 , 𝑡, 𝑡′ ∈ 𝑇: 𝑡′ = 𝑡 + 1        

 

To prevent a no-solution equation, this constraint is considered a soft constraint (Equation 9). Variable 

ℎ𝑖𝑗𝑘𝑟𝑡 must become zero to achieve equation (18). To prevent a no-solution equation, this constraint 

should be considered a soft constraint (Equation 10). It is obvious that variable 𝑓𝑖𝑡𝑡′ should become zero 

to achieve equation (19). To prevent a no-solution equation, this constraint should be considered a soft 

constraint (Equation 10). It is obvious that variable 𝑤ˊ𝑖𝑗𝑡𝑡′ should become zero to achieve equation (20). 

The mentioned options are observed in objective functions. Constraint (12) ensures that no vehicle carries 

money over the determined amount. This point contributes to a lower risk level. Constraints (13) and (14) 

indicate the relationship between decision variables. Constraint (15) ensures that the time the vehicle 

reaches the customer is shorter than the time limit. The objective function (16) minimizes route risk in a 

way that a vehicle travels a short route in the first three moves, the time through which the vehicle 

reaches a node in two consecutive days is not similar, and a route from i to j is not repeated in two 

consecutive days. The objective function (17) minimizes the route risk. 

 

8 Proposed solution approaches 
This study used GA and ACO algorithms to solve the proposed model. According to previous studies, 

GA provides more advantages than other algorithms (e.g., tabu search, bees, weeds, fireflies, etc.) 

because GA achieves shorter travel distances, can be implemented simply, and has an efficient function 
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to solve bi-objective problems. Moreover, GA pursues the solution based on population and generates 

numerous solutions in each iteration. The notable feature of the ACO algorithm in routing problems is 

saving and transforming the status of the ant colony system with the more aggressive and active choice 

command. Hence, this study used the mentioned algorithms to solve the problem. 

 

8.1 Genetic Algorithm 
In general, each GA consists of the following components to solve a problem: 

How to display solution: solution display is a complex process in routing problems that must use a 

sequence of specific numbers. Various methods exist in studies to display solutions. This research displays 

the solution as a vector with constant length due to the nature of the model and type of algorithm 

(continuous). In other words, the solution is shown as a matrix where time (T) and demand points (D) are 

shown in its rows and columns, respectively. The numbers inserted in the matrix include real numbers 

between 1 and (number of vehicles+1) generated stochastically. The considerable point is assigning the 

CIT vehicle and sequence of demand points, so the integer represents the CIT vehicle, and the decimal 

value indicates the sequence of demand points. The number with less decimal receives service as the first 

one. For instance, 1.97 in the vector below indicates the demand point 1 with vehicle 1; number 2.99 

indicates demand point 2 with vehicle 2, and 1.22 shows demand point 3 with vehicle 1. In this case, 

demand points 1.03, 2.18, and 1.22 with fewer decimals receive service in a row in Figure 1.     

 

1.03 2.18 2.57 1.73 1.26 1.22 2.99 1.97 

Fig. 1. One random solution vector 

 

Setting parameters and initializing population: Response surface methodology is used to set GA 

parameters. Response surface design includes a set of mathematical and statistical methods for problem 

modeling and analysis. This method is used when the problem solution (objective) is affected by an 

independent factor (input) that aims to optimize this solution. The initial parameters of the algorithm 

comprise some initial population (𝑛𝑃𝑜𝑝 = 100), probability of crossover (𝑃𝑐 = 0.82), probability of 

mutation (𝑃𝑚 = 0.36), maximum algorithm iteration (𝑀𝑎𝑥 − 𝐼𝑡 = 250) type of section operator, and type 

of crossover and mutation operators.   

Generate initial solution: the population is a subset of solutions in the current generation. Moreover, 

the population can be defined as a set of chromosomes. Therefore, stochastic initialization is used for 

population initialization—the random solutions guide population to optimization.  

Fitness Function: the variable value of the problem is entered into the fitness function to find the 

optimality of each solution. The objective function is a fitness function in optimization problems (Sadeghi 

Moghadam et al., 2009). The objective function is used to find how individuals play a role in the problem 

scope, and the fitness function is usually used to convert the value of the objective function to a fitness 

value depending on it. In other words, we have: 

𝐹(𝑛) = 𝑔(𝑓(𝑥))      

where 𝑓 represents the objective function, function 𝑔 converts the objective function to a non-negative 

value, and 𝐹 indicates its corresponding fitness value. Solution optimality is assessed based on the value 

obtained from the fitness function. The fitness function equals the objective function because this is an 

optimization problem. The objective function minimizes risk.  

Selection operator: various methods exist for genetic algorithms that can be used to select genomes. 

Roulette wheel selection (RWS) and Tournament Software (TS) have been used in GA.  

Crossover operator:  recombination or crossover operator is done by selecting two (parent) 

chromosomes on the second part of the chromosome, a sequence of activities resulting in two new 

chromosomes (child or offspring). It is expected that desired characteristics of parents are combined to 

achieve better children. The uniform crossover- used in this algorithm- is the best in continuous solutions. 

In other words, two patterns are needed to do the crossover operator. The patterns are randomly selected 

from the initial population and multiplied by stochastic numbers (between 0 and 1) that are called mask 

numbers, and new chromosomes are generated as shown below:    
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Parent 1: 𝑥1 = (𝑥11,𝑥12, 𝑥13, … . , 𝑥1𝑛)  

Parent 2 x2 = (x21,x22, x23, … . , x2n)  

Mask:  α = (α1, α2, α3, … . , αn)   0  ≤  α ≤ 1       

Offspring 1: y1 = (y11,y12, y13, … . , y1n) → y1i = αix1i + (1 − αi)x2i  

Offspring 2: y2 = (y21,y22, y23, … . , y2n) → y2i = (1 − αi)x1i + αix2i 

In other words, one mask is used for recombination in Figure 2. To do this, an array with elements as 

many as genes is created. Elements of this array can take values 0 or 1. Elements of the mask array are 

initialized stochastically. Now, this mask is used to recombine two chromosomes. Value 1 in the mask 

array indicates that the gene must be selected from the first chromosome. The value 0 in the mask array 

shows that the gene must be selected from the second chromosome. The opposite is done for the 

chromosome of the second offspring. 

 

 

 

 

 
Fig. 2. Mask operator 

 

After the crossover operator is done on each generated chromosome, a stochastic number in the 

interval [0,1] is generated, and the mutation operator is applied to it if this number is less than 0.3.   

Mutation operator: mutation operator is used to achieve an excellent probable point in the solution 

space. The nature of mutation shows a kind of altering current solutions and does not lead to good 

solutions in most cases. However, the possible successful mutation can considerably affect the objective 

function and opens a new space in the solution scope. In GA, the probability of mutation in chromosomes 

equals around 0.01-0.001. this operator can be used to revive those optimal chromosomes that have been 

removed in the selection or iteration stages. This operator also ensures that the search probability of each 

point of problem space does not equal zero without paying attention to the dispersion of the initial 

population. In this algorithm, a mutation in real continuous space has been done using normal 

distribution:   

 :𝑥𝑖
𝑛𝑒𝑤~𝑁(𝑥𝑖, 𝜎2)Equation (7) 

𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖 + 𝜎𝑁(0,1) 

where 𝜎𝑁(0,1) equals the step length. Since mutation rarely occurs in nature, the mutation is GA is 

done with a probability rate less than 0.05. As mentioned, the mutation operator allows us access to the 

search space.  

Termination condition in GA: the procedure is iterated until reaching termination conditions. The 

metaheuristic method is terminated when it reaches the maximum default iterations (𝑀𝑎𝑥 − 𝐼𝑡). In other 

words, the maximum time limit of implementation can be used as a termination metric, and a new 

solution is obtained for the model. 

 

8.2 Ant Colony Optimization Algorithm 
How to display solution: because the selected algorithm is discrete, a random matrix is used in the 

permutation method. Matrix' row represents the service day (T), and its columns indicate 𝐷 + 𝐾 − 1 

where D indicates the number of demand points and K shows the number of vehicles. Moreover, 𝐾 − 1 

stars are required to generate a possible solution. The sign * is used to separate the routes of each vehicle. 

For example, the following process is done to find the separation point (*) for eight demand points and 3 

CIT vehicles, and eight demand points and 2 CIT vehicles:  

Separation point or star: 8+3-1=10 

Separation point or star: 2+8-1=9 

 

 

0.19 0.10 0.88 0.21 0.35 0.72 Parent 1 

0.49 0.94 0.36 0.18 0.61 0.25 Parent 2 

0 1 0 0 1 1 Mask 

0.49 0.10 0.36 0.18 0.35 0.72 Offspring 1 
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Fig. 3. Matrix display of solution 

 

 

 

As seen in this in Figure 3, points 5, 4, 7, and 8 receive service from CIT vehicle 1 in a row, CIT 

vehicle 2 provides service for point 2, and points 3, 1, and 6 receive service from CIT vehicle 3. 

Setting parameter and initializing pheromone: following parameters are required to generate a solution: 

number of ants/CIT vehicle (nAnt: 50), ability of pheromone effect rate (α: 1), ability of problem’s 

heuristic information (β: 1), pheromone evaporation coefficient (ρ: 0.0 5). It must be explained that the 

value 0.95 was considered for parameter 𝜌 (pheromone evaporation coefficient) to propose better 

solutions. The maximum number of iterations equals 𝑀𝑎𝑥 − 𝐼𝑡 = 300.  

Generating initial solution: a random pheromone value is taken to start the algorithm. Moreover, the 

traveling salesman problem has been used for demand point routing for each vehicle. In this problem, ants 

cooperate through an indirect communicational method using a Pheromone and move through graphic arcs 

when generating solutions. The number of ants that have been predetermined (parameter of n ants) is 

randomly placed on the selected network node.  

Update pheromone: pheromone is updated after creating all routes by ants. This process is done after 

the first reduction in pheromones on all arcs with a constant factor; ants pass through their routes by 

adding pheromones to arcs. After selecting the next point and before starting the next stage, the pheromone 

function is updated because an amount of pheromone is evaporated gradually to avoid premature 

convergence in the algorithm. For this purpose, parameter 𝜌 is used to avoid the unlimited accumulation of 

pheromones, and it allows the algorithm to forget the wrong decision made in the past. After evaporation, 

all ants release pheromones on the arcs that have moved in their route. It must be explained that the 

variable neighborhood search method is used to prevent the local optimality trap. To do this, the Intra-

route Relocate Operator measures the route to find whether the move is optimal (in terms of shortest 

solution) and feasible (in terms of risk constraint). 

Algorithm termination condition: metaheuristic method is terminated when it reaches the maximum 

number of iterations (𝑀𝑎𝑥𝐼𝑡) or maximum time limit. A new solution is obtained for the model in each 

iteration. 

 

9 Results 
To validate the proposed algorithms and quality of generated solutions rather than the optimal 

solutions, 30 problems were generated in the frame of small, medium, and significant problems that were 

solved through GAMS and MATLAB R2015b software.  

• Small samples: include 12 problems in a way that 4-15 branches receive service from 2-3 vehicles 

in three workdays.  

• Medium samples: include ten problems in a way that 25-70 branches receive service from 4-8 

vehicles in 4 workdays.  

Large sample: include eight problems in a way that 80-135 branches receive service from 9-15 vehicles 

in 4-6 workdays. 

 

9.1 Comparison between solutions and relative deviation 
All 12 small and 18 medium-large problems are implemented by proposed metaheuristic algorithms 

five times in the next step, and the obtained results (including the worse generated solution, average 

solutions, and the obtained solution) with their computation time (per second) are presented. To assess the 

validity of algorithms and compare with them, the RPD index or relative deviation percent has been 

defined in the equation below for the proposed algorithm:   

 

Equation (8)  RPD = (ALGS − ALGBS )/ALGBS 

 

where ALGS and ALGBS respectively indicate the model and best/worst solutions obtained by the 
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proposed algorithm within five implementations of the sample problem. In other words, the maximum 

distance is obtained from the difference between the model solution and the worst solution divided by the 

model solution. To calculate the minimum distance, the difference between the model solution and an 

average solution is divided by the model solution and presented with computation time. 

 

9.2 Comparing GA with the ACO algorithm 
As seen in Table 1, algorithms generate similar solutions for small samples, while the computation 

time of the ACO algorithm is shorter than GA in small samples 1 and 2. For medium and large samples, 

all solutions of GA and computation time are better than the ACO algorithm. Moreover, the solution 

presented in large sample 25 has less deviation rather than the solution generated by GA. However, the 

deviation rate of the ACO algorithm was greater than GA in other medium and large samples. 

 

9.3 Comparison with GAMS 
As seen in Table 1, the GAMS method generates a solution for small samples, while it cannot 

generate a solution for medium and large samples. Moreover, the presented solutions have lower 

deviations compared to the model solution. However, solutions have been obtained within a shorter 

computation time than GAMS. Accordingly, the computation time of GAMS in small sample 12 is about 

27.350s. 

 

9.4 Comparison with other studies 
In similar studies, Ghannadpour et al. (2018) conducted a study entitled “a game theory-based vehicle 

routing problem with risk-minimizing of valuable commodity transportation" and found a deviation rate 

of 1.3%. Tavakkoli-Moghaddam (2014) conducted a study entitled “solving a multi-depot vehicle routing 

problem based on reduction risk by a multi-objective bat algorithm" and obtained a 1.3% deviation rate. 

Atabaki (2018) conducted a study entitled “a priority-based differential evolution algorithm for 

redesigning a closed-loop supply chain using robust fuzzy optimization" and obtained a 1.9% deviation 

rate. Sattak et al. (2014) conducted a study entitled “capacity multi-depot routing problem with 

simultaneous pickup and delivery and cut loads" and obtained a deviation rate of 0.2%. Therefore, the 

performance of the proposed algorithms is acceptable by extending the problem's sizes because these 

algorithms can generate feasible solutions for medium and large sizes within a short time. 
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Table 1. Computational results of proposed algorithms  
  Trial D K T GAMS MATLAB 

Mathematical Model Proposed GA Proposed ACO 

OBJECTIVE VALUE CPUs OBJECTIVE VALUE CPUw CPUa CPUm Gap Max Gap Average OBJECTIVE VALUE 

Worst Average Model Worst Average 

S
m

al
l 

sa
m

p
le

 
 

1 4 2 3 4 0.7 4 4 4 0.3 0.3 0.3 0% 0% 4 4 

2 5 2 3 2 1 2 2 2 0.3 0.3 0.3 0% 0% 2 2 

3 6 2 3 2 2 2 2 2 1 1 1 0% 0% 2 2 

4 7 2 3 2 3 2 2 2 1 1 1 0% 0% 2 2 

5 8 2 3 9 6 10 10 10 2 2 2 0% 0% 10 10 

6 9 2 3 9 15 9 9 9 2 2 2 0% 0% 9 9 

7 10 2 3 9 67 10 10 10 2 2 2 0% 0% 10 10 

8 11 2 3 9 156 10 10 10 2 2 2 0% 0% 10 10 

9 12 2 3 8 25 8 8 8 2 2 2 0% 0% 7 8 

10 13 3 3 8 244 8 9 9 2 2 2 11% 6% 9 9 

11 14 3 3 8 158 9 9 9 2 2 2 0% 0% 9 9 

12 15 3 3 18 27,350 19 19 19 5 5 5 0% 0% 19 19 

M
ed

iu
m

 s
am

p
le

 
 

13 25 4 3 19 11,302 35 35 35 6 6 6 0% 0% 37 37 

14 30 4 3 NA NA 36 36 36 7 7 7 0% 0% 38 38 

15 35 5 3 NA NA 36 36 36 7 7 7 0% 0% 38 38 

16 40 5 3 NA NA 37 37 37 7 7 7 0% 0% 39 39 

17 45 6 3 NA NA 37 37 37 7 7 7 0% 0% 39 39 

18 50 6 3 NA NA 38 38 38 7 7 7 0% 0% 40 40 

19 55 7 3 NA NA 39 39 39 8 8 8 0% 0% 41 41 

20 60 7 4 NA NA 40 41 42 8 8 8 5% 2% 42 43 

21 65 8 4 NA NA 41 42 43 8 8 8 5% 2% 43 44 

22 70 8 4 NA NA 42 43 43 8 8 8 2% 1% 44 45 

L
ar

g
e 

sa
m

p
le

 
 

23 80 9 4 NA NA 80 82 83 12 12 12 4% 2% 87 89 

24 88 10 4 NA NA 82 84 85 12 12 12 4% 2% 90 92 

25 96 11 4 NA NA 83 85 86 12 12 12 3% 2% 91 93 

26 104 12 5 NA NA 85 87 88 12 12 12 3% 2% 94 95 

27 112 13 5 NA NA 86 88 90 12 12 12 4% 2% 95 96 

28 120 14 5 NA NA 87 89 91 24 24 24 4% 2% 96 98 

29 128 15 6 NA NA 91 94 96 24 24 24 5% 3% 100 101 

30 135 15 6 NA NA 94 97 99 24 24 24 5% 3% 103 106 

Mean - - - - - - - - 1.87% 0.93% - - 

D: demand points (branches), K: number of CIT vehicles, T: number of activity days 
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10 Conclusion and Recommendations 

It is essential to consider risk problems and reduce possible risks in the distribution of commodities, especially 

hazardous and valuable commodities, and physical money in designing routing strategies with concepts and 

complexities in the current world. In other words, security objectives are more important than economic goals. If 

security and safety are not planned in the distribution of products, the time and operational costs of commodity transit 

in the system will be increased. The lack of such a plan also leads to human damage and loss for employees, 

customers, and security forces. Therefore, the present study presents a bi-objective mixed integer model for a single-

treasury routing problem considering the simultaneous pickup and delivery and observing the time window. The first 

objective uses three concepts to reduce route risk. This technique alleviates a probably fixed pattern to provide 

service for branches and increases service security. The mentioned three concepts include: 

I. The vehicle does not travel long routes in three first moves, which carries more money. 

II. The vehicle does not service one branch on two consecutive days simultaneously. 

III. An arc is not repeated in two consecutive days as much as possible.  

Moreover, the second objective function minimizes the cash-in-transit risk, probability of armed attack risk, and 

probability of successful robbery. The present study solved 30 small, medium, and significant problems through 

GAMS and MATLAB software to validate the proposed algorithms and quality of generated solutions compared to 

optimal solutions. According to the inefficiency of GAMS software in solving models of large sizes, this study used 

metaheuristic GA and ACO algorithms. Finally, the results indicated that GA could present better results with an 

average of 0.93% and a maximum of 1.87% difference with optimal solution compared to the ACO algorithm. 

Although the proposed model can effectively help banks and CIT companies to formulate the demand points routing, 

the following consideration must be taken:   

1. Studying the dynamism of time spent by a vehicle to reach demand points 

2. Examining the unpredictable consequences of robbery  

3. Examining whether the decision maker has a neutral approach to risk 

Ultimately, the model should be revised in a way that is used for solving other problems, such as prisoners’ vehicle 

routing 
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