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Abstract 

 

1. Introduction 

Coronaviruses are a massive own circle of relatives of viruses which could purpose 

contamination in human beings that acknowledged to purpose respiration infections ranging 

from the now not unusual place bloodless to extra excessive illnesses together with Middle 

East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS).A novel 
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coronavirus, formerly precise 2019-nCoV, turned into recognized because the purpose of a 

cluster of Pneumonia instances in Wuhan, a town with inside the Hubei Province of China, on 

the cease of 2019.It eventually unfold at some stage in China and elsewhere, turning into a 

international fitness emergency. In February 2020, the World Health Organization (WHO) 

distinct the ailment COVID-19, which stands for coronavirus ailment 2019 a international 

pandemic [13].  

According to the WHO report (WHO, 2020), all over the world, as of December 29th, 2020, 

there have been 79,931,215 confirmed cases of COVID-19, including 1,765,265 deaths, 

reported to WHO [14]. Investigations are still ongoing to assess the source of the disease, the 

mode or modes of transmission and the extent of infection. Currently, available evidence of the 

emerging Corona virus and past experiences with other Corona viruses (Middle East 

Respiratory Syndrome (MERS) and SARS virus) and other respiratory symptoms viruses (such 

as bird flu) indicate the possibility of the new virus transmission from an animal source 

[6,7,2,1].  

The main transmission routes of the coronavirus are through coughing, sneezing, contacting 

infected people, or touching items or surfaces that are contaminated with fecal traces [4]. In 

order to combat this pandemic, different preventive measures are recommended, such as 

avoiding close contact with sick people, avoiding touching the eyes, nose, and mouth with 

unwashed hands, washing hands often with soap and water for at least 20 seconds, using an 

alcohol-based hand sanitizer containing at least 60% alcohol when soap and water are not 

available. 

 Developing a mathematical model for the coronavirus (COVID-19) is of great importance as 

it helps to explain the extent of the disease taking into consideration that it is an invisible and 

infectious virus. Based on this mathematical model, we can judge whether approved measures 

such as quarantine are sufficient to limit the spread of the virus. 

Many studies and research of mathematical models can be used to analyze the spread of 

Corona Virus [12, 3, 8, 5, 7, 10]. In [8], the SEIR version concerning the susceptible, the 

exposed, the infected, and the recovered people become considered. Results after simulating 

diverse eventualities imply that dismissing social distancing and hygiene measures could have 

devastating consequences for the human population. In [12], a mathematical model was 

developed to integrate asymptomatic people and the isolation of infected persons, the 

quarantine of contacting people, and the home containment of all population, strategies. It is 

established by theoretical investigation and illustrated by simulations that the level of 

containment is very important to prevent the disease from spreading in the absence of a 

vaccine. In [10], the SEIRU version concerning the susceptible, the exposed, the infected, the 

quarantined, and the recovered people changed into consideration. It turned into expected that 

there's a hazard of a decline in secondary infections while all precautionary measures are 

determined globally. 

We will propose a mathematical model that defines and describes the spread of the new 

Coronavirus (COVID-19). During the development of epidemiology modeling in the 



population; compartmental models played a central role. Majority of cases of (the COVID-19) 

virus spread from human-to-human connection. In this work we by adopting the basic SEIR 

(Susceptible-Exposed-Infected-Recovered) model and we extend it into SEIQR where the 

quarantined Q class is added. 

2. Model Description and Analysis 

We propose a continuous model SEIQR to describe the interaction within a population where 

the disease COVID-19 exists. We consider the cases of (the COVID-19) virus spread from a 

human-to-human connection. The model subdivides the entire human population period at 

time t denoted as 𝑁(𝑡) into susceptible 𝑆(𝑡), exposed 𝐸(𝑡), Infected people with symptoms 

and carriers of the virus 𝐼(𝑡), Quarantined Infected (Hospitalized cases) 𝑄(𝑡) and the 

recovered as R(t). The total number of the human population at time t is given by 𝑁 (𝑡 )  =

 𝑆(𝑡 )  +  𝐸 (𝑡 )  +  𝐼 (𝑡 )  +  𝑄 (𝑡 )  +  𝑅(𝑡). Individuals are recruited at 𝜋 is the new birth 

rate in the susceptible human population, 𝛽1 represents the transmission coefficient from 

susceptible individuals to exposure due to the movement and contact that occur among them, 

𝛽2 represents the transmission coefficient from susceptible individuals infected individuals with 

symptoms and carriers of the virus due to the movement and contact that occur among them, 

𝜇 represents the natural death rate in all compartments, 𝜎 represents the progression rate from 

𝐸 to either 𝐼 or 𝑅. The exposed individuals become infectious and join the infected 

compartment at 𝛿𝜎 and the remaining proportion of these exposed individuals develop natural 

immunity and recovered from the disease at (1 − 𝛿)𝜎 and 𝜔 is the transmission coefficient of 

the infected people with symptoms and carriers of the virus to the quarantined infected 

(hospitalized cases) 𝛾 is the transmission coefficient of the quarantined infected (hospitalized 

cases) to the recovered cases. The recovered individuals become again susceptible to the 

disease at a rate of θ, 𝛼1 and 𝛼2 respectively representing the death rate of the infected 

population and the death rate of the quarantined infected (hospitalized cases) population due 

to Covid-19 infection. Based on the above state variables and model assumptions we consider 

the following system of five non-linear differential equations: 

𝑑𝑆

𝑑𝑡
= 𝜋 + 𝜃𝑅 − 𝜇𝑆 −

𝛽1𝑆𝐸+𝛽2𝑆𝐼

𝑁
                      1 

𝑑𝐸

𝑑𝑡
=

𝛽1𝑆𝐸+𝛽2𝑆𝐼

𝑁
– (𝜇 + 𝜎)𝐸                           2 

𝑑𝐼

𝑑𝑡
= 𝛿𝜎𝐸 − (𝜇 + 𝛼1 + 𝜔)𝐼                         3 

𝑑𝑄

𝑑𝑡
= 𝜔𝐼 − (𝜇 + 𝛼2 + 𝛾)𝑄                          4 

𝑑𝑅

𝑑𝑡
= (1 − 𝛿)𝜎𝐸 + 𝛾𝑄 − (𝜇 + 𝜃)𝑅              5 



With the initial condition 𝑆(0) > 0, 𝐸(0) ≥ 0, 𝐼(0) ≥ 0, 𝑄(0) ≥ 0 and 𝑅(0) ≥ 0. 

2.1. Basic Properties of the Model 

2.1.1. Invariant Region 

In this subsection, we determine a region in which the solution of model (1-5) is bounded. For 

this model the total population is 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑄(𝑡) + 𝑅(𝑡). Then, 

differentiating 𝑁(𝑡) with respect to time we obtain: 

𝑑𝑁

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+

𝑑𝐸

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑄

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
= 𝜋 − 𝛼1𝐼 − 𝛼2𝑄 − 𝜇𝑁 

If there is no death due to the disease, we get 

𝑑𝑁

𝑑𝑡
≤ 𝜋 − 𝜇𝑁 

After evaluating, we obtain 

𝑁(𝑡) ≤ (𝑁(0) −
𝜋

𝜇
) 𝑒−𝜇𝑡 +

𝜋

𝜇
 

As𝑡 → ∞ , we obtain Ω = {(𝑆, 𝐸, 𝐼, 𝑄, 𝑅) ∈ 𝑅+
5 : 0 < 𝑁 ≤

𝜋

𝜇
}. 

Therefore, the model equation is wellposed epidemiologically and mathematically. Hence, it is 

sufficient to study the dynamics of the basic model in the region Ω. 

2.1.2. Positivity of Solutions 

Theorem 1: If 𝑆(0) > 0, 𝐸(0) ≥ 0, 𝐼(0) ≥ 0, 𝑄(0) ≥ 0, 𝑅(0) ≥ 0 are positive in the feasible 

set Ω, then the solution set (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡)) of system (1-5) is positive for all 𝑡 ≥

0. 

Proof: From the first equation of the system 

𝑑𝑆

𝑑𝑡
= 𝜋 + 𝜃𝑅 − 𝜇𝑆 −

𝛽1𝑆𝐸 + 𝛽2𝑆𝐼

𝑁
 

𝑑𝑆

𝑑𝑡
+ (𝜇 +

𝛽1𝐸 + 𝛽2𝐼

𝑁
) 𝑆 = 𝜋 + 𝜃𝑅 

This equation is a first order linear ordinary differential equation. Whose integrating factor       

                                          𝐼𝐹 = 𝑒∫ (𝜇+
𝛽1𝐸+𝛽2𝐼

𝑁
)𝑑𝜏

𝑡

0 . 



Now multiplying the differential equation by its integrating factor, we obtain: 

𝑒∫ (𝜇+
𝛽1𝐸+𝛽2𝐼

𝑁
)𝑑𝜏

𝑡

0
𝑑𝑆

𝑑𝑡
+ 𝑒∫ (𝜇+

𝛽1𝐸+𝛽2𝐼

𝑁
)𝑑𝜏

𝑡

0 (𝜇 +
𝛽1𝐸 + 𝛽2𝐼

𝑁
)𝑆 = 𝑒∫ (𝜇+

𝛽1𝐸+𝛽2𝐼

𝑁
)𝑑𝜏

𝑡

0 (𝜋 + 𝜃𝑅) 

𝑑 (𝑆𝑒
∫ (𝜇+

𝛽1𝐸+𝛽2𝐼

𝑁
)𝑑𝜏

𝑡

0 ) = 𝑒
∫ (𝜇+

𝛽1𝐸+𝛽2𝐼

𝑁
)𝑑𝜏

𝑡

0 (𝜋 + 𝜃𝑅)𝑑𝑡 

Integrate both sides in the interval [0, 𝑡] 

∫𝑑 (𝑆𝑒∫ (𝜇+
𝛽1𝐸+𝛽2𝐼

𝑁
)𝑑𝜏

𝑡

0 ) = ∫𝑒∫ (𝜇+
𝛽1𝐸+𝛽2𝐼

𝑁
)𝑑𝜏

𝑡

0 (𝜋 + 𝜃𝑅)

𝑡

0

𝑡

0

𝑑𝜏 

𝑆(𝑡)𝑒∫ (𝜇+
𝛽1𝐸+𝛽2𝐼

𝑁
)𝑑𝜏

𝑡

0 − 𝑆(0) = ∫ 𝑒
∫ (𝜇+

𝛽1𝐸+𝛽2𝐼

𝑁
)𝑑𝜏

𝑡

0 (𝜋 + 𝜃𝑅)

𝑡

0

𝑑𝜏 

𝑆(𝑡) = 𝑒
−∫ (𝜇+

𝛽1𝐸+𝛽2𝐼

𝑁
)𝑑𝜏

𝑡

0 [𝑆(0) + ∫ 𝑒
∫ (𝜇+

𝛽1𝐸+𝛽2𝐼

𝑁
)𝑑𝜏

𝑡

0 (𝜋 + 𝜃𝑅)

𝑡

0

𝑑𝜏] > 0 

Similarly, it can be shown that 𝐸(𝑡) > 0, 𝐼(𝑡) > 0, 𝑄(𝑡) > 0 𝑎𝑛𝑑  𝑅(𝑡) > 0. Thus, the 

solutions 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡)  of system (1-5) remain positive for all 𝑡 > 0. 

If 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑄(𝑡) and 𝑅(𝑡) are non-negative, then 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) +

𝑄(𝑡) +  𝑅(𝑡) > 0. 

2.1.3. Equilibrium Points of the Model 

The equilibrium points of the model system are obtained by setting the right hand side of the 

differential equations equal to zero and solving each to get a constant solution. Epidemiological 

models usually have two equilibrium points, namely disease free equilibrium point and endemic 

equilibrium point.  

2.1.4. Disease Free Equilibrium Point (DFEP) 

The disease free equilibrium of the model, (1) to (5), is obtained by making 
𝑑𝑆

 𝑑𝑡
=

𝑑𝐸

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝑄

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0. Further at the disease free equilibrium point there is no infectious person of the 

disease in the population, i.e. 𝐸 = 𝐼 = 𝑄 = 0.Therefore, the disease free equilibrium point is 

given by: 



𝑋0 = (
𝜋

𝜇
, 0,0,0,0). 

The point 𝑋0is non-negative equilibrium, which exists without any condition. This equilibrium 

implies that in the absence of any infection, the total population size remains at its equilibrium 

value 
𝜋

𝜇
 .  

2.1.5. Endemic Equilibrium Point (EEP) 

The endemic equilibrium point of the model, (1) to (5), is obtained by making  
𝑑𝑆

𝑑𝑡
=

𝑑𝐸

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝑄

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0 . From the model we have; 

𝑑𝑆

𝑑𝑡
= 𝜋 + 𝜃𝑅 − 𝜇𝑆 −

𝛽1𝑆𝐸+𝛽2𝑆𝐼

𝑁
= 0                      6 

𝑑𝐸

𝑑𝑡
=

𝛽1𝑆𝐸+𝛽2𝑆𝐼

𝑁
– (𝜇 + 𝜎)𝐸 = 0                             7 

𝑑𝐼

𝑑𝑡
= 𝛿𝜎𝐸 − (𝜇 + 𝛼1 + 𝜔)𝐼 = 0                            8 

𝑑𝑄

𝑑𝑡
= 𝜔𝐼 − (𝜇 + 𝛼2 + 𝛾)𝑄 = 0                              9 

𝑑𝑅

𝑑𝑡
= (1 − 𝛿)𝜎𝐸 + 𝛾𝑄 − (𝜇 + 𝜃)𝑅 = 0              10 

From equation (8), 𝛿𝜎𝐸 − (𝜇 + 𝛼1 + 𝜔)𝐼 = 0 we get: 

𝐸 =
(𝜇+𝛼1+𝜔)𝐼

𝛿𝜎
                                                 11 

From equation (9), 𝜔𝐼 − (𝜇 + 𝛼2 + 𝛾)𝑄 = 0 we get: 

𝑄 =
𝜔𝐼

𝜇+𝛼2+𝛾
                                                          12 

From equation (10),(1 − 𝛿)𝜎𝐸 + 𝛾𝑄 − (𝜇 + 𝜃)𝑅 = 0 we get: 

𝑅 =
(1−𝛿)𝜎𝐸+𝛾𝑄

𝜇+𝜃
. 

Substituting the value of 𝐸 =
(𝜇+𝛼1+𝜔)𝐼

𝛿𝜎
 and 𝑄 =

𝜔𝐼

𝜇+𝛼2+𝛾
into the equation𝑅 =

(1−𝛿)𝜎𝐸+𝛾𝑄

𝜇+𝜃
 

implies;  

𝑅 = [
(1−𝛿)(𝜇+𝛼1+𝜔)

𝛿(𝜇+𝜃)
+

𝛾𝜔

(𝜇+𝛼2+𝛾)(𝜇+𝜃)
] 𝐼,                                        13 



From equation (7),
𝛽1𝑆𝐸+𝛽2𝑆𝐼

𝑁
– (𝜇 + 𝜎)𝐸 = 0 we get: 

𝑆 =
(𝜇+𝜎)𝐸𝑁

𝛽1𝐸+𝛽2𝐼
, 

Substituting the value of 𝐸 =
(𝜇+𝛼1+𝜔)𝐼

𝛿𝜎
 into the equation 𝑆 =

(𝜇+𝜎)𝐸𝑁

𝛽1𝐸+𝛽2𝐼
 implies;  

𝑆 =
(𝜇+𝜎)(𝜇+𝛼1+𝜔)𝑁

𝛽1(𝜇+𝛼1+𝜔)+𝛿𝜎𝛽2
,                                                    14 

From equation (6),𝜋 + 𝜃𝑅 − 𝜇𝑆 −
𝛽1𝑆𝐸+𝛽2𝑆𝐼

𝑁
= 0 we get: 

Substituting the value of 𝐸, 𝑅 𝑎𝑛𝑑 𝑆 into the equation 𝜋 + 𝜃𝑅 − 𝜇𝑆 −
𝛽1𝑆𝐸+𝛽2𝑆𝐼

𝑁
= 0  implies  

𝜋 + 𝜃 [
(1 − 𝛿)(𝜇 + 𝛼1 + 𝜔)

𝛿(𝜇 + 𝜃)
+

𝛾𝜔

(𝜇 + 𝛼2 + 𝛾)(𝜇 + 𝜃)
] 𝐼 −

𝜇(𝜇 + 𝜎)(𝜇 + 𝛼1 + 𝜔)𝑁

𝛽1(𝜇 + 𝛼1 + 𝜔) + 𝛿𝜎𝛽2

−
𝛽1 (

(𝜇+𝜎)(𝜇+𝛼1+𝜔)𝑁

𝛽1(𝜇+𝛼1+𝜔)+𝛿𝜎𝛽2
) (

(𝜇+𝛼1+𝜔)𝐼

𝛿𝜎
) + 𝛽2 (

(𝜇+𝜎)(𝜇+𝛼1+𝜔)𝑁

𝛽1(𝜇+𝛼1+𝜔)+𝛿𝜎𝛽2
) 𝐼

𝑁
= 0 

𝜋 + [
(1 − 𝛿)𝜃(𝜇 + 𝛼1 + 𝜔)

𝛿(𝜇 + 𝜃)
+

𝜃𝛾𝜔

(𝜇 + 𝛼2 + 𝛾)(𝜇 + 𝜃)
] 𝐼 −

𝜇(𝜇 + 𝜎)(𝜇 + 𝛼1 + 𝜔)𝑁

𝛽1(𝜇 + 𝛼1 + 𝜔) + 𝛿𝜎𝛽2

− 𝛽1 (
(𝜇 + 𝜎)(𝜇 + 𝛼1 + 𝜔)𝑁

𝛽1(𝜇 + 𝛼1 + 𝜔) + 𝛿𝜎𝛽2
)(

(𝜇 + 𝛼1 + 𝜔)

𝛿𝜎
) 𝐼

− 𝛽2 (
(𝜇 + 𝜎)(𝜇 + 𝛼1 + 𝜔)𝑁

𝛽1(𝜇 + 𝛼1 + 𝜔) + 𝛿𝜎𝛽2
) 𝐼 = 0 

[
(1 − 𝛿)𝜃(𝜇 + 𝛼1 + 𝜔)

𝛿(𝜇 + 𝜃)
+

𝜃𝛾𝜔

(𝜇 + 𝛼2 + 𝛾)(𝜇 + 𝜃)
] 𝐼

−
𝛽1(𝜇 + 𝛼1 + 𝜔)(𝜇 + 𝜎)(𝜇 + 𝛼1 + 𝜔)𝑁

𝛿𝜎(𝛽1(𝜇 + 𝛼1 + 𝜔) + 𝛿𝜎𝛽2)
𝐼 −

𝛽2(𝜇 + 𝜎)(𝜇 + 𝛼1 + 𝜔)𝑁

𝛽1(𝜇 + 𝛼1 + 𝜔) + 𝛿𝜎𝛽2
𝐼

=
𝜇(𝜇 + 𝜎)(𝜇 + 𝛼1 + 𝜔)𝑁

𝛽1(𝜇 + 𝛼1 + 𝜔) + 𝛿𝜎𝛽2
− 𝜋 

[
(1 − 𝛿)𝜃(𝜇 + 𝛼1 + 𝜔)(𝜇 + 𝛼2 + 𝛾) + 𝛿𝜃𝛾𝜔

𝛿(𝜇 + 𝜃)(𝜇 + 𝛼2 + 𝛾)
] 𝐼

−
𝛽1(𝜇 + 𝛼1 + 𝜔)(𝜇 + 𝜎)(𝜇 + 𝛼1 + 𝜔)𝑁 + 𝛿𝜎𝛽2(𝜇 + 𝜎)(𝜇 + 𝛼1 + 𝜔)𝑁

𝛿𝜎(𝛽1(𝜇 + 𝛼1 + 𝜔) + 𝛿𝜎𝛽2)
𝐼

=
𝜇(𝜇 + 𝜎)(𝜇 + 𝛼1 + 𝜔)𝑁

𝛽1(𝜇 + 𝛼1 + 𝜔) + 𝛿𝜎𝛽2
− 𝜋 



[
 
 
 
 
 
 
[(1 − 𝛿)𝜃(𝜇 + 𝛼1 + 𝜔)(𝜇 + 𝛼2 + 𝛾) + 𝛿𝜃𝛾𝜔]𝜎(𝛽1(𝜇 + 𝛼1 + 𝜔) + 𝛿𝜎𝛽2) −

[
𝛽1(𝜇 + 𝛼1 + 𝜔)(𝜇 + 𝜎)(𝜇 + 𝛼1 + 𝜔)𝑁

+𝛿𝜎𝛽2(𝜇 + 𝜎)(𝜇 + 𝛼1 + 𝜔)𝑁
] (𝜇 + 𝜃)(𝜇 + 𝛼2 + 𝛾)

𝛿𝜎(𝛽1(𝜇 + 𝛼1 + 𝜔) + 𝛿𝜎𝛽2)(𝜇 + 𝜃)(𝜇 + 𝛼2 + 𝛾)

]
 
 
 
 
 
 

𝐼

=
𝜇(𝜇 + 𝜎)(𝜇 + 𝛼1 + 𝜔)𝑁

𝛽1(𝜇 + 𝛼1 + 𝜔) + 𝛿𝜎𝛽2
− 𝜋 

𝐼 =
𝐴[𝜇(𝜇+𝜎)(𝜇+𝛼1+𝜔)𝑁−𝜋(𝛽1(𝜇+𝛼1+𝜔)+𝛿𝜎𝛽2)]

[𝛽1(𝜇+𝛼1+𝜔)+𝛿𝜎𝛽2][𝐾−𝑀(𝜇+𝜃)(𝜇+𝛼2+𝛾)]
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Where 𝐴 = 𝛿𝜎(𝛽1(𝜇 + 𝛼1 + 𝜔) + 𝛿𝜎𝛽2)(𝜇 + 𝜃)(𝜇 + 𝛼2 + 𝛾), 

𝐾 = [(1 − 𝛿)𝜃(𝜇 + 𝛼1 + 𝜔)(𝜇 + 𝛼2 + 𝛾) + 𝛿𝜃𝛾𝜔]𝜎(𝛽1(𝜇 + 𝛼1 + 𝜔) + 𝛿𝜎𝛽2) and 

𝑀 = 𝛽1(𝜇 + 𝛼1 + 𝜔)(𝜇 + 𝜎)(𝜇 + 𝛼1 + 𝜔)𝑁 + 𝛿𝜎𝛽2(𝜇 + 𝜎)(𝜇 + 𝛼1 + 𝜔)𝑁. 

 

Therefore, the Endemic Equilibrium Point (EEP) denoted by 𝑋∗of the model in Equation (1) 

to (5) is given by: 

𝑋∗ = (𝑆∗, 𝐸∗, 𝐼∗, 𝑄∗, 𝑅∗) 

Where  𝑆∗ =
(𝜇+𝜎)(𝜇+𝛼1+𝜔)𝑁

𝛽1(𝜇+𝛼1+𝜔)+𝛿𝜎𝛽2
  , 𝐸∗ =

(𝜇+𝛼1+𝜔)𝐼∗

𝛿𝜎
 

𝐼∗ =

𝛿𝜎(𝛽1(𝜇 + 𝛼1 + 𝜔) + 𝛿𝜎𝛽2)(𝜇 + 𝜃)(𝜇 + 𝛼2 + 𝛾)

[𝜇(𝜇 + 𝜎)(𝜇 + 𝛼1 + 𝜔)𝑁 − 𝜋(𝛽1(𝜇 + 𝛼1 + 𝜔) + 𝛿𝜎𝛽2)]

[𝛽1(𝜇 + 𝛼1 + 𝜔) + 𝛿𝜎𝛽2][𝐾 − 𝑀(𝜇 + 𝜃)(𝜇 + 𝛼2 + 𝛾)]
 

𝑄∗ =
𝜔𝐼∗

𝜇+𝛼2+𝛾
    and 𝑅∗ = [

(1−𝛿)𝜎(𝜇+𝛼1+𝜔)

𝛿𝜎(𝜇+𝜃)
+

𝛾𝜔

(𝜇+𝛼2+𝛾)(𝜇+𝜃)
] 𝐼∗ 

𝐾 = [(1 − 𝛿)𝜃(𝜇 + 𝛼1 + 𝜔)(𝜇 + 𝛼2 + 𝛾) + 𝛿𝜃𝛾𝜔]𝜎(𝛽1(𝜇 + 𝛼1 + 𝜔) + 𝛿𝜎𝛽2) and 

𝑀 = 𝛽1(𝜇 + 𝛼1 + 𝜔)(𝜇 + 𝜎)(𝜇 + 𝛼1 + 𝜔)𝑁 + 𝛿𝜎𝛽2(𝜇 + 𝜎)(𝜇 + 𝛼1 + 𝜔)𝑁 

2.1.6. The Basic Reproduction Number 

The basic reproduction number, usually denoted as 𝑅0defines the average number of 

secondary infections caused by an individual in an entirely susceptible population. The value 

of 𝑅0will indicate whether the epidemic could occur or not. If 𝑅0 < 1, then the disease will 

decrease and eventually die out. If 𝑅0 = 1, each existing infection causes one new infection. 

The disease will stay alive and stable, but there will not be an outbreak or an epidemic. If 𝑅0 >

1, each existing infection causes more than one new infection. The disease will spread between 

people, and there may be an outbreak or epidemic. To find reproduction number, we will use 



the method of next generation matrix [11] and is defined as the spectral radius (or dominant 

eigenvalue) of the model. The first step is rewriting the model equations, starting with newly 

infective classes: 

𝑑𝐸

𝑑𝑡
=

𝛽1𝑆𝐸 + 𝛽2𝑆𝐼

𝑁
– (𝜇 + 𝜎)𝐸 

𝑑𝐼

𝑑𝑡
= 𝛿𝜎𝐸 − (𝜇 + 𝛼1 + 𝜔)𝐼 

𝑑𝑄

𝑑𝑡
= 𝜔𝐼 − (𝜇 + 𝛼2 + 𝛾)𝑄 

Setting ( )TSRQIEx ,,,,= , then system (1) can be written as 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥) − 𝑣(𝑥) 

Here the new infection matrix 𝑓(𝑥)and the transition matrix 𝑣(𝑥)are defined by 

𝑓(𝑥) = (

𝛽1𝑆𝐸+𝛽2𝑆𝐼

𝑁

0
0

)  and 𝑣(𝑥) = (

(𝜇 + 𝜎)𝐸
(𝜇 + 𝛼1 + 𝜔)𝐼 − 𝛿𝜎𝐸
(𝜇 + 𝛼2 + 𝛾)𝑄 − 𝜔𝐼

) 

Then by the principle of next-generation matrix, the Jacobian matrices at DFE is given by 

𝐹 = (
𝛽1 𝛽2 0
0 0 0
0 0 0

) and 𝑉 = (

𝜇 + 𝜎 0 0
−𝛿𝜎 𝜇 + 𝛼1 + 𝜔 0
0 −𝜔 𝜇 + 𝛼2 + 𝛾

) then;  

𝑉−1 =

(

 
 
 
 

1

𝜇 + 𝜎
0 0

𝛿𝜎

(𝜇 + 𝜎)(𝜇 + 𝛼1 + 𝜔)

1

𝜇 + 𝛼1 + 𝜔
0

𝛿𝜎𝜔

(𝜇 + 𝜎)(𝜇 + 𝛼1 + 𝜔)(𝜇 + 𝛼2 + 𝛾)

𝜔

(𝜇 + 𝛼1 + 𝜔)(𝜇 + 𝛼2 + 𝛾)

1

𝜇 + 𝛼2 + 𝛾)

 
 
 
 

 

𝐹𝑉−1 = (

𝛽1(𝜇 + 𝛼1 + 𝜔) + 𝛽2𝛿𝜎

(𝜇 + 𝜎)(𝜇 + 𝛼1 + 𝜔)

𝛽2

(𝜇 + 𝛼1 + 𝜔)
0

0 0 0
0 0 0

) 

Therefore, 𝐹𝑉−1is the next generation matrix of the SEIQR model. The dominant eigenvalue 

of 𝐹𝑉−1represents 𝑅0 = 𝜌(𝐹𝑉−1), which is 



𝑅0 =
𝛽1(𝜇+𝛼1+𝜔)+𝛽2𝛿𝜎

(𝜇+𝜎)(𝜇+𝛼1+𝜔)
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3. Stability Analysis of Diseases-Free Equilibrium 

Theorem 2: The disease free equilibrium point 𝑋0of the dynamical system (1) - (5) is locally 

asymptotically stable if 𝑅0 < 1 and unstable if 𝑅0 > 1. 

Proof: The Jacobian matrix at any equilibrium point 𝑋 = (𝑆, 𝐸, 𝐼, 𝑄, 𝑅)is given by 

𝐽(𝑋) =

[
 
 
 
 
 
 
−𝛽1𝐸 − 𝛽2𝐼

𝑁
− 𝜇

𝛽1𝐸 + 𝛽2𝐼

𝑁
0
0
0

−𝛽1𝑆

𝑁
𝛽1𝑆

𝑁
− (𝜇 + 𝜎)

𝛿𝜎
0

(1 − 𝛿)𝜎

−𝛽2𝑆

𝑁
𝛽2𝑆

𝑁
−(𝜇 + 𝛼1 + 𝜔)

𝜔
0

0
0
0

−(𝜇 + 𝛼2 + 𝛾)
𝛾

𝜃
0
0
𝜎

−(𝜇 + 𝜃)

]
 
 
 
 
 
 

 

The Jacobian matrix at the disease-free equilibrium point 𝑋0 = (
𝜋

𝜇
, 0,0,0,0) is given by 

𝐽(𝑋0) =

[
 
 
 
 
−𝜇
0
0
0
0

 −𝛽1

𝛽1 − (𝜇 + 𝜎)
𝛿𝜎
0

(1 − 𝛿)𝜎

  −𝛽2

𝛽2

−(𝜇 + 𝛼1 + 𝜔)
𝜔
0

0
0
0

−(𝜇 + 𝛼2 + 𝛾)
𝛾

𝜃
0
0
𝜎

−(𝜇 + 𝜃)]
 
 
 
 

 

The characteristic equation of this matrix is given bydet(𝐽(𝑋0) − 𝜆𝐼5) = 0, where 𝐼5is a 

square identity matrix of order 5 and 𝜆 is eigenvalues of the Jacobian matrix. Therefore, the 

characteristic equation is (𝜇 + 𝜆)⌊𝜆4 + (4𝜇 + 𝛼1 + 𝜔 + 𝜎 + 𝜃 + 𝛼2 + 𝛾 − 𝛽1)𝜆
3 +

[(2𝜇 + 𝛼1 + 𝜔 + 𝜎 − 𝛽1)(2𝜇 + 𝜃 + 𝛼2 + 𝛾) + (𝜇 + 𝛼2 + 𝛾)(𝜇 + 𝜃) − [(𝛽1 −

(𝜇 + 𝜎))(𝜇 + 𝛼1 + 𝜔) + 𝛽2𝛿𝜎] + 𝜎𝛾]𝜆2 + [(𝜇 + 𝛼2 + 𝛾)(𝜇 + 𝜃)(2𝜇 + 𝛼1 + 𝜔 + 𝜎 −

𝛽1) − (2𝜇 + 𝜃 + 𝛼2 + 𝛾)[(𝛽1 − (𝜇 + 𝜎))(𝜇 + 𝛼1 + 𝜔) + 𝛽2𝛿𝜎] + 𝜎𝛾(𝜇 + 𝛼1 + 𝜔 + 𝜇 +

𝜎 − 𝛽1)]𝜆 − 𝜎𝛾[(𝛽1 − (𝜇 + 𝜎))(𝜇 + 𝛼1 + 𝜔) + 𝛽2𝛿𝜎] − (𝜇 + 𝛼2 + 𝛾)(𝜇 + 𝜃)[(𝛽1 −

(𝜇 + 𝜎))(𝜇 + 𝛼1 + 𝜔) + 𝛽2𝛿𝜎]⌋  = 0. 

The Jacobian evaluated at the DFE has five eigenvalues, one of which is 𝜆1 = −𝜇 which is 

negative.   

The remaining four are eigenvalues of the roots of the equation given by: 

𝑎4𝜆
4 + 𝑎3𝜆

3 + 𝑎2𝜆
2 + 𝑎1𝜆 + 𝑎0 = 0 

Where 



𝑎4 = 1,  𝑎3 = 4𝜇 + 𝛼1 + 𝜔 + 𝜎 + 𝜃 + 𝛼2 + 𝛾 − 𝛽1 

𝑎2 = [(2𝜇 + 𝛼1 + 𝜔 + 𝜎 − 𝛽1)(2𝜇 + 𝜃 + 𝛼2 + 𝛾) + (𝜇 + 𝛼2 + 𝛾)(𝜇 + 𝜃)

− [(𝛽1 − (𝜇 + 𝜎))(𝜇 + 𝛼1 + 𝜔) + 𝛽2𝛿𝜎] + 𝜎𝛾], 

𝑎1 = [(𝜇 + 𝛼2 + 𝛾)(𝜇 + 𝜃)(2𝜇 + 𝛼1 + 𝜔 + 𝜎 − 𝛽1)

− (2𝜇 + 𝜃 + 𝛼2 + 𝛾)[(𝛽1 − (𝜇 + 𝜎))(𝜇 + 𝛼1 + 𝜔) + 𝛽2𝛿𝜎]

+ 𝜎𝛾(2𝜇 + 𝛼1 + 𝜔 + 𝜎 − 𝛽1)], 

𝑎0 = −𝜎𝛾[(𝛽1 − (𝜇 + 𝜎))(𝜇 + 𝛼1 + 𝜔) + 𝛽2𝛿𝜎]

− (𝜇 + 𝛼2 + 𝛾)(𝜇 + 𝜃)[(𝛽1 − (𝜇 + 𝜎))(𝜇 + 𝛼1 + 𝜔) + 𝛽2𝛿𝜎].
 

By Routh-Hurwitz criteria the DFE equilibrium 𝑋0 is local asymptotically stable if 

𝑎0 > 0, 𝑎1 > 0, 𝑎2 > 0, 𝑎3 > 0, 𝑎3𝑎2 − 𝑎1 > 0 and 𝑎3𝑎2𝑎1 − 𝑎1
2 − 𝑎0𝑎3

2 > 0. 

4. Stability Analysis of Endemic Equilibrium Point 

Theorem 3: The endemic equilibrium point 𝑋∗of the dynamical system (1) - (5) is locally 

asymptotically stable if 𝑅0 > 1 and unstable if 𝑅0 < 1. 

Proof: The Jacobian matrix at the endemic equilibrium point 𝑋∗ = (𝑆∗, 𝐸∗, 𝐼∗, 𝑄∗, 𝑅∗)is given 

by 

𝐽(𝑋∗) =

[
 
 
 
 
𝑘1

𝑘4

0
0
0

𝑘2

𝑘5

𝛿𝜎
0

(1 − 𝛿)𝜎

𝑘3

𝑘6

−(𝜇 + 𝛼1 + 𝜔)
𝜔
0

0
0
0

−(𝜇 + 𝛼2 + 𝛾)
𝛾

𝜃
0
0
𝜎

−(𝜇 + 𝜃)]
 
 
 
 

 

𝑘1 =
−𝛽1𝐸∗−𝛽2𝐼∗

𝑁
− 𝜇,𝑘2 =

−𝛽1𝑆∗

𝑁
, 𝑘3 =

−𝛽2𝑆∗

𝑁
, 𝑘4 =

𝛽1𝐸∗+𝛽2𝐼∗

𝑁
, 𝑘5 =

𝛽1𝑆∗

𝑁
− (𝜇 + 𝜎) and 

𝑘6 =
𝛽2𝑆∗

𝑁
. 

The characteristic equation of this matrix is given by det(𝐽(𝑋∗) − 𝜆𝐼5) = 0 , where 𝐼5is a 

square identity matrix of order 5 and 𝜆 is eigenvalues of the Jacobian matrix. Therefore, the 

characteristic equation is;  

𝑎5𝜆
5 + 𝑎4𝜆

4 + 𝑎3𝜆
3 + 𝑎2𝜆

2 + 𝑎1𝜆 + 𝑎0 = 0 

Where  



𝑎5 = 1 

𝑎4 = 3𝜇 + 𝛼1 + 𝛼2 + 𝛾 + 𝜃 + 𝜔 − 𝑘5 − 𝑘1 

𝑎3 = (2𝜇 + 𝛼2 + 𝛾 + 𝜃)(𝜇 + 𝛼1 + 𝜔 − 𝑘5) + (𝜇 + 𝛼2 + 𝛾)(𝜇 + 𝜃) + 𝑘4𝑘2

− [(𝜇 + 𝛼1 + 𝜔)𝑘5 + 𝑘6𝛿𝜎] − 𝜎𝛾 − 𝑘1(3𝜇 + 𝛼1 + 𝛼2 + 𝛾 + 𝜃 + 𝜔 − 𝑘5) 

𝑎2 = (𝜇 + 𝛼2 + 𝛾)(𝜇 + 𝜃)(𝜇 + 𝛼1 + 𝜔 − 𝑘5)

+ 𝑘4[(𝜇 + 𝛼1 + 𝜔 + 𝑘3𝛿𝜎)𝑘2 + (𝜇 + 𝜃)𝑘2 + 𝜃(1 − 𝛿)𝜎

+ (𝜇 + 𝛼2 + 𝛾)𝑘2] − (2𝜇 + 𝛼2 + 𝛾 + 𝜃)[(𝜇 + 𝛼1 + 𝜔)𝑘5 + 𝑘6𝛿𝜎]

− 𝜎𝛾(𝜇 + 𝛼1 + 𝜔 − 𝑘5)

− 𝑘1[(2𝜇 + 𝛼2 + 𝛾 + 𝜃)(𝜇 + 𝛼1 + 𝜔 − 𝑘5) + (𝜇 + 𝛼2 + 𝛾)(𝜇 + 𝜃)

− [(𝜇 + 𝛼1 + 𝜔)𝑘5 + 𝑘6𝛿𝜎] − 𝛿𝛾] 

𝑎1 = 𝑘4[(𝜇 + 𝜃)(𝜇 + 𝛼1 + 𝜔 + 𝑘3𝛿𝜎)𝑘2 + 𝜃(1 − 𝛿)𝜎(𝜇 + 𝛼1 + 𝜔)

+ (𝜇 + 𝛼2 + 𝛾)[(𝜇 + 𝛼1 + 𝜔 + 𝑘3𝛿𝜎)𝑘2) + (𝜇 + 𝜃)𝑘2 + 𝜃(1 − 𝛿)𝜎]

− 𝛾𝑘2𝜎] + (𝜇 + 𝛼1 + 𝜔)𝛾𝑘5𝜎 + 𝛾𝑘6𝛿𝜎2

− 𝑘1[(𝜇 + 𝛼2 + 𝛾)(𝜇 + 𝜃)(𝜇 + 𝛼1 + 𝜔 − 𝑘5)

− (2𝜇 + 𝛼2 + 𝛾 + 𝜃)[(𝜇 + 𝛼1 + 𝜔)𝑘5 + 𝑘6𝛿𝜎] − 𝜎𝛾(𝜇 + 𝛼1 + 𝜔 − 𝑘5)]

− (𝜇 + 𝛼2 + 𝛾)(𝜇 + 𝜃)[(𝜇 + 𝛼1 + 𝜔)𝑘5 + 𝑘6𝛿𝜎] 

𝑎0 = 𝑘1(𝜇 + 𝛼2 + 𝛾)(𝜇 + 𝜃)[(𝜇 + 𝛼1 + 𝜔)𝑘5 + 𝑘6𝛿𝜎] − (𝜇 + 𝛼1 + 𝜔)𝛾𝑘5𝑘1𝜎

+ 𝛾𝑘1𝑘6𝛿𝜎2 − 𝑘4𝛾𝑘2𝜎(𝜇 + 𝛼1 + 𝜔) − 𝑘4𝛾𝛿𝜎(𝑘3𝜎 − 𝜃𝜔)

+ 𝑘4(𝜇 + 𝛼2 + 𝛾)[(𝜇 + 𝜃)(𝜇 + 𝛼1 + 𝜔 + 𝑘3𝛿𝜎)𝑘2

+ 𝜃(1 − 𝛿)𝜎(𝜇 + 𝛼1 + 𝜔)] 

By Routh-Hurwitz criteria the endemic equilibrium𝑋∗is locally asymptotically stable if 

𝑎4 > 0,
𝑎3𝑎4−𝑎2

𝑎4
> 0, 𝑎2 −

𝑎1𝑎4
2−𝑎0𝑎4

𝑎3𝑎4−𝑎2
> 0,

𝑎1𝑎4−𝑎0

𝑎4
−

(𝑎0𝑎3𝑎4−𝑎0𝑎2)(𝑎3𝑎4−𝑎2)

𝑎4(𝑎2𝑎3𝑎4−𝑎2
2−𝑎1𝑎4

2+𝑎0𝑎4)
> 0 and 𝑎0 >

0. 

 

 

 

 

 

 



5. Parameter Estimation for Numerical Simulation 

To perform numerical simulation, we collect the following parameter values obtained from  

different sources. 

Table 1. Parameter Estimation. 

Therefore basic reproduction number(𝑹𝟎) of the model is equal to 

𝑅0 =
𝛽1(𝜇 + 𝛼1 + 𝜔) + 𝛽2𝛿𝜎

(𝜇 + 𝜎)(𝜇 + 𝛼1 + 𝜔)
= 1.07912 

6. Numerical Analysis 

The numerical analysis is obtained from the graphs of basic reproduction number with respect 

to the parameters obtained and given in the above Table1. 

Let Us Take Our Control Parameter to be 𝜷𝟏 

The basic control parameters that can decrease the spread of the disease is 𝛽1which is the 

transmission coefficient from susceptible individuals to expose individuals due to the 

movement and contact that occur among them. The graphical representation of the control 

parameter 𝛽1𝑣𝑠 the basic reproduction number 𝑅0 is given below; 

Parameter symbol Value Source 

𝑁 2000 Assumed 

𝜋 100 [6] 

𝛽1 0.045 Assumed 

𝛽2 0.04 Assumed 

𝜇 0.016 [3] 

𝜃 0.15 [3] 

𝜎 0.07 [3] 

𝛿 0.7 [3] 

𝜔 0.024 [6] 

𝛼1 0.001 [6] 

𝛼2 0.004 [6] 

𝛾 0.015 [6] 



 

 

 

 

 

 

Fig.1 This figure shows the impact of the control parameter 𝜷𝟏 on the basic reproduction number 𝑹𝟎. 

To  control  the  spread  of  the  COVID-19,  the numerical value  of the control parameter 𝛽1 

never greater than  0.03820. 

Let Us Take Our Control Parameter to be 𝜷𝟐 

The basic control parameters that can decrease the spread of the disease is 𝛽2which is the 

transmission coefficient from susceptible individuals to infected individuals with symptoms 

and carriers of the virus due to the movement and contact that occur among them. The 

graphical representation of the control parameter 𝛽2𝑣𝑠 the basic reproduction number 𝑅0 is 

given below; 

 

 

 

 

 

 

  

Fig.2. This figure shows the impact of the control parameter 𝜷𝟐 on the basic reproduction number 𝑹𝟎. 

To  control  the  spread  of  the  COVID-19,  the numerical value  of the control parameter 𝛽2 

never greater than  0.0343. 

Let Us Take Our Control Parameter to be 𝝈 



The basic control parameters that can decrease the spread of the disease is 𝜎 which is the 

progression rate from E to either I or R. The graphical representation of the control parameter 

 𝜎 𝑣𝑠 the basic reproduction number 𝑅0 is given below; 

 

Fig.3. This figure shows the impact of the control parameter 𝝈 on the basic reproduction number 𝑹𝟎. 

To  control  the  spread  of  the  COVID-19,  the numerical value  of the control parameter 𝜎 

never less than  0.0846. 

Let Us Take Our Control Parameter to be 𝝎 

The basic control parameters that can decrease the spread of the disease is 𝜔 which is the 

transmission coefficient of the infected people with symptoms and carriers of the virus to the 

quarantined infected (hospitalized cases).The graphical representation of the control parameter 

 𝜔 𝑣𝑠 the basic reproduction number 𝑅0 is given below; 

 

 

 

Fig. 4. This figure shows the impact of the control parameter 𝝎 on the basic reproduction number 𝑹𝟎. 

To  control  the  spread  of  the  COVID-19,  the numerical value  of the control parameter 𝜔 

never less than  0.03024. 



Let Us Take Our Control Parameter to be 𝜶𝟏 

The basic control parameters that can decrease the spread of the disease is 𝜶𝟏which is the 

death rate of Infected population due to Covid-19 infection. The graphical representation of 

the control parameter 𝜶𝟏 𝑣𝑠 the basic reproduction number 𝑅0 is given below; 

 

 

 

 

 

 

 

Fig. 5. This figure shows the impact of the control parameter 𝜶𝟏 on the basic reproduction number 𝑹𝟎. 

To  control  the  spread  of  the  COVID-19,  the numerical value  of the control parameter 𝜶𝟏 

never less than  0.0078. 

Let Us Take Our Control Parameter to be 𝝁 

The basic control parameters that can decrease the spread of the disease is 𝝁 which is the 

natural death rate. The graphical representation of the control parameter 𝝁 𝑣𝑠 the basic 

reproduction number 𝑅0 is given below; 

 

 

 

 

Fig. 6. This figure shows the impact of the control parameter 𝝁 on the basic reproduction number 𝑹𝟎. 

If the natural death rate 𝜇 between 0 and 0.06088, then the reproduction number is decreases, 

with 𝑅0 > 1and this tells us the disease still persists. If the natural death rate is greater than 



0.06088, then the reproduction number is decreases, with 𝑅0 < 1 and this tell us the disease 

dies out.    

7. Sensitivity analysis 

In determining how best to reduce human mortality and morbidity due to covid-19, it is 

necessary to know the relative importance of the different factors responsible for its 

transmission. Sensitivity analysis is commonly used to determine the robustness of model 

predictions to parameter values, that is, to help us know the parameters that have a high impact 

on the reproduction number𝑅0 (because there are usually errors in data collection and 

presumed parameter values).For sensitivity analysis we use the normalized sensitivity index 

[9].The normalized forward sensitivity indices of 𝑅0 that depends differentiable on a parameter 

m, is defined by 𝐻𝑚
𝑅0 =

𝑚

𝑅0

𝜕𝑅0

𝜕𝑚
, we take 𝑚 = 𝛽1, 𝛽2, 𝜎, 𝛼1, 𝜔 and 𝜇.The sensitivity indices of 

𝑅0with respect to 𝑚 is given as: 

𝐻𝛽1

𝑅0 =
𝛽1(𝜇 + 𝛼1 + 𝜔)

𝛽1(𝜇 + 𝛼1 + 𝜔) + 𝛽2𝛿𝜎
 

𝐻𝛽2

𝑅0 =
𝛽2𝛿𝜎

𝛽1(𝜇 + 𝛼1 + 𝜔) + 𝛽2𝛿𝜎
 

𝐻𝜎
𝑅0 =

−𝛽1𝜎(𝜇 + 𝛼1 + 𝜔) + 𝛽2𝜎𝛿(𝜇 + 𝜎) − 𝛽2𝛿𝜎2

(𝜇 + 𝜎)[𝛽1(𝜇 + 𝛼1 + 𝜔) + 𝛽2𝛿𝜎] 
 

𝐻𝛼1

𝑅0 =
−𝛼1𝛽2𝛿𝜎

(𝜇 + 𝛼1 + 𝜔)[𝛽1(𝜇 + 𝛼1 + 𝜔) + 𝛽2𝛿𝜎]
 

𝐻𝜔
𝑅0 =

−𝜔𝛽2𝛿𝜎

(𝜇 + 𝛼1 + 𝜔)[𝛽1(𝜇 + 𝛼1 + 𝜔) + 𝛽2𝛿𝜎]
 

𝐻𝜇
𝑅0 =

𝛽1𝜇(𝜇 + 𝜎)(𝜇 + 𝛼1 + 𝜔) − 𝜇[𝛽1(𝜇 + 𝛼1 + 𝜔) + 𝛽2𝛿𝜎](2𝜇 + 𝛼1 + 𝜔 + 𝜎)

(𝜇 + 𝜎)(𝜇 + 𝛼1 + 𝜔)[𝛽1(𝜇 + 𝛼1 + 𝜔) + 𝛽2𝛿𝜎]
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After some simplifications and numerical calculation, we get values of sensitivity index for the important 

parameters mentioned by the table below: 

Table 1: Numerical values of sensitivity indices of 𝑹𝟎 

 

The parameters given in Table 2 are ordered from most sensitive to the least sensitive. The parameter 

values 𝛽1 = 0.045, 𝛽2 = 0.04, 𝜇 = 0.016, 𝛿 = 0.7, 𝜎 = 0.07 , 𝛼1 = 0.001 and 𝜔 = 0.024 are used to 

determine the sensitivity indices. 

From the sensitivity indices of 𝑅0above, generally it shows that when the parameter values 𝛽1 and 𝛽2increase 

while the other parameters remain constant the value of 𝑅0 increase implying that they increase the endemicity 

of the disease as they have positive indices. When the parameters 𝜔, 𝜇, 𝛼1, and 𝜎 increase the other parameters 

remain constant the value of 0R decrease implying that they decrease the endemicity of the disease as they have 

negative indices. 

The most sensitive parameter  are 𝛽2(the transmission coefficient from susceptible individuals to infected 

individuals with symptoms and carriers of the virus due to the movement and contact that occur among 

them)and 𝛽1(the transmission coefficient from susceptible individuals to exposed  individuals with symptoms 

and carriers of the virus due to the movement and contact that occur among them) and the least sensitive 

parameter is the death rate of the infected population due to Covid-19 infection 𝛼1. 

8. Conclusions  

In this study, a deterministic model for the dynamics of COVID-19 is presented and analyzed. The diseases free 

equilibrium and endemic equilibrium were obtained and their stabilities investigated. The basic reproduction 

number (𝑅0) was computed using the next generation matrix method. The model showed that the diseases free 

equilibrium is unstable when 𝑅0 > 1 that means that the disease will be persist. We also studied the sensitivity 

analysis of model parameters to know the parameters that have a high impact on the reproduction number 𝑅0. 

From the above numerical simulation we would like to recommend the following to control the spread of 

COVID-19:To  control  the  spread  of  the  COVID-19  we investigate  five  most  influential  control 

parameters  to  make  the  basic  reproduction number 𝑅0 to be less than one. The numerical value of the 

control parameter  𝛽1(the transmission coefficient from susceptible individuals to expose individuals due to the 

movement and contact that occur among them) never exceed 0.0382, the numerical value of the control 

parameter  𝛽2(the transmission coefficient from susceptible individuals to infected individuals with symptoms 

and carriers of the virus due to the movement and contact that occur among them) never exceed 0.0343, the 

numerical value of the control parameter 𝜎 (the progression rate from 𝐸 to either 𝐼 or 𝑅) never less than 

0.0846, the numerical value of the control parameter 𝜔 (the transmission coefficient of the infected people with 

symptoms and carriers of the virus  to the quarantined infected ) never less than 0.3024, the numerical value of 

Parameter symbol   Sensitivity Index 

𝛽2 0.5151 

𝛽1 0.4849 

𝜇 -0.3871 

𝜔 -0.3015 

𝜎 -0.2345 

𝛼1 -0.0013 
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the control parameter𝛼1( the death rate of Infected population due to Covid-19 infection) never less 

than 0.0078. 
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