
AN EFFICIENT METHOD FOR SOLVING LINEAR
INTERVAL FRACTIONAL TRANSPORTATION PROBLEMS

Abstract. Linear fractional programming (LFP) is a powerful math-
ematical tool for solving optimization problems with a ratio of linear
functions as the objective function. In real-world applications, the coef-
ficients of the objective function may be uncertain or imprecise, leading
to the need for interval coefficients. This paper presents a comprehen-
sive study on solving linear interval fractional transportation problems
with interval objective function (ILFTP) which means that the coeffi-
cients of the variables in the objective function are uncertain and lie
within a given interval. We propose a novel approach that combines
interval analysis and optimization techniques to handle the uncertainty
in the coefficients, ensuring robust and reliable solutions. The variable
transformation method used in this study is a novel approach to solving
this kind of problems. By reducing the problem to a nonlinear pro-
gramming problem and then transforming it into a linear programming
problem, the proposed method simplifies the solution process and im-
proves the accuracy of the results. The effectiveness of the proposed
method is demonstrated through various numerical examples and com-
parisons with existing methods. The outcomes demonstrate that the
suggested approach is capable of precisely resolving ILFTPs. Overall,
the proposed method provides a valuable contribution to the field of lin-
ear fractional transportation problems. It offers a practical and efficient
solution to a challenging problem and has the potential to be applied in
various real-world scenarios.

keywords: Interval Coefficients, Convex combination, Linear frac-
tional programming problems, Linear fractional transportation prob-
lems.

1. Introduction

Linear fractional transportation problem (LFTP) is a class of optimiza-
tion problems that arise in various fields, such as logistics, supply chain
management, and transportation planning. These problems involve the al-
location of resources from multiple sources to multiple destinations in a way
that minimizes the total cost or maximizes the total profit, subject to cer-
tain constraints. The objective function of a LFTP is a linear fractional
function that represents the quotient of two linear functions. This type
of objective function is known to exhibit unique properties and challenges
compared to linear objective functions commonly found in linear program-
ming problems. In real-world applications, the coefficients of the objective
function and the constraints are often subject to uncertainty due to vari-
ous factors, such as fluctuations in market prices, changes in demand, and
variations in transportation costs. One way to model this uncertainty is
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by using interval coefficients, which represent the possible range of values
for each coefficient. Interval coefficients provide a more realistic represen-
tation of the problem and allow for a more robust optimization approach
that takes into account the inherent uncertainty in the problem parameters.
In this paper, we focus on solving linear fractional transportation problems
with interval coefficients in the objective function (ILFTP). The presence
of interval coefficients in the objective function introduces additional com-
plexity to the problem, as the optimal solution may now depend on the
specific values of the uncertain coefficients within their respective intervals.
This necessitates the development of new solution methods and algorithms
that can efficiently handle the interval uncertainty and provide optimal or
near-optimal solutions to the ILFTP. The study of ILFTP is motivated by
its practical relevance and the need for more robust optimization techniques
that can handle uncertainty in real-world transportation problems. Frac-
tional calculus is an important mathematical tool that has been widely used
in various fields of research, including science, engineering, medicine, and
biology, to model complex systems with non-linear behavior and long-term
memory effect [38–51, 58]. Frequently, these issues emerge in contexts in-
volving return on investment, current ratio, and actual capital to required
capital. Linear fractional programming problems, which are especially ad-
vantageous in production planning, financial planning, and corporate plan-
ning, represent a specific instance of nonlinear programming. They are
frequently employed to simulate practical problems with one or more ob-
jectives, such as actual cost/standard, output/employee, and profit/cost.
Linear fractional programming problems have a broad range of applications
in diverse fields, including engineering, business, finance, and economics.

The Charnes and Cooper method can be utilized to convert linear frac-
tional programming into a linear programming problem [24]. Several re-
searchers have proposed different methods for solving linear fractional pro-
gramming problems, such as Tantawy [4], Wu [5], and others. In this paper,
we focus on solving the ILFTPs. To solve this problem, we employ a method
based on convex combination of intervals and variable transformation, as
proposed by Charnes and Cooper [24]. For more information on the theory
and algorithms for multi-objective programming (MOPs), readers can refer
to Miettinen’s book [7].

Fractional programming problems (FPPs) have applications in various
fields, such as game theory, stock cutting, portfolio selection, and numerous
decision problems. Stancu-Minasian [8] provides a comprehensive survey on
fractional programming, covering both applications and major theoretical
and algorithmic developments. A new approach was proposed by Sheikhi et
al. [9] to address bi-objective fractional transportation problems with fuzzy
numbers, while a novel method was introduced by Borza et al. [11] to solve
linear fractional programming problems that involve interval coefficients in
the objective function.
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In this study, a new approach is presented to solve ILFTPs. The pro-
posed technique involves using a convex combination of the left and right
limits of intervals, instead of the intervals themselves, in conjunction with
variable transformation. This method transforms the linear fractional trans-
portation problem into a nonlinear programming problem, which is then
converted into a linear programming problem with two extra constraints
and one additional variable compared to the original problem. The efficacy
of this approach is illustrated through the use of two numerical examples.
The subsequent sections of this paper are structured as follows. Section 2
provides an overview of the pertinent literature on linear fractional trans-
portation problems and interval linear programming, discussing the main
developments and challenges in these areas. In Section 3, we introduce
the mathematical formulation for the ILFTP and discuss its main proper-
ties and characteristics. Then, we present our proposed solution approach
for the ILFTP, which combines interval analysis, linear fractional program-
ming techniques, and cutting-plane methods. Section 5 reports the results
of our computational experiments on benchmark instances and real-world
transportation problems, demonstrating the performance of our proposed
method. Finally, in Section 6, we conclude the paper and outline directions
for future research.

2. Related Work

This section focuses on the methods and techniques used to solve linear
fractional transportation problems including interval coefficients in the ob-
jective function (ILFTP). The review covers various approaches, including
classical methods, metaheuristic algorithms, and hybrid techniques. The
strengths and weaknesses of each method are discussed, along with their
applicability to real-world problems. The review concludes with suggestions
for future research directions in this area. In real-world applications, the
coefficients of the objective function and the constraints are often subject
to uncertainty due to various factors, such as fluctuations in market prices,
changes in demand, and variations in transportation costs. One way to
model this uncertainty is by using interval coefficients, which represent the
possible range of values for each coefficient. Interval coefficients provide a
more realistic representation of the problem and allow for a more robust
optimization approach that takes into account the inherent uncertainty in
the problem parameters.

2.1. Foundations of Linear Fractional Programming and Trans-
portation Problems. Linear fractional programming (LFP) is a gener-
alization of linear programming (LP) that deals with optimization problems
where the objective function is a linear fractional function, i.e., a ratio of
two linear functions [24]. LFP has been widely studied in the literature, and
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various solution methods have been proposed, including the Charnes-Cooper
transformation [24], the Dinkelbach algorithm [2], and the parametric sim-
plex method [3]. Arsham [25] discussed the foundations of LFP. The paper
provides an overview of the basic concepts of linear programming and its
extensions, including LFP. The paper also discusses the duality theory of
LFP and its applications in transportation problems. The authors in [26]
discussed the application of LFP to transportation problems via α-Cut-
Based Method. The paper proposes an α-cut-based method that solves lin-
ear fractional programming problems with fuzzy variables and unrestricted
parameters. The paper includes a case study in the transportation sector
to demonstrate the effectiveness of the proposed method. In addition, there
are several other papers that discuss the application of LFP to transporta-
tion problems, including [27–29]. These papers provide different approaches
and methods for solving transportation problems using LFP. Transportation
problems are a special class of linear programming problems that involve the
allocation of resources from multiple sources to multiple destinations in a
way that minimizes the total cost or maximizes the total profit, subject to
supply and demand constraints [30]. The classical transportation problem
can be formulated as a linear programming problem with a linear objec-
tive function and linear constraints. However, in some cases, the objective
function may be a linear fractional function, leading to a linear fractional
transportation problem (LFTP).

One of the earliest works on this topic was by Dantzig and Wolfe [55], who
proposed an algorithm for solving linear programs with interval coefficients.
Subsequently, many researchers extended their algorithm to solve LFTPs
with interval coefficients in the objective function. For instance, Chen et
al. [56] proposed a method based on the branch-and-bound algorithm to
solve LFTPs with interval coefficients. The method involves dividing the
uncertain domain into smaller sub-domains, and then solving the problem
in each sub-domain using linear programming techniques. The final solution
is obtained by combining the solutions from all sub-domains.

2.2. Interval Linear Programming and Its Applications to Trans-
portation Problems. Interval linear programming (ILP) is an extension
of linear programming that deals with optimization problems where the co-
efficients of the objective function and/or the constraints are represented
by intervals, i.e., ranges of possible values [59]. ILP has been widely stud-
ied in the literature, and various solution methods have been proposed,
including the interval branch-and-bound method [14], the interval simplex
method [15], and the interval cutting-plane method [16].

One of the applications of ILP is in transportation problems. ILP provides
a tool for solving transportation problems under interval-valued uncertainty.
Garajova et al. [17] proposed a new method to solve interval transportation
problems (ITP). They transformed the single objective ITP into an equiv-
alent crisp bi-objective transportation problem where the left-hand side of
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the constraints is a crisp interval. They then used a modified version of
the ε-constraint method to solve the bi-objective problem. The paper in-
cludes numerical examples to demonstrate the effectiveness of the proposed
method.

2.3. Solving ILFTPs. The ILFTP is a relatively new research area that
combines the concepts of linear fractional programming, transportation prob-
lems, and interval linear programming. The main challenge in solving IL-
FTPs is to develop solution methods and algorithms that can efficiently
handle the interval uncertainty in the objective function coefficients and
provide optimal or near-optimal solutions to the problem. These are a type
of optimization problem that involve finding the optimal way to transport
goods from a set of sources to a set of destinations, subject to constraints
on the availability of goods and the capacity of transportation routes. The
objective function in these problems is a linear fractional function with in-
terval coefficients, which means that the coefficients of the variables in the
objective function are uncertain and lie within a given interval.The classical
method for solving linear fractional transportation problems is the simplex
method. However, this method is not suitable for problems with interval
coefficients in the objective function. To overcome this limitation, various
methods have been proposed in the literature. One such method is the in-
terval arithmetic-based method, which involves computing the bounds of
the objective function using interval arithmetic. Indeed, it deals with inter-
vals as operands and allows for the propagation of uncertainty in calcula-
tions [18]. Another method is the fuzzy linear programming-based method,
which involves representing the interval coefficients as fuzzy numbers and
solving the resulting fuzzy linear programming problem. However, these
methods have limitations in terms of computational efficiency and accuracy.
Interval arithmetic-based methods involve computing the bounds of the ob-
jective function using interval arithmetic. These methods have been shown
to be effective in solving linear fractional transportation problems with in-
terval coefficients in the objective function. Kuchta and Rohn [19] proposed
a type of optimization problem that combines the features of linear frac-
tional programming, transportation problems, and interval arithmetic. Li
and Zhang [31] proposed an interval arithmetic-based method for solving
such problems. They used the interval arithmetic to compute the bounds
of the objective function and then solved the resulting linear programming
problem using the simplex method. Wang and Li [32] proposed an interval
optimization-based method for solving linear fractional transportation prob-
lems with interval coefficients. They used the branch and bound algorithm
to solve the problem and showed that their method is more efficient and ac-
curate than the existing methods. Fuzzy linear programming-based methods
involve representing the interval coefficients as fuzzy numbers and solving
the resulting fuzzy linear programming problem. Li and Zhang [33] proposed
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a fuzzy linear programming-based method for solving linear fractional trans-
portation problems with interval coefficients. They used the α-cut method
to convert the fuzzy linear programming problem into a crisp linear pro-
gramming problem and then solved it using the simplex method. However,
this method has limitations in terms of computational efficiency and accu-
racy. Another approach to solving LFTPs with interval coefficients is to use
fuzzy set theory. Fuzzy set theory provides a way to deal with imprecise
and uncertain information. For example, Garcia-Lopez et al. [57] proposed
a fuzzy linear programming model for solving LFTPs with interval coeffi-
cients. They used triangular fuzzy numbers to represent the uncertainty in
the coefficients and solved the resulting problem using a fuzzy linear pro-
gramming algorithm. In recent years, metaheuristic algorithms have become
popular for solving LFTPs with interval coefficients. These algorithms are
based on the concept of optimization by means of random search. One such
algorithm is the Particle Swarm Optimization (PSO) algorithm. In PSO, a
swarm of particles is used to explore the search space and find the optimum
solution. For example, Liu et al. [58] proposed a PSO-based algorithm for
solving LFTPs with interval coefficients. They showed that their algorithm
is more effective than existing methods in terms of convergence speed and
solution quality. Wang and Li [53] proposed a hybrid genetic algorithm
for solving such problems. They combined the interval arithmetic-based
method and genetic algorithm to solve the problem and showed that their
method is more efficient and accurate than the existing methods. Zhang
and Li [54] proposed a simulated annealing algorithm for solving linear frac-
tional transportation problems with interval coefficients. They showed that
their method is more efficient and accurate than the existing methods. Also,
multi-objective linear fractional transportation problems with interval coef-
ficients are an important research area. Wang and Li [36] proposed a multi-
objective optimization approach for solving such problems. They used the
ε-constraint method to convert the multi-objective problem into a single-
objective problem and then solved it using the interval optimization-based
method. They showed that their method is more efficient and accurate than
the existing methods. Finally, it is worth mentioning that there are also some
studies on solving LFTPs with uncertain coefficients using other methods
such as genetic algorithms, ant colony optimization, and simulated anneal-
ing. However, these methods have not been widely used in solving LFTPs
with interval coefficients in the objective function. In conclusion, LFTPs
with interval coefficients in the objective function are important problems
with many practical applications. Various methods have been proposed to
solve these problems, including methods based on linear programming, fuzzy
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set theory, and metaheuristic algorithms. Further research is needed to de-
velop more effective and efficient methods to solve these problems and to
extend the existing methods to handle more complex situations.

3. Formulation of the problem

A flexible mathematical representation of an ILFTP can be achieved by
expressing it in a general form, which can be formulated as follows [37]:

(ILFTP1) Max Q(x) =
P (x)

D(x)
=

∑m
i=1

∑n
j=1[p

1
ij , p

2
ij ] xij + [p10, p

2
0]∑m

i=1

∑n
j=1[d

1
ij , d

2
ij ] xij + [d10, d

2
0]

Subject to
∑n

j=1 xij = ai for i = 1, 2, · · · ,m (1)∑m
i=1 xij = bj for j = 1, 2, · · · , n (2)

xij ≥ 0 , i = 1, 2, · · · ,m ; j = 1, 2, · · · , n (3)
Here, Q(x) represents the objective function, which is the ratio of P (x) and
D(x). The coefficients p1ij and p2ij denote the lower and upper bounds of the
profit of transporting one unit of commodity from source i to destination j,
respectively. Similarly, d1ij and d2ij represent the lower and upper bounds of
the cost of transporting one unit of commodity from source i to destination
j, respectively. The coefficients p10, p20, d10, and d20 are constants that depend
on the problem instance. In the following analysis, we make the assumption
that D1(x) > 0 and D2(x) > 0 for all x = (xij) ∈ S, where S a feasible set
defined by constraints (1) to (3). Additionally, we consider the conditions
ai > 0 and bj > 0 for i = 1, 2, · · · ,m and j = 1, 2, · · · , n, and assume that
the total demand is equal to the total supply, i.e.

m∑
i=1

ai =

n∑
j=1

bj .

To solve problem ILFTP1, we introduce a new variable, denoted by

z =
1

D(x)
=

1∑m
i=1

∑n
j=1[d

1
ij , d

2
ij ] xij + [d10, d

2
0]

(4)

and then we have

(ILFTP2) Max Q(x) =
∑m

i=1

∑n
j=1[p

1
ij , p

2
ij ] xij z + [p10, p

2
0] z

Subject to
∑m

i=1

∑n
j=1[d

1
ij , d

2
ij ] xij z + [d10, d

2
0] z = 1∑n

j=1 xij z − ai z = 0 for i = 1, 2, · · · ,m∑m
i=1 xij z − bj z = 0 for j = 1, 2, · · · , n

xij ≥ 0 , i = 1, 2, · · · ,m ; j = 1, 2, · · · , n z ≥ 0
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By introducing variables yij = xijz for i = 1, 2, · · · ,m ; j = 1, 2, · · · , n
the problem ILFTP2 is transformed into the following equivalent problem:

(ILFTP3) Max Q(x) =
∑m

i=1

∑n
j=1[p

1
ij , p

2
ij ] yij + [p10, p

2
0] z

Subject to
∑m

i=1

∑n
j=1[d

1
ij , d

2
ij ] yij + [d10, d

2
0] z = 1∑n

j=1 yij − ai z = 0 for i = 1, 2, · · · ,m∑m
i=1 yij − bj z = 0 for j = 1, 2, · · · , n

yij ≥ 0 , i = 1, 2, · · · ,m ; j = 1, 2, · · · , n

The linear combination of each interval leads to the following problem:

(ILFTP4) Max Q(x) =
∑m

i=1

∑n
j=1[(1− λij) p

1
ij + λij p2ij ] yij + [(1− λ0) p

1
0 + λ0 p20] z

Subject to
∑m

i=1

∑n
j=1[(1− βij)d

1
ij + βijd

2
ij ] yij + [(1− β0)d

1
0 + β0d

2
0] z = 1∑n

j=1 yij − ai z = 0 for i = 1, 2, · · · ,m∑m
i=1 yij − bj z = 0 for j = 1, 2, · · · , n

yij ≥ 0 , i = 1, 2, · · · ,m ; j = 1, 2, · · · , n
0 ≤ λij ≤ 1 , i = 1, 2, · · · ,m ; j = 1, 2, · · · , n
0 ≤ βij ≤ 1 , i = 1, 2, · · · ,m ; j = 1, 2, · · · , n

z ≥ 0 , 0 ≤ λ0 ≤ 1 , 0 ≤ β0 ≤ 1

The equality constraint in problem ILFTP4 can be expressed in a more
concise form as

m∑
i=1

n∑
j=1

βij [d
2
ij − d1ij ]yij + β0[d

2
0 − d10]z +

m∑
i=1

n∑
j=1

d1ijyij + d10z = 1 (5)

Since

z ≥ 0 , 0 ≤ β0 ≤ 1 , d20 − d10 ≥ 0 , yij ≥ 0

0 ≤ βij ≤ 1 , d2ij − d1ij ≥ 0 , i = 1, 2, · · · ,m ; j = 1, 2, · · · , n

Therefore

m∑
i=1

n∑
j=1

d1ij yij + d10 z ≤ 1 (6)

And

m∑
i=1

n∑
j=1

d2ij yij + d20 z ≥ 1 (7)
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Therefore, using (6) and (7), the problem (ILFTP4) is transformed into the
following Equivalent problem:

(ILFTP5) Max Q(x) =
∑m

i=1

∑n
j=1[1− λijp

1
ij + λijp

2
ij ] yij + 1− λ0p

1
0 + λ0p

2
0] z

Subject to
∑m

i=1

∑n
j=1 d

1
ij yij + d10 z ≤ 1 (8)∑m

i=1

∑n
j=1 d

2
ij yij + d20 z ≥ 1 (9)∑n

j=1 yij − ai z = 0 for i = 1, 2, · · · ,m (10)∑m
i=1 yij − bj z = 0 for j = 1, 2, · · · , n (11)

yij ≥ 0 , i = 1, 2, · · · ,m ; j = 1, 2, · · · , n (12)
0 ≤ λij ≤ 1 , i = 1, 2, · · · ,m ; j = 1, 2, · · · , n (13)
0 ≤ βij ≤ 1 , i = 1, 2, · · · ,m ; j = 1, 2, · · · , n (14)

z ≥ 0 , 0 ≤ λ0 ≤ 1 , 0 ≤ β0 ≤ 1 (15)

In addition, if we let(yij , z) for i = 1, 2, · · · ,m ; j = 1, 2, · · · , n be a point
of feasible region of problem (ILFTP5), with 0 ≤ βij ≤ 1 , p2ij − p1ij ≥ 0 for
i = 1, 2, · · · ,m ; j = 1, 2, · · · , n , 0 ≤ β0 ≤ 1 , p20 − p10 ≥ 0 ,the objective
function in problem (ILFTP5) can be written as:

m∑
i=1

n∑
j=1

λij [p2ij − p1ij ] yij + λ0 [p20 − p10] z +
m∑
i=1

n∑
j=1

p1ij yij + p10 z

≤
m∑
i=1

n∑
j=1

[p2ij − p1ij ] yij + [p20 − p10] z +

m∑
i=1

n∑
j=1

p1ij yij + p10 z

=

m∑
i=1

n∑
j=1

p2ij yij + p20 z

(16)

In (16), the right-hand side of the last equality can be viewed as an upper
bound on the objective function of (ILFTP5). Thus, the (ILFTP5) can be
expressed in an equivalent form as:
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(ILFTP6) Max
∑m

i=1

∑n
j=1 p

2
ij yij + p20 z

Subject to
∑m

i=1

∑n
j=1 d

1
ij yij + d10 z ≤ 1 (17)∑m

i=1

∑n
j=1 d

2
ij yij + d20 z ≥ 1 (18)∑n

j=1 yij − ai z = 0 for i = 1, 2, · · · ,m (19)∑m
i=1 yij − bj z = 0 for j = 1, 2, · · · , n (20)

yij ≥ 0 , i = 1, 2, · · · ,m ; j = 1, 2, · · · , n (21)
0 ≤ λij ≤ 1 , i = 1, 2, · · · ,m ; j = 1, 2, · · · , n(22)
0 ≤ βij ≤ 1 , i = 1, 2, · · · ,m ; j = 1, 2, · · · , n(23)

z ≥ 0 , 0 ≤ λ0 ≤ 1 , 0 ≤ β0 ≤ 1 (24)
The optimal solution (yij , z) for i = 1, 2, · · · ,m and j = 1, 2, · · · , n of
(ILFTP6) is equivalent to the optimal solution of problem (ILFTP1). This
can be easily obtained by setting xij =

yij
z

for all i and j, allowing for a
straightforward conversion between the two problems.

4. Numerical Examples

In this section, we illustrated the efficiency of the proposed method by
two numerical examples.

Example. Suppose that we have single objective to consider. The objective
coefficients are to maximize the ratio of the total delivery speed to the total
waste along the shipping route, where the values are represented by fuzzy
numbers. The problem below provide the ratio of the total delivery speed
to the total waste along the shipping route with interval numbers:

(ILFTP1) Max Q(x) =
P (x)

D(x)
=

∑3
i=1

∑4
j=1[p

1
ij , p

2
ij ] xij + [p10, p

2
0]∑3

i=1

∑4
j=1[d

1
ij , d

2
ij ] xij + [d10, d

2
0]

Subject to
∑4

j=1 xij = ai for i = 1, 2, · · · ,m (25)∑3
i=1 xij = bj for j = 1, 2, · · · , n (26)

xij ≥ 0 , i = 1, 2, 3 ; j = 1, 2, 3, 4 (27)

Where

P =

[1, 5] [4, 6] [5, 8] [4, 7]
[0, 3] [8, 12] [1, 5] [3, 6]
[6, 9] [7, 10] [2, 5] [3, 8]



D =

[1, 5] [2, 6] [1, 8] [3, 4]
[5, 6] [7, 9] [8, 10] [5, 9]
[6, 8] [2, 3] [5, 9] [0, 3]


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(a1, a2, a3) = (9, 20, 17)

,
(b1, b2, b3, b4) = (7, 9, 14, 16)

The above problem can be transformed into problem (ILFTP6), yielding
the following formulation:

Max 5y11 + 6y12 + 8y13 + 7y14 + 3y21 + 12y22 + 5y23 + 6y24 + 9y31 + 10y32 + 5y33 + 8y34

Subject to

y11 + 2y12 + y13 + 3y14 + 5y21 + 7y22 + 8y23 + 5y24 + 6y31 + 2y32 + 5y33 ≤ 1

5y11 + 6y12 + 8y13 + 4y14 + 6y21 + 9x22 + 10y23 + 9y24 + 8y31 + 3y32 + 9y33 + 3y34 ≥ 1

y11 + y12 + y13 + y14 − 9z = 0

y21 + y22 + y23 + y24 − 20z = 0

y31 + y32 + y33 + y34 − 17z = 0

y11 + y21 + y31 − 7z = 0

y12 + y22 + y32 − 9z = 0

y13 + y23 + y33 − 14z = 0

y14 + y24 + y34 − 16z = 0

yij ≥ 0 , i = 1, 2, 3 ; j = 1, 2, 3, 4.

The optimum solution of the above problem is

y13 = 0.06336 , y21 = 0.0493 , y22 = 0.05632 , y23 = 0.0352 , y32 =
0.00704 , y34 = 0.11264 , z = 0.00704

optimum solution of the ILFTP is

x13 = 9 , x21 = 7 , x22 = 8 , x23 = 5 , x32 = 1 , x34 = 16

Example. Suppose that there are single objectives being considered: The
second objective function involves maximizing the ratio of total profit to
total cost, and the values for this objective function are presented in the
following table as interval numbers:

(ILFTP1) Max Q(x) =
P (x)

D(x)
=

∑3
i=1

∑3
j=1[p

1
ij , p

2
ij ] xij + [p10, p

2
0]∑3

i=1

∑3
j=1[d

1
ij , d

2
ij ] xij + [d10, d

2
0]

Subject to
∑3

j=1 xij = ai for i = 1, 2, · · · ,m (28)∑3
i=1 xij = bj for j = 1, 2, · · · , n (29)

xij ≥ 0 , i = 1, 2, 3 ; j = 1, 2, 3 (30)
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Where

P =

 [2, 6] [3, 5] [8, 10]
[2, 8] [1, 5] [8, 12]
[8, 14] [2, 4] [4, 8]



D =

 [2, 4] [1, 5] [8, 10]
[9, 13] [7, 11] [1, 6]
[9, 13] [5, 9] [1, 5]


(a1, a2, a3) = (200, 80, 120)

(b1, b2, b3) = (145, 130, 125)

Therefore, we have:

Max 6y11 + 5y12 + 10y13 + 8y21 + 5y22 + 12y23 + 14y31 + 4y32 + 8y33

Subject to

2y11 + y12 + 8y13 + 9y21 + 7y22 + y23 + 9y31 + 5y32 + y33 ≤ 1

4y11 + 5y12 + 10y13 + 13y21 + 11y22 + 6y23 + 13y31 + 9y32 + 5y33 ≥ 1

y11 + y12 + y13 − 200z = 0

y21 + y22 + y23 − 80z = 0

y31 + y32 + y33 − 120z = 0

y11 + y21 + y31 − 145z = 0

y12 + y22 + y32 − 130z = 0

y13 + y23 + y33 − 125z = 0

yij ≥ 0 , i = 1, 2, 3 ; j = 1, 2, 3.

The optimum solution of the above problem is y12 = 0.17168, y13 =

0.06512, y21 = 0.9472, y23 = 0.08880, y31 = 0.5328, z = 0.001184
The optimum solution of the ILFTP is

x11 = 145, x12 = 55, x23 = 80, x32 = 75, x33 = 45
With the optimum objective function value of

5. Conclusion

In this research, we develop a strategy to solve ILFTPs. The proposed ap-
proach utilizes a convex combination of the interval’s lower and upper limits,
along with a variable transformation, to convert the initial linear fractional
transportation problem into a nonlinear programming problem. This nonlin-
ear problem is then further transformed into a linear programming problem,
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which includes two supplementary constraints and an additional variable
compared to the original problem. Our method is specifically designed to
systematically explore each point within the intervals, ultimately identify-
ing the optimal solution for the given problem. Future research in this area
can focus on developing hybrid methods that combine the strengths of the
existing methods. For example, a hybrid method that combines interval
arithmetic-based method and metaheuristic algorithms can be developed.
Another direction for future research is the development of methods for
solving multi-objective linear fractional transportation problems with inter-
val coefficients. Finally, the development of efficient algorithms for solving
large-scale problems with interval coefficients in the objective function is an
important research direction. In addition, the development of methods for
handling uncertainty in the input data is another important research direc-
tion. Many real-world transportation problems involve uncertain input data
such as demand and supply. Therefore, developing methods that can han-
dle such uncertainty is crucial for the practical application of the methods
developed in this area.
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