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A B S T R A C T  A R T I C L E   I N F O 

Data Envelopment Analysis (DEA) is used for calculating of relative efficiency and then ranking 

of decision making units (DMU) subject to inputs and outputs in a continuous decision making   

space. In this paper, DEA models, Cook and Kress Model and Belton-Vickers model have been 

applied as a multi attribute decision making (MADM) tool and compared analytically to other 

MADM models such as simple additive weighted (SAW) and technique for order preference by 

similarity to ideal solution (TOPSIS). For this purpose, after simulating some decision making 

matrixes and replacing DMU with alternatives, outputs with criteria to be maximized, inputs with 

criteria to be minimized, alternatives will be ranked by these models. The results of this study 

show that incorporating decision maker value judgments into the DEA models (restricted DEA 

models) provide comparable results to traditional MADM models (such as SAW and TOPSIS that 

are applied more than others). So, restricted DEA models seem to be an advantageous tool for 

solving MADM problems. 
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1. Introduction  

The primal aim in DEA is not to rank DMUs; the intention is to recognize ‘efficient’ and 

‘inefficient’ DMUs. In MADM, there are some alternatives which are described by some 

criteria and the decision maker should select one of these alternatives which is ranked higher 

than others. In fact, DEA measures relative efficiency of each DMU and separates efficient 

DMUs from inefficient DMUs. 

There are some articles on the use of DEA models as an MADM tool. Some researchers 

represented new models and others tried to compare results of DEA and MADM models. Belton 
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and Vickers (1992) by using of relation between DEA and MADM and also dominance concept 

(which is used in MADM models) represented a model to identify dominant alternatives and 

rank them. Doyle and Green (1993) adjusted Sexton model to prevent from obtaining different 

weights of outputs and inputs and then applied this adjusted model to solve an  MADM 

problem. Cook and Kress (1994) by definition of composite index and representing a model 

solved MADM problems with both qualitative and quantitative data. Stewart (1996) compared 

Belton and Vickers models and performed sensitivity analysis with an applied example. 

Bouyssou (1999) represented a model which uses convex efficiency concept and also ‘return to 

scale’ problem is neglected by converting of outputs and inputs to maximizing criteria. Sarkis 

(2000) compared some basic DEA ranking models with some MADM models by using of an 

applied example and finally discussed that DEA ranking models can be used to solve MADM 

problems. 

In spite of the fact that some good achievements have been obtained (even some new models) 

by researchers, they have not found a comprehensive method to solve MADM problems by 

DEA models (due to some basically differences between two areas) and there are lots of 

unsolved problems in this case.  

2. Applying DEA as an MADM tool 

There are some similarities between DEA and MADM formulations such as inputs and 

outputs as negative and positive criteria or attributes which suggest using DEA models for 

solving MADM problems.  

3. Efficiency in DEA and MADM 

The relation between ‘efficiency’ concept in DEA and ‘convex efficiency’ in MADM is not 

new. Suppose that },...,{
1

aaX
n

  is a finite set of alternatives that have been defined on 

criteria set. For avoiding ‘return to scale’ problem, all inputs are transformed to outputs. Also 

0y
kj

 is the value of alternative a
k

 on criterion j. Alternative a i
 is dominated by alternative 

a
k

if lkyy ijkj
,...,1,  and at least one of these inequalities is strict. In other words, 

alternative a is called efficient alternative in X if other alternatives does not dominate it. 

4. Return to scale 

Recognition of ‘return to scale’ is a problem which has not been solved yet. One way to solve 

this problem is change of minimizing criteria (inputs) to maximizing criteria (outputs) and 

disregarding return to scale. In fact there is no transformation process of inputs outputs in 

decision making matrix even in most problems there is not any relation between them. 

5. CCR Model 

Charnes, Cooper and Rhodes (1976) represented the first DEA model called CCR which 

measures relative efficiency of DMUs with several inputs and outputs. Assume that a set of n 

DMU j (j=1,…,n) using m inputs xij  (i=1,…,m) and generating s outputs y
rj

 (r=1,…,s).An 

input oriented multiplier model is, 
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Where vi   and ur   are input and output weights. This basic DEA model does not always 

discern and rank DMUs completely, particularly where some of DMUs are efficient and have 

efficiency value equal to 1.  

6. DEA Ranking Models  

Although there are lots of models to rank alternatives which have advantages but also they 

have some disadvantages. In this paper, models, which have less disadvantages, are preferred. 

6.1. Andersen and Petersen model (a super-efficiency model) 

Andersen and Petersen proposed a model (has been shown in model 2) for ranking efficient 

units which determines the most efficient unit. Measure of Efficient units can be greater than 

one and these units are ranked like as inefficient units. In this method, at first CCR model 

should be solved and efficient units are determined then model 2 is solved for each DMU. 
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There are two problematic issues. First, infeasibility problem, which if it happens, all DMUs 

are not ranked completely. The second problem is about unstable solutions, which means some 

efficient DMUs have great efficiency scores.  

 

6.2. LJK-CCR model (a super-efficiency model) 

LJK model, which was represented by Li et.al (2007), is always feasible and stable. All DMUs 

(efficient and inefficient) are ranked by solving only one model (model 3). 
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Where  xR ij
nj

i max
1 

  . It should be noticed that defining one free variable si  instead of both 

slack variables si

1  and si


2  cause to infeasible solutions for dual model. 

In optimal solution, DMUo , which is DEA efficient in the CCR model, is called super-

efficient in the LJK model if objective value is greater than 1. 

6.3. DEA Multiplier models with restricted weights(Assurance Region 

method) 

Given the fact that criteria weights are determined by models in DEA, decision maker (DM) 

preferences are disregarded. That is, a criterion may have larger weight than other criteria and 

then an alternative, which is less preferable, will have higher rank. To avoid this problem, 

assurance region (AR) approach can be used. Based on AR method, some constraints (similar to 

(4) and (5)), which have upper and lower bounds for each criterion weight, are added to DEA 

multiplier models. 

miU
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Where ULUL rrii ,1,1,1,1 ,,,  are lower and upper bounds on ratios uuvv ri 11 , (ratio of 

criteria weights). 

In general, efficiency scores are reduced by adding these constraints and some DMUs which 

were efficient may become inefficient. 

Although assurance region constraints are nonlinear, they can be transformed to linear 

constraints (like as (6) and (7)). 
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sruUuuL rrr ,...,1,1,11,1                                                                    (7) 

7. Cook and Kress model 

Traditional MADM models have two shortcomings. First, qualitative data transformed to 

quantitative data and second these models have no convenient mechanism for using both 
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quantitative and qualitative data simultaneously. Cook and Kress (1994) proposed a multi 

criteria composite index model which uses DEA procedure to solve MADM problems.  

Assume that there are N alternatives with k1  ordinal (qualitative) criteria and k 2  cardinal 

(quantitative) criteria. )(ia
k

is measure of alternative i in cardinal criterion k and W k  is weight 

of criterion k  that CARDkia
N

i k
 

,1)(
1

 and 1
21

1



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kk

k k
W .   is scale parameter which 

is determined by model and if it is not used in model, solution may be infeasible. Also )(id
kl

 is 

defined subject to ordinal criteria k (k=1,…, k1 ) which 1)( id
kl

 if alternative i is ranked in 

lth ordinal position  (l=1,…,L) and like )(ia
k

, w
kl

 is value of lth ordinal position for ordinal 

criterion k.  

A composite index is written by, 
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Where ORDkW klx kl
  and because of data normalizing composite index R

i
 has 

upper bound 1 for each alternative i. therefore Cook-Kress model is,  
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k

 , which are determined by model, show criteria clearness. In particular, if 
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is clearer than k 2  , constraint uu kk 21

  (or 0zuu
kk 21

  where z is a positive 
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) is added to model. 

Below algorithm is used for ranking alternatives, 

Step1: preparing data. At first, converting negative criteria to positive criteria and second 

normalizing weights.  

Step2: Model is solved by using specified g
l
 and clarity of criteria and then R

i
 is obtained. 

Step3: finally, alternatives are ranked according to R
i
 measures. 

 

 

 

0,,

,

,0

,0

1,,...1,,0

,...,1,1)()(:.

)(

)(

)1()(

1

)1(

1

*

1




























 

ux

zu

ORDjzuu

ORDkxM

ORDkugx

LlORDkugxx

NiiaWxidWts

zMaxzR

kkl

k

jj

kl

L

l

kl

KLkl

kllkkl

kCARDk kklklORDk

L

l

k

io









 

 

 

                 Journal of Applied Research on Industrial Engineering    Vol. 1, No. 4 (2014) 198-207 

 

 

203 

8. Bouyssou Model 

A ‘folk theory’ in MCDM context says that alternative a
j
 is efficient if a strict additive 

weights of a
j
 is greater than or equal to other alternatives. a

j
 is called convex efficient (CE) 

and other alternatives are called convex dominated (CD).  

Convex efficient alternatives are assigned by Bouyssou model, 

 

                                                                                                     

 (10) (10)  (10) 

 

Where  is an arbitrarily small positive number, w
k

 is weight of criterion k and y
ko

 is 

measure of alternative a
o

 according to criterion k and also negative criteria should be 

transformed to positive criteria. So a
o

 is convex efficient if D=0. Finally, convex efficient 

alternatives are ranked higher than convex dominated alternatives. 

9. Belton-Vickers model 

Belton and Vickers represented a model based on dominance concept. Suppose that u
r

 and 

v
i
 are positive and negative criteria weights. x

ij
 and y

rj
 are measure of alternative a

j
 

according to negative criterion i (input) and positive criterion r (output). a
j
 is dominated by 

a
o
 if  r (r=1,…,s) yy rjro

  and i (i=1,…,m) xx
ioij

  and at least one of these inequalities 

being strict. So, a
o
 is ranked higher than  a

j
 . Belton and Vickers model is written by the 

following LP model, 
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Where   is maximum of deviations D j  (j=1,…,n).  

It should be point out that both Bouyssou and Belton-Vickers models have identical ranking 

results because the difference between them is only due to changing data.  
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10. Comparing results of DEA ranking models with MADM models 

In this section, discrimination power and correlation of ranking results in DEA models and 

MADM models are compared by solving some examples. Hence, 15 decision making matrixes 

with quantitative and qualitative criteria are simulated. Each simulated example has some inputs 

(minimizing criteria) and some outputs(maximizing data) which one of these outputs has 

qualitative data. Quantitative data are selected from discrete uniform distribution in range of 1 

to 100.  For using these data in DEA models, qualitative data should be converted to 

quantitative data by Likert scale but this process is not used for solving Cook-Kress model. Also 

Criteria weights are gained by using of Shanon entropy method.  

10.1. Comparing Discrimination Power of Models 

After solving simulated problems by DEA ranking and MADM models and getting their 

results, standard deviation of results is calculated for comparing of discrimination power of 

models. It can be deduced that models with greater standard deviation value have more 

discrimination power. Greater standard deviation value means alternatives ranking is easier but 

when results are very close, ranking validity is doubtful. Table 1 and chart 1 have showed this 

result.  

Table 1  standard deviations of models results 

Number of 

Alternatives 

Number of 

Criteria 
SAW TOPSIS AP LJK Restricted Cook-Kress 

5 

3 0.3023 0.3638 2.3401 0.7047 0.3856 0.3465 

4 0.1671 0.1296 2.5900 0.3178 0.2936 0.1593 

5 0.1721 0.1867 3.2608 0.3337 0.3051 0.2204 

10 

3 0.2151 0.2583 0.3371 0.3304 0.3202 0.2815 

4 0.1743 0.1811 0.7019 0.3699 0.2678 0.2223 

5 0.1995 0.1878 1.9848 0.4094 0.3983 0.3211 

10 0.1431 0.1222 3.8973 0.1543 0.2923 0.1828 

15 

4 0.1203 0.1104 0.9569 0.2920 0.2542 0.1736 

5 0.1211 0.1201 2.1422 0.2555 0.293 0.1438 

10 0.0932 0.0776 7.0590 0.1422 0.2151 0.1151 

15 0.0850 0.0879 3.9550 0.2125 0.267 0.1401 

30 

5 0.1668 0.1611 0.9028 0.3666 0.1836 0.2245 

10 0.0883 0.1005 3.5889 0.2387 0.2205 0.1571 

15 0.0613 0.0613 2.6589 0.1629 0.2098 0.1182 

20 0.0522 0.0472 3.4029 0.0975 0.1691 0.0912 
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Fig 1. Bar charts of standard deviations 

Considering table 1 and figure 1, DEA ranking models and also Cook-Kress model have 

greater standard deviation than SAW and TOPSIS models. In fact, results of SAW and TOPSIS 

models are closer to each other than DEA ranking models, especially in big problems. So, it can 

be concluded that results with smaller standard deviations are closer to each other and have less 

discrimination power. For example in problem with 15 alternatives and 15 criteria, standard 

deviations of SAW and TOPSIS results (0.09 approximately) are smaller than DEA ranking 

results.  

 Also due to identical results of Bouyssou and Belton-Vickers models and also existence of so 

many convex efficient alternatives (which have zero value) in big problems, the results have not 

been expressed. 

10.2. Comparing Correlation Coefficients Between Models 

It should be explained that the ranking orders are not exactly the same between DEA ranking 

models and MADM models. Kendal correlation coefficient is used to calculate correlations 

between DEA models and MADM models and determine how well the ordinal ranks of all 

models correlated with each other. The results are shown on table 2. 

 

Table 2  Kendal Correlation coefficients between DEA models and MADM models (SAW and TOPSIS) 

 SAW TOPSIS 

Number of 

Alternatives 

Number of 

Criteria 
AP LJK Restricted Cook-Kress AP LJK Restricted 

Cook-

Kress 

5 

3 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

4 0.4 0.4 0.8 0.6 0.2 0.2 0.6 0.4 

5 1 1 0.8 0.8 0.8 0.8 1 1 

10 

3 0.689 0.689 0.822 0.778 0.511 0.511 0.644 0.867 

4 0.733 0.689 0.733 0.6 0.689 0.733 0.778 0.911 

5 0.689 0.689 0.822 0.511 0.822 0.822 0.956 0.556 

10 0.644 0.689 0.778 0.689 0.733 0.689 0.511 0.689 
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Table 2  Kendal Correlation coefficients between DEA models and MADM models (SAW and TOPSIS) 

15 

4 0.676 0.676 0.727 0.714 0.638 0.638 0.746 0.714 

5 0.276 0.276 0.181 0.581 0.505 0.505 0.600 0.771 

10 0.448 0.429 0.612 0.695 0.448 0.467 0.746 0.771 

15 0.638 0.505 0.599 0.714 0.733 0.714 0.889 0.733 

30 

5 0.536 0.540 0.614 0.811 0.526 0.531 0.623 0.793 

10 0.618 0.632 0.552 0.651 0.572 0.660 0.755 0.844 

15 0.361 0.292 0.286 0.531 0.310 0.536 0.700 0.857 

20 0.193 0.269 0.230 0.609 0.145 0.391 0.647 0.736 

It can be inferred from table 2 that DEA models with restriction weights and Cook-Kress 

model have greater correlation values with MADM models than other DEA models. Indeed, the 

rankings of DEA models with restriction weights seem to correlate well with both SAW and 

TOPSIS models.  

11. Discussion and Conclusions 

According to DEA literature, DEA models are categorized into two kinds of models, constant 

returns to scale (CRS) and variable returns to scale (VRS). In case of VRS against CRS, results 

of input-oriented models are different from output-oriented models. So, it should be noticed that 

CCR model and ranking DEA models which apply CRS concept, must be used instead of BCC 

model. This point has been followed by researchers and they have used CCR model to compare 

with MADM models in their articles.    

In this research, results of DEA and MADM models were compared by solving simulated 

examples. Although, the recognition of which MADM methods are the best has been a difficult 

goal to be obtained by researchers, SAW and TOPSIS methods which are used more than other 

methods are applied and compared with DEA ranking models.   

In conclusion, DEA ranking models (such as AP, LJK and models with restriction weights) 

and Cook-Kress model (which uses both quantitative and qualitative criteria) have more 

discrimination power than MADM models (SAW and TOPSIS) especially in big problems. 

MADM models are so close compare to DEA models and eventually valid ranking of 

alternatives is questionable. Another important point should be expressed that there is no 

generally accepted method to make a relative comparison of DEA models or any other MADM 

models among themselves. However, comparing of ranking results has been   performed by 

determining of Kendal correlation coefficient and finally results of DEA models and Cook-

Kress model have good correlation with MADM models. So these models can be used to solve 

MADM problems. In addition to this, models with restriction weights because of applying value 

judgments are the best choice for solving MADM problems. In other words, incorporating 

decision maker or manager preferences enhances the correlation between DEA and MADM 

models. 

Overall it was shown that some DEA ranking models correlate well with some MADM 

models (such as SAW and TOPSIS) and it seems that DEA ranking models can solve MADM 

problems. Of course there are some other DEA ranking models, For instance, Free Disposal 

Hull (FDH) model which is used in a discrete environment (like MADM models) can be used in 

future researches. 
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