Document Type : Research Paper


1 Department of Engineering, University of East of Guilan,Iran.

2 Department of Management, University of Payame noor, Iran.


Data analytics allows companies mining the patterns and trends in their customers data to implement more effective market segmentation strategies, then customize promotional offers, allocate marketing resources efficiently, and improve customer relationship management. However the implementation of such strategies often hampered by limited budgets and the ever-changing priorities and goals of marketing campaigns. So, This paper suggests and demonstrates the novel approach dividing a broad target market into subsets of consumers who have common needs, interests, and priorities, and then designing and implementing strategies to target them to achieve profit maximization. Therefore, the aims of this study are twofold, first, is to use historical data (such as purchased items and the associative monetary expenses), the proposed model identifies customer segments based on Firefly Algorithm (FA). Second, is the identification of the most profitable segment according to the RFM model (recency, frequency and monetary). In this article real marketing data are used to illustrate the proposed approach.


Main Subjects

[1]       Apostolopoulos, T., & Vlachos, A. (2010). Application of the firefly algorithm for solving the economic emissions load dispatch problem. International journal of combinatorics.
[2]       Baecke, P., & Van den Poel, D. (2011). Data augmentation by predicting spending pleasure using commercially available external data. Journal of intelligent information systems36(3), 367-383.
[3]       Baier, M., Ruf, K. M., & Chakraborty, G. (2002). Contemporary database marketing: concepts and applications. Racom Communications.
[4]       Alex, B., Stephen, S., & Kurt, T. (2000). Building data mining applications for CRM. New York (etc.): McGraw-Hill.
[5]       Blattberg, R. C., Getz, G., & Thomas, J. S. (2001). Customer equity: Building and managing relationships as valuable assets. Harvard Business Press.
[6]       Malhotra, N. K., Birks, D. F., Palmer, A., & Koenig-Lewis, N. (2003). Market research: an applied approach. Journal of marketing management27, 1208-1213.
[7]       Chan, S. L., & Ip, W. H. (2011). A dynamic decision support system to predict the value of customer for new product development. Decision support systems52(1), 178-188.
[8]       Chang, E. C., Huang, S. C., Wu, H. H., & Lo, C. F. (2007, December). A case study of applying spectral clustering technique in the value analysis of an outfitter’s customer database. Proceedings of international conference on industrial engineering and engineering management. 1743-1746. IEEE.
[9]       Chiliya, N., Herbst, G., & Roberts-Lombard, M. (2009). The impact of marketing strategies on profitability of small grocery shops in South African townships. African journal of business management3(3), 70.
[10]   Chiu, C. Y., Chen, Y. F., Kuo, I. T., & Ku, H. C. (2009). An intelligent market segmentation system using k-means and particle swarm optimization. Expert systems with applications36(3), 4558-4565.
[11]   Croft, M. J. (1994). Market segmentation: A step-by-step guide to profitable new business. Cengage Learning Emea.
[12]   Fader, P. S., Hardie, B. G., & Lee, K. L. (2005). RFM and CLV: Using iso-value curves for customer base analysis. Journal of marketing research42(4), 415-430.
[13]   Farsi,D., Fatahi, N., & Kosha, H. (2008). Market segmentation based on customers lifetime value (CLV). Proceedings of 6th  international conference on engineering. Tehran, Iran.
[14]   Hong, C. W. (2012). Using the Taguchi method for effective market segmentation. Expert systems with applications39(5), 5451-5459.
[15]   Hsu, F. M., Lu, L. P., & Lin, C. M. (2012). Segmenting customers by transaction data with concept hierarchy. Expert systems with applications39(6), 6221-6228.
[16]   Hughes, A. M. (2005). Strategic database marketing. McGraw-Hill Pub. Co..
[17]   Joh, C. H., Timmermans, H. J., & Popkowski-Leszczyc, P. T. (2003). Identifying purchase-history sensitive shopper segments using scanner panel data and sequence alignment methods. Journal of retailing and consumer services10(3), 135-144.
[18]   Kamakura, W., Mela, C. F., Ansari, A., Bodapati, A., Fader, P., Iyengar, R., ... & Wedel, M. (2005). Choice models and customer relationship management. Marketing letters16(3), 279-291.
[19]   Kohavi, R., & Parekh, R. (2004, April). Visualizing RFM segmentation. Proceedings of the 2004 SIAM international conference on data mining (pp. 391-399). Society for Industrial and Applied Mathematics.
[20]   Kotler, P., & Gordon, M. (1983). Principles of market. Canada: Prentice Hall.
[21]   Kottler, P., & Keller, K. L. (2003). Marketing management. Analyse, Planung, Umsetzung und.
[22]   Liu, H. H., & Ong, C. S. (2008). Variable selection in clustering for marketing segmentation using genetic algorithms. Expert systems with applications34(1), 502-510.
[23]    Berzosa, D. L., Davila, J. A. M., & de Pablos Heredero, C. (2012). Business model transformation in the mobile industry: co-creating value with customers. Transformation in business & economics11(2).
[24]   McLoughlin, F., Duffy, A., & Conlon, M. (2015). A clustering approach to domestic electricity load profile characterisation using smart metering data. Applied energy141, 190-199.
[25]   Holloway, J. C. (2004). Marketing for tourism. Pearson education.
[26]   Mutandwa, E., Kanuma, N. T., Rusatira, E., Kwiringirimana, T., Mugenzi, P., Govere, I., & Foti, R. (2009). Analysis of coffee export marketing in Rwanda: Application of the Boston consulting group matrix. African journal of business management3(5), 210.
[27]   Myers, J. H. (1996). Segmentation and positioning for strategic marketing decisions. American Marketing Association.
[28]   Seret, A., Maldonado, S., & Baesens, B. (2015). Identifying next relevant variables for segmentation by using feature selection approaches. Expert systems with applications42(15), 6255-6266.
[29]   Assael, H. (1984). Consumer behavior and marketing action. Kent Pub. Co..
[30]   Smith, W. R. (1956). Product differentiation and market segmentation as alternative marketing strategies. Journal of marketing21(1), 3-8.
[31]   Stone, B., & Jacobs, R. (1988). Successful direct marketing methods. Lincolnwood, IL: NTC Business Books.
[32]   Tsai, C. Y., & Chiu, C. C. (2004). A purchase-based market segmentation methodology. Expert systems with applications27(2), 265-276.
[33]   Wang, C. H. (2010). Apply robust segmentation to the service industry using kernel induced fuzzy clustering techniques. Expert systems with applications37(12), 8395-8400.
[34]   Weinstein, A. (1987). Market segmentation: Using Niche marketing to exploit new markets. Probus Publishing.
[35]   Yang, X. S. (2010). Engineering optimization: an introduction with metaheuristic applications. John Wiley & Sons.
[36]   Yang, M. S., Hung, W. L., & Chung, T. I. (2006). Alternative fuzzy clustering algorithms with l1-norm and covariance matrix. Proceedings of international conference advanced concepts for intelligent vision systems. 654-665. Springer Berlin/Heidelberg.