
 

 

 

 

1. Introduction 

A job shop is a multi-stage production system. Each job needs to undergo several operations to become 

a finished product. In a job shop, only a single machine is capable of processing each operation. This 

one-to-one relationship will cause blocking of production when any machine breaks down. To reduce 

the risk of blocking, a flexible job shop forms a group of capable machines for each operation. The term 

‘‘flexible’’ comes from the flexibility of routing jobs. If each machine is capable of processing all 

operations, the shop is very flexible, otherwise, it is partially flexible. Once the machine shop is properly 

capacitated with the proper number of machines, then two main trends have proven effective in 

improving the performance of the job shop or flexible job shop: Scheduling and cellular manufacturing. 

Scheduling is always one of the keys to the success of a production system. Properly utilizing the 

resources increases machine utilization, reduces work-in-process (WIP) level, shortens time to market, 

and meets customers’ demands [30]. However, scheduling is a continuous challenge but it must be 

preceded with equipment arrangement through cellular manufacturing. Cellular manufacturing is used 
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A B S T R A C T P A P E R    I N F O 

Cellular manufacturing is an important tool for manufacturing firms which leads to 

better productivity, focused and specialized manufacturing process. To utilize this 

important tool, the machines have to be grouped into cells. This work is related to using 

cellular manufacturing in a pharmaceutical factory with alternative routing. This adds 

more choices in the decision making process and presses for a better tool to make 

optimal selection. Several objectives may be considered to improve the productivity 

objectives such as the total number of exits and planning and scheduling robustness 

related objectives like bottleneck utilization and load balance between and within the 

alternative routes. Analytical hierarchical process (AHP) is used as a multi-objective 

decision making process to evaluate the best scenario amongst generated using 

simulation as a tool for modeling and evaluating the output for each scenario. Three 

customer case studies were considered with different preferences and the AHP 

evaluated the best scenario to fit these preferences. The best scenario can vary from 

one customer preferences to another but for the current system it turned out to be the 

same choice. 
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to overcome the deficiencies of job shop manufacturing, including excessive setup times and high level 

of in-process inventories. In cellular manufacturing, part-families are identified and machine cells are 

formed such that one or more part-families can be fully processed within a single machine cell [27]. 

Cellular manufacturing systems have shown encouraging results in batch manufacturing environments. 

Significant improvements can be achieved by grouping machines into cells dedicated to processing a 

sub-set of the total production. The advantages of cellular manufacturing include reduction in setup 

times, reduction of material handling times, reduced WIP, increased machine and tool utilization and 

improved operator utilization [20], throughput time reduction, smaller work in process inventories, 

manufacturing flexibility increase, product quality improvement and production planning and control 

simplification [26]. 

The benefits of cellular manufacturing organization can be strongly affected by the environment 

uncertainty, such as that associated with resource dependability and demand variability [21, 22]. 

Flexibility is usually considered in the design and operation of a cellular manufacturing system (CMS) 

to reduce the risks associated with uncertainty [23, 24]. Among the several types of flexibility, routing 

flexibility, the ability to use alternative routes inside a cell, or the ability to route parts to cells offering 

the same processes can strongly affect CMS performance [25]. In environments characterized by low 

resource dependability, the benefits of routing flexibility can balance the costs of material handling, 

fixtures, increased set-up times, etc. Therefore, a trade-off between productivity and flexibility can then 

be searched. 

Generally, a cellular manufacturing system is usually designed based on a single machine-part matrix. 

When the product mix changes, the structure of the machine-part matrix representing the manufacturing 

system changes too [28]. The performance of the system should be carefully evaluated to address the 

important objectives relevant to the manufacturing process to avoid creating bottleneck machines, 

which would deteriorate the schedule quality; on the other hand, one should aim at minimizing costs. 

Assessing the tradeoff between these possibly conflicting objectives is difficult; actually, it is a multi-

objective problem with respect to the load balancing and cost objectives [30]. Many approaches 

proposed to date base their cell formation on similarity coefficients among the parts. These coefficients 

can be generated using a coding system [1]. Other methods used to generate similarity measures include 

the Jaccards similarity coefficient method, a weighted similarity measure [2], process based similarity 

coefficients [3] and similarity coefficients based on part loading [4]. A different approach towards 

cellular design is part clustering using the production flow analysis (PFA) which uses a matrix 

representing the relations among the parts and the machines. The matrix, which is usually binary, is 

termed component incidence matrix. Many matrix-based methods have been proposed for the cell 

formation design. Examples are the Rank-Order method [5], the extended Rank-Order method [6], 

MODROC [7], and a progressive restructuring method [8]. Another approach for clustering is the 

hierarchical clustering approach, which uses methods such as single linkage clustering [2, 9, 10] and 

average linkage [11]. Part grouping methods also include optimization techniques such as linear 

programming [12], integer programming [13], and dynamic programming [4]. A multi-objective cluster 

analysis was proposed in [14]. Newer methods for clustering use Fuzzy Sets [15], and Neural Network 

[16]. A good set of introductory references to distributed problem solving can be found in [17-19]. 

Alternative routing and replicate machine  is considered as a flexibility factor that adds to the robustness 

against uncertainty and has been addressed [32, 33] along with the intercell movement objective [31, 

31] or  by adding a flexibility objective [31, 32, 34, 35], costs of intercell movements between machine 

operations and machine investment[31, 37]. 
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Moreover, the Analytic Hierarchy Process (AHP) is a decision analysis technique used to evaluate 

complex multi-attributed alternatives with conflicting objectives among one or more actors. The process 

involves hierarchical decomposition of the overall evaluation problem into sub problems that can be 

easily comprehended and evaluated. The benefits of the AHP include its ability to handle multiple 

stakeholders with multiple objectives, the inclusion of possible interaction effects and the relative ease 

of computation. In addition, with the AHP there is no need to explicitly estimate a utility function since 

the AHP deals with stated preferences at each step [42]. Several alternatives has been used such as 

Pareto weighting technique or utility weighting for the evaluation of the multi-objective problem. 

However, these techniques-although are successful in transforming the multi-objective into a single 

objective might not capture the total relevant experience of the expert or might include subjective 

mistakes. AHP includes multiple pairwise comparisons of the objectives and the alternatives against the 

objectives with consistency check, which enables more accurate capturing of the experience and 

produces a more accurate weighting of the factors. Furthermore, for the cases of complex, 

manufacturing processes, simulation had been used to model and evaluate the single objective problem 

or the multi-objective cellular design problem [31, 38, 39, 40, 41]. Simulation is not a cellular 

manufacturing algorithm, but is a scenario evaluation one. When compared to a scheduler, mathematical 

model, queuing, Petri net or any other stochastic technique, simulation proves to be the most flexible 

and accurate modeling technique. 

In this work, we have tackled a real case study of cellular manufacturing design in a pharmaceutical 

factory with all its added complexity of machine set-up time and failure, employee shifts and the 

alternative routing. This type of complexity makes discrete event simulation the most logical choice for 

system modeling. We have also addressed the problem as a multi-objective with load balance and 

productivity in mind and selective a more consistent group of objective functions to reflect load 

imbalance. Number of scenarios has been generated and AHP was used to evaluate the performance for 

each alternative. 

2.  AHP Basic Analysis 

Different quality characteristics have diverse responses to the same change in input parameters. 

Consequently, optimal point for all objectives cannot be achieved concurrently. Manufacturers must 

then prioritize their objectives. AHP includes a pairwise comparison between each quality 

measurements to give a specific weight for each objective quality characteristic. In relation to TED, 

pairwise comparison is done between all experiments for each individual objective characteristic. This 

in turn gives a weight for the level of achieving of the quality characteristic by each experiment. A 

simple multiplication between the weight of the quality characteristic and the weight of the experiment 

and a simple sum will give an overall weight for each process setting. The AHP then includes a 

hierarchy composed of two main levels, objectives experiments comparison level. The AHP is a 

systematic analysis technique developed for multi-criteria decision. Its operating mode lays on the 

decomposing and structuring of a complex issue into several levels, rigorous definition of manager 

priorities, and computation of weights associated to the alternatives. The output of AHP is a ranking 

indicating the overall preference for each decision alternative [12]. The development of the AHP model 

is achieved in three steps [13]: Multi-quality optimization, hierarchical modeling, and evaluation. 

The purpose of the AHP is to evaluate the overall achievement weight or score for each process setting 

(experiment). This is achieved firstly through pairwise comparison between each two quality 

characteristics and filling the comparison matrix A ( n n ) of the second level of the hierarchy, where 

n is the number of quality characteristics or objectives. Subsequently, the relative weight for each 
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quality characteristic is calculated and a consistency index is calculated as given by the following 

equations [14]:  
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The main advantage of AHP lies with consistency check. Where the comparison is checked using the 

CI index. Saaty [14] stated that for comparison to be consistent CI<0.10. The above described pairwise 

comparison is repeatedly performed for all experiments for their performance with respect to each 

quality characteristic. In this case, Weij  is evaluated as the weight coefficient of the experiment j in 

relation to quality characteristic i. The overall weight for each experimental setting is merely the sum 

of the multiplication of the weight of experiment j in relation to experiment i and the coefficient of 

quality characteristic i (See Eq. (7)). 
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Where, wj is AHP overall weight achieved by the  jth experimental setting.  

3. Methodology 

This work is related to applying AHP and simulation to cell design in manufacturing for the case of 

high flexibility and alternative routing. The basic steps for the suggested methodology are: 

i. Objectives selection: The objectives should balance between the flexibility and productivity 

measures. 

ii. Pairwise analysis for the objectives to determine the relative weight for each objective. 

iii. Scenario generation: Where the possible scenarios are generated based on acceptable  changes 

for the system. 

iv. Objectives evaluation for alternative cell design scenarios using simulation. 

v. Pairwise comparison for the alternative cell design scenarios against each objective function 

to evaluate the relative weight. 

vi. Evaluating the final performance measure for each scenario. 
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3.1 Objective Suggestion 

Huge emphasis in scheduling and optimization is placed on productivity measures. However, the 

optimal solution might not be robust enough to face changes in the process, such as machine failure. 

Therefore, alternative objective function should be considered such as operation cost and/or total exist 

to consider cases when the bottleneck machine may fail, since the probability of failure increases 

appreciably with high utilization. A further complication arises if we consider a truly multi-objective  

approach since assessing the tradeoff  between schedule quality and costs is not easy [29]. The 

traditional scheduling problem lists schedule based objectives such as average flow time, global 

earliness, lateness, production rate etc. However, these objectives may not be the proper ones to select 

for balancing the load on different machines. Alternative objectives has been used for cell design such 

as work in process, intercell movement, total investment. Even these cellular manufacturing objectives 

may not fit to all case. For example, the work in process inventory (WIP) objective may not fit 

applications where the pull system is applied. That is a case where the WIP is  controlled through a 

strict pull system. In addition, the investment costs is not applicable to the case when the factory is only 

rearranging and no new cost are incurred. If each product passes through the same routing as the other, 

then the intercell movement is a reflection of the number of products produced (total exits in simulation 

terminology) and is not an independent objective. 

Therefore, for successful application of the AHP and the optimization process, the objectives must be 

selected intelligently. For the problem on hand, the most important objective is the number of products 

produced in a certain period of time (total number of exits in Promodel terms). This objective is tied to 

the economics and feasibility of any decision to be made. However, this objective is not conclusive 

since it does not reflect the balance of the schedule, which is tied to the robustness of the planning and 

the scheduling process. For this purpose another set of objectives have been included which are related 

to the machine utilization and delay process. These important objectives reflect machine utilization and 

planning process robustness. Since already, the load is highly balanced and the process is uniform. We 

also selected WIP and the average minutes in system. As a summary, in this research, a set of objective 

functions have been selected which combine between the workstation balance and work in process 

inventory, these objectives are summarized as below: 

i. Objective A: load imbalance 1:  load imbalance within cell reflected by the difference in 

utilization between the maximum utilization difference and the minimum utilization 

difference. 

ii. Objective B: Total exit. 

iii. Objective C: load imbalance 2: Load imbalance between cells reflected by the difference in 

utilization between the bottlenecks of each cell.  

iv. Objective D: Work In Process (WIP).  

v. Objective E: Average minute in the system.  

The following paragraphs demonstrate how the load imbalance between and within cells will be 

calculated. For example, assume three cells mixing, drying, and milling where the utilization has been 

calculated using Promodel software as shown in Table 1.  
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Table 1. Load imbalance 1 calculations. 

Cell/ mlc Mixing% Drying% Milling% Max – Second utilization 

Cell 1 30.26 25.79 34.57 4.31% 

Cell 2 61.31 24.65 34.57 26.74% 

Cell 3 65.94 62.34 23.40 3.6% 

Cell 4 54.78 24.65 23.40 30.13% 

Cell 5 49.44 19.12 23.91 25.53% 

Load balance1= Max- Min 26.53% 

The difference between the bottleneck machine utilization and the second in line represents a window 

of opportunity for improvement. We can improve cell production by switching machines until little 

difference between the two is noticed. Thus, this imbalance difference reflects the arrangement quality 

of the machines. The difference between the Max difference and the minimum difference reflects this 

arrangement quality. The first load imbalance is given by Eq. (8). For each cell and is shown in Table 

1 column 5. The objective measure is the difference of the imbalance between the maximum and the 

minimum imbalance. Ideally, this objective is zero that is there no difference within the cell between 

the different machines. However, it can be zero if all the cells have the same imbalance that is the max 

imbalance - min imbalance are equal which means that all arrangement are equal. 

Load imbalance = within cell (max. utilization – Second utilization).          (8)                 

For the current production line the total imbalance equals  = 30.13 – 3.6 = 26.53.  

Table 2 shows the same values of utilization as that of Table 1, however the values are arranged to 

give load imbalance 2. The maximum utilization is correlated to the production rate for each cell and 

Ideal cells are arranged evenly.  

Balance load2 (for each cell) = Max Util. cell- Min Util. cell.       (9) 

Table 2. Load balance 2 calculations.  

Cell/ mlc Mixing% Drying% Milling% Max  

Cell 1 30.26 25.79 34.57 34.57 

Cell 2 61.31 24.65 34.57 61.31 

Cell 3 65.94 62.34 23.40 65.94 

Cell 4 54.78 24.65 23.40 54.78 

Cell 5 49.44 19.12 23.91 49.44 

Load balance2= Max- Min 31.37% 

4. Case Study 

An XYZ local pharmaceutical company is interested in transforming its powdering process 

department from the current parallel machine configuration into cellular manufacturing. The company 

has three main processes: granulation, milling, blending as demonstrated on Fig 1. Granulation process 

consists of mixing the active ingredients and drying it, in this process the required batch (lot size) 

divided into many mixtures (premixes) according to machine capacity. Afterward, the Milling machine 

consists of crashing the mixtures after granulation to a small grain size. Finally, Blending process, which 

combines the mixtures (premixes) after milling according to the required batch size, so the final blend, 

is now ready to proceed to the next process (tableting). 
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Granulation

(Mixing & drying)
Milling Blending

 
Fig 1. Basic processing steps in the powdering department. 

Furthermore, in the XYZ pharmaceutical company each machine consists of different types as shown 

in Table 2, where variability exists due to difference from the manufacturer source. The name given to 

each machine is the same name known by the workers and recorded in the factory records.     

Table 3. List of the machines in the XYZ company. 
Mixing machine Drying machine Milling machine 

Mixer E Aeromatic C Fitz mill 
Mixer L-150 A Aeromatic A Oscillator 

Mixer L-150 B Oven Glatt cone mill 

Mixer H Glatt dryer  

Glatt mixer   

In a usual manufacturing process, machine is not available 100% of the time. It is customary to have 

set-up time and machine failures. This add's up to the complexity of the cellular manufacturing 

processes and if these are significant, then simple models might not be suffice. The powder machine’s 

is subjected to the following setup and failure types: 

i. Dry cleaning: A type of cleaning that is made to the machine after each premix of the same 

product. 

ii. Wet cleaning: A type of cleaning that is made to the machine when the concentration of the 

same product changes. 

iii. Full cleaning: A type of cleaning that is made between different products. 

iv. Repair: An operation that fixes the machine when a malfunction occurs. 

v. Preventive maintenance: Periodic maintenance (every 3 months) to check the machine state. 

5. Data Collection and Distribution Fitting 

In this research paper, data has been collected for the process time, setup time and failure time over 

one year based upon the company logbooks, the setup and failure time have been classified into the five 

types as discussed above. Subsequently, the data for each machine and each type has been fitted to the 

best distribution as shown in Table 4. 

6. Building the Simulation Model 

This section and subsection illustrate the building of the basic model representing the current situation 

in the factory. This model serves as the base against which other alternatives are evaluated, the current 

situation in the factory includes the following manufacturing cells, and the percentage of the products 

manufactured on each cell is demonstrated on Table 5. The company will allocate specific products to 

each line for reducing cleaning and setup times. Thus, specific percentages of production is associated 

with each cell, which reflects the products that are allocated to that cell. 

Cell 1: Mixer E, Aeromatic C, and Fitzmill. 

Cell 2: Mixer 150A Aeromatic A Fitzmill. 

Cell 3: Mixer 150 B Oven Oscillator. 

Cell 4: Mixer H, Aeromatic A Oscillator. 

Cell 5: Glatt mixer Glatt dryer Glatt cone mill. 
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                   Table 4. A sample of the distribution fitted for the cleaning process and the repair. 

 

 

 

 

 

Table 5. The percentage of products manufactured on each cell.  

Cycle Total # of premix Percentage (%) 

1 607 25.92 % 

2 545 23.27 % 

3 312 13.32 % 

4 545 23.27 % 

5 333 14.22 % 

Sum 2342 100% 

Table 5 shows the different product percentages allocated to each cell. The arrivals process reflects 

the orders inter-arrival time fitted. Following to arrival, the orders are distributed to the cells according 

to product type percentages as shown in Fig 2. 

 

 

 

Fig 2. Routing window. 

 

On the developed Promodel simulation software, the products have been developed as entities and 

material handling as path networks. Furthermore, machines, operators, and maintenance operators were 

represented as locations, resources, and downtimes. The working schedule were represented using the 

shifts in Promodel. The arrival was used to enter the products in and the processing was used to control 

the product flow in the model. Fig 3 shows a layout of the powdering department. 

6.1. Validation 

 After developing the simulation model for the current process, the model has been validated using 

both expert’s point of view and model outcome. On the first validation techniques a set of experts has 

been selected to validate the process visually, those experts include production manager, maintenance 

manager, and general manager in addition to the main researcher. In the second technique, the outcome 

from the simulation model has been compared to the real live process outcome over a ten months period. 

Within this period, the actual outcome is 2342 orders while the simulation model provides 2335 orders 

so we get around 0.3% error. Thus, the model may be considered as valid and accurate. 
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Fig 3. Layout of powdering department. 

 

 

 

 

 

 

Fig 4. Entity activity output. 

 

7. The Scenarios 

Process experience is the major factor in scenario generation, the bases of scenario generation is to 

have variants of the same process that are feasible and applicable. After a set of brainstorming session 

with the management team, nine scenarios are suggested based upon changes in product percentage 

devoted to each cell as shown in Table 6 and machine arrangement variation as shown in Table 7. 

Table 6. Changing in percentage of cell Input. 

glatt mixer mixer H mixer l 150 B    mixer L-150A    Mixer E Scenario # 

0.2 0.2 0.2 0.2 0.2 1 

0.2592 0.2 0.2 0.2 0.2327 2 

0.175 0.175 0.175 0.175 0.3 3 

0.175 0.175 0.3 0.175 0.175 4 

0.25 0.166 0.25 0.167 0.167 5 
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Table 7. Machine rearrangement based on feasibility. 

Scenario Arrangment 

6 -           Cell1: Mixer E  → Oven→ scillator..   

-           Cell2: Mixer L-150 A → Aeromatic C→ Fitz mill.  

-           Cell3: Mixer L-150 B→ Aeromatic A→ Fitz mill.  

-           Cell4: Mixer H →Aeromatic A→Oscillator.  

-           Cell5: Glatt Mixer →Glatt dryer →Glatt Cone Mill. 

7 -           Cell1: Mixer E →Aeromatic A→ Fitz mill.   

-           Cell2: Mixer L-150 A→Aeromatic C→Fitz mill.  

-           Cell3: Mixer L-150 B→Oven→Oscillator.  

-           Cell4: Mixer H→Aeromatic A→Oscillator.  

-           Cell5: Glatt Mixer→Glatt dryer→Glatt Cone Mill. 

8 -           Cell1: Mixer E→Aeromatic C→Fitz mill.   

-           Cell2: Mixer L-150 A→Aeromatic A→Fitz mill.  

-           Cell3: Mixer H→Oven→Oscillator.  

-           Cell4: Mixer L-150 B→Aeromatic A→Oscillator.  

-           Cell5: Glatt Mixer→Glatt dryer→Glatt Cone Mill. 

9 -           Cell1: Mixer E→Aeromatic A→Fitz mill.   

-           Cell2: Mixer L-150 A→Aeromatic A→Fitz mill.  

-           Cell3: Mixer L-150 B→Oven→Oscillator.  

-           Cell4: Mixer H→Aeromatic C→Oscillator.  

-           Cell5: Glatt Mixer→Glatt dryer →Glatt Cone Mill. 

8. Results Analysis and Discussion 

8.1 Results 

For each scenario, the five objective functions have been obtained using the Promodel software 

outcome as shown in Table 8. It is obvious that different scenarios provide totally different results and 

this stresses the need for a suitable selection scheme. The worst and best for each objective is highlighted 

and there is no clear optimal solution.  

Table 8. Objective summary for each scenario. 

 Objective A Objective B Objective C Objective D Objective E 

Scenario 1 26.53% 2886  31.37% 23.50 2914.88 

Scenario 2 33.985% 2725 20.74% 23.60 2987.49 

Scenario 3 26.47% 3079 24.36% 23.34 3023.90 

Scenario 4 21.01% 2593 31.7% 24.04   2851.94 

Scenario 5 27.74% 2729 35.94% 24.44 3055.80 

Scenario 6 39.62% 2630 34.6% 24.80 2975.87 

Scenario 7 35.88% 2770 29.6% 23.65 3103.88 

Scenario 8 17.31% 3334 26.29% 22.98 2940.28 

Scenario 9 33.02% 2605 26.39% 24.41 3051.41 

8.2 AHP Analysis 

8.2.1 Sample Objective Scoring  

 Objective A (load balance 1) is selected to show the AP calculations. We can notice that the range of 

values: maximum value = 39.62% and minimum value = 17.31%. Load imbalance should be kept to 

minimum value. The score can be calculated by mapping the two scales as shown in Fig 5 using Eq. 

(9). 
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 The score =  

 ( maximum value –scenario value) / (Maximum value -Minimum value)*Scale length  +1   (9) 

 =(39.62 - 26.53% )/(39.62 – 17.31) * 8+1= 5.7. 

 
Fig 5. Schematic analysis to illustrate objective mutual comparison generation matrices. 

The summarized score for each scenario versus the objective function has been calculated in Table 9. 

These values can be compared to the results in Fig 5 for validation. Furthermore, the score for each 

objective function at each scenario has been calculated as shown in Table 10.  

Table 9. Objective and score summary.  

 Objective A Score 

Scenario 1 26.53% 5.7 

Scenario 2 33.985% 3.0 

Scenario 3 26.47% 5.7 

Scenario 4 21.01% 7.7 

Scenario 5 27.74% 5.3 

Scenario 6 39.62% 1.0 

Scenario 7 35.88% 2.3 

Scenario 8 17.31% 9.0 

Scenario 9 33.02% 3.4 

    Table 10. Scenario performance scoring for the different objectives. 

 Objective A Objective B Objective C Objective D Objective E 

Scenario 1 5.7 4.2 3.4 6.7 7.0 

Scenario 2 3.0 2.4 9.0 6.3 4.7 

Scenario 3 5.7 6.2 7.1 7.4 3.5 

Scenario 4 7.7 1.0 3.2 4.3 9.0 

Scenario 5 5.3 2.5 1.0 2.6 2.5 

Scenario 6 1.0 1.4 1.7 1.0 5.1 

Scenario 7 2.3 2.9 4.3 6.1 1.0 

Scenario 8 9.0 9.0 6.1 9.0 6.2 

Scenario 9 3.4 1.1 6.0 2.7 2.7 

8.2.2 Mutual Comparison Matrix for the Scenarios  

Table 11 shows the Objective A, mutual comparison matrix "A". Each item in the matrix is generated 

using the scores in Table 10. For example, the item in cell 1x2 shaded is equal to scenario 2 

score/scenario 1 score =5.7/3.0=1.88. It represents how well scenario 2 is performing when compared 

to scenario 1. This Table  represents the "A" matrix and the sum of the columns is the E vector according 

to Eq. (4). (See Section 2). 
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Table 11. Objective a mutual comparison. 

9 8 7 6 5 4 3 2 1  
1.69 1.69 2.43 5.69 1.08 0.74 1 1.88 1 1 
0.9 0.9 1.29 3.02 0.57 0.39 0.53 1 0.53 2 
1.7 1.7 2.44 5.72 1.09 0.74 1 1.89 1 3 
2.28 2.28 3.28 7.67 1.46 1 1.34 2.54 1.35 4 
1.56 1.56 2.25 5.26 1 0.69 0.92 1.74 0.92 5 
0.3 0.3 0.43 1 0.19 0.13 0.17 0.33 0.18 6 
0.7 0.7 1 2.34 0.45 0.31 0.41 0.78 0.41 7 
2.67 2.67 3.84 9 1.71 1.17 1.57 2.98 1.58 8 
1 1 1.44 3.37 0.64 0.44 0.59 1.11 0.59 9 
12.79 12.79 18.4 43.07 8.19 5.61 7.54 14.26 7.56 Sum  (E) 

 As discussed on the AHP Section (Section 2), at this stage the B matrix will be calculated, then 

column C is calculated by taking the sum value for each row after that these values are normalized to 

calculate the weight of importance for objective quality characteristic (Wq) as shown in Table 13.   

Table 12. B matrix and C and Wq vectors for objective a mutual pairwise comparison.  

B Matrix C Wq 

8.93 16.62 8.93 6.32 9.63 50.72 21.34 5.63 15.19 143.31 0.132 

4.7 8.75 4.7 3.33 5.07 26.71 11.24 2.97 8 75.47 0.069 

8.93 16.62 8.93 6.32 9.63 50.72 21.34 5.63 15.19 143.31 0.132 

12.18 22.67 12.18 8.63 13.13 69.18 29.11 7.69 20.72 195.49 0.179 

8.32 15.48 8.32 5.89 8.97 47.25 19.88 5.25 14.15 133.51 0.122 

1.56 2.9 1.56 1.1 1.68 8.85 3.72 0.98 2.65 25 0.023 

3.71 6.91 3.71 2.63 4 21.07 8.87 2.34 6.31 59.55 0.055 

14.33 26.68 14.33 10.15 15.46 81.41 34.26 9.04 24.38 230.04 0.211 

5.29 9.84 5.29 3.74 5.7 30.02 12.63 3.33 8.99 84.83 0.078 

Afterward, the Maximum Eigen value (λmax ) has been calculated using Eq. (5) and the consistency 

index (C.I) is calculated using Eq. (6) as clarified below:  

λmax = (0.132*7.6) + (0.069*14.3) + (0.132*7.5) + (0.179*5.6) + (0.122*8.2) + (0.023*43.1) + (0.055*18.4) + 

(0.211*4.8) + (0.078*12.8) = 9.0000. 

C.I = (9.0000-9) / (9-1) = 0.000. 

R.I (for n=9) = 1.45. 

C.R = 0.00000/ 1.45 

        = 0.00000 < 0.1 (accepted). 

The normalized weight for each objective function at each scenario has been calculated and summarized 

in Table 13; these values are proved to be consistent.   

Table 13. Summary of the normalized weights for the scenarios. 

Objective E Objective D Objective C Objective B Objective A  
0.132 0.132 0.081 0.135 0.132 1 
0.070 0.070 0.215 0.079 0.069 2 
0.133 0.133 0.169 0.203 0.132 3 
0.178 0.178 0.077 0.033 0.179 4 
0.122 0.122 0.024 0.080 0.122 5 
0.023 0.023 0.041 0.046 0.023 6 
0.054 0.054 0.104 0.095 0.055 7 
0.209 0.209 0.145 0.293 0.211 8 
0.078 0.078 0.144 0.037 0.078 9 
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8.2.3 Best Scenario Evaluation  

Case 1: The planner is more concerned with the total number of products produced and time in 

system. Different cases will be discussed on the following subsections. In this case, the planner is 

concerned more on the total number of products produced and the total time on the system. The mutual 

comparison of the objectives are calculated in Table 14, afterward the B and C matrix are calculated in 

addition to the weight of importance for objective quality characteristic (Wq) as shown in Table 15.   

Table 14. Objectives rating for the case 1 scenario.  

Objective E Objective D Objective C Objective B Objective A  
0.1 0.2 1.0 0.1 1.0 Objective A 
1.0 1.8 9.0 1.0 9.0 Objective B 
0.1 0.2 1.0 0.1 1.0 Objective C 
0.6 1.0 5.0 0.6 5.0 Objective D 
1.0 1.8 9.0 1.0 9.0 Objective E 
2.8 5.0 25.0 2.8 25.0 Sum    E  

Table 15. B matrix, C, and We vectors for planner interest case 1. 

B Matrix C We 

1.37 2.48 12.4 1.37 12.4 30.02 0.0398 

12.4 22.44 112.2 12.4 112.2 271.64 0.3598 

1.37 2.48 12.4 1.37 12.4 30.02 0.0398 

6.92 12.52 62.6 6.92 62.6 151.56 0.2008 

12.4 22.44 112.2 12.4 112.2 271.64 0.3598 

Afterward, the Maximum Eigen value (λmax ) has been calculated using Eq. (5) and the consistency 

index (C.I) is calculated using Eq. (6) as clarified below:  

λmax  = 25.0 (0.040) + 2.8 (0.360) + 25.0 (0.040)  + 5(0.200) + 2.8 (0.360)   = 4.999=5. 

C.I =( n- λmax)/ n-1=  (5-5)/(5-1) = 0. 

when n=5 R.I.= 1.12 , C.R=C.I/R.I=0/1.12=0  < .1  (acceptable ). 

At this stage, the AHP overall weight achieved by the experimental setting (wj) is calculated for the first 

scenario, the summarized overall weight for each scenario is summarized in Table 16. These results 

clarify that scenario eight is the optimal followed by three then one for the above case. 

weight of first scenario= (.1277)(.17)+(.0968)(.4)+(.0851)(.13)+(.14)(.2)+(.1739)(.1) = .116882. 

Table 16. Scenarios overall rating for planner preference case 1. 

Scenarios Weight 

1 0.13112 

2 0.07904 

3 0.15964 

4 0.12176 

5 0.10296 

6 0.03200 

7 0.07076 

8 0.23668 

9 0.06588 
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Case 2: Planner more concerned with the load balance. If the load balance is of utmost importance, 

then the same steps calculated in the previous case study will be performed at this stage, the summarized 

overall weight for each scenario is summarized in Table 17 which show that scenario eight is the best 

followed by three and two respectively. 

Table 17. Scenarios overall ratings for planner preference case 2. 

Scenarios Weight 

1 0.110762 

2 0.132571 

3 0.151762 

4 0.12781 

5 0.07800 

6 0.03181 

7 0.077381 

8 0.185571 

9 0.104333 

 Case 3: Customer concerned with time in system then WIP and time in system. If the work in 

process and time in system  is of utmost importance, then the same steps calculated in the previous case 

study will be performed at this stage. The summarized overall weight for each scenario is summarized 

in Table 18 which show that scenario eight is the best followed by four and three respectively.  

Table 18. Scenarios overall ratings. 

Scenarios Weight 

1 0.129294 

2 0.079059 

3 0.139235 

4 0.163529 

5 0.113765 

6 0.025412 

7 0.059353 

8 0.210176 

9 0.079471 

9.  Conclusions 

This work is applied to cell design for alternative routing in a pharmaceutical factory based on a multi-

objective analytical hierarchical process technique. Several ways can be used to generate feasible 

scenarios, experience and process knowledge was used in this work. The objectives used to evaluate 

were load  within cell, Total exit, load imbalance between cells, Work In Process (WIP) and Average 

minute in the system. The optimal of each objective was in a different scenario. So, the optimal cannot 

be readily evaluated. We have transformed the optimal evaluation into a score of 1 to 9, and the optimal 

for each customer preference was obtained. The scenario arrangement according to each customer 

preferences was different, but the optimal was the same as Scenario 8. 
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