Document Type : Research Paper

Authors

1 Department of MCA, School of Computer Science & IT, Jain (deemed-to-be) University, Bengaluru, India.

2 Department of MCA, School of Computer Science & IT, Jain (deemed-to-be) University, Bengaluru, India.

10.22105/jarie.2021.266151.1236

Abstract

The recognition of pathways and identification of cars was seen with a prospective camera, which recognizes trajectories and predicts control points. The aim is to propose the location of the path. In this paper, lane detection algorithm Steering Assistance System (SAS) is introduced. Guiding helps to learn driving and anticipates the control points and defines the direction that makes it easy to learn in a potential way and a lane keeping assistance system which warns the driver on unintended lane departures. Path keeping is an important element for self-driving cars. This article describes the beginning to end adapting the approach to holding the car in the right direction.

Keywords

Main Subjects

[1]   Broumi, S., Dey, A., Talea, M., Bakali, A., Smarandache, F., Nagarajan, D., ... & Kumar, R. (2019). Shortest path problem using Bellman algorithm under neutrosophic environment. Complex and intelligent systems, 5(4), 409-416.
[2]   Kumar, R., Dey, A., Broumi, S., & Smarandache, F. (2020). A study of neutrosophic shortest path problem. In Neutrosophic graph theory and algorithms (pp. 148-179). IGI Global.
[3]   Kumar, R., Edalatpanah, S. A., Jha, S., Broumi, S., Singh, R., & Dey, A. (2019). A multi objective programming approach to solve integer valued neutrosophic shortest path problems. Neutrosophic sets and systems, 24. https://digitalrepository.unm.edu/nss_journal/vol24/iss1/13
[4]   Kumar, R., Edalatpanah, S. A., Jha, S., & Singh, R. (2019). A novel approach to solve gaussian valued neutrosophic shortest path problems. International journal of engineering and advanced technology, 8(3), 347-353.
[5]   Kumar, R., Edaltpanah, S. A., Jha, S., Broumi, S., & Dey, A. (2018). Neutrosophic shortest path problem. Neutrosophic sets and systems, 23, 5-15. https://www.researchgate.net/publication/330779076_Neutrosophic_Shortest_Path_Problem
[6]   Pratihar, J., Kumar, R., Dey, A., & Broumi, S. (2020). Transportation problem in neutrosophic environment. In Neutrosophic graph theory and algorithms (pp. 180-212). IGI Global.
[7]   Kumar, R., Edalatpanah, S. A., Jha, S., & Singh, R. (2019). A Pythagorean fuzzy approach to the transportation problem. Complex & intelligent systems5(2), 255-263.
[8]   Pratihar, J., Kumar, R., Edalatpanah, S. A., & Dey, A. (2020). Modified Vogel’s approximation method for transportation problem under uncertain environment. Complex & intelligent systems, 1-12. https:doi.org10.1007s40747-020-00153-4
[9]   Gayen, S., Jha, S., Singh, M., & Kumar, R. (2019). On a generalized notion of anti-fuzzy subgroup and some characterizations. International journal of engineering and advanced technology8(3), 385-390.
[10]  Gayen, S., Smarandache, F., Jha, S., & Kumar, R. (2020). Interval-valued neutrosophic subgroup based on interval-valued triple t-norm. In Neutrosophic sets in decision analysis and operations research (pp. 215-243). IGI Global.
[11] Gayen, S., Smarandache, F., Jha, S., Singh, M. K., Broumi, S., & Kumar, R. (2020). Introduction to plithogenic subgroup. In Neutrosophic graph theory and algorithms (pp. 213-259). IGI Global.
[12] Gayen, S., Smarandache, F., Jha, S., Singh, M. K., Broumi, S., & Kumar, R. (2020). Soft subring theory under interval-valued neutrosophic environment. Neutrosophic Sets and Systems, 36, 193-219. https://digitalrepository.unm.edu/nss_journal/vol36/iss1/16
[13]Gayen, S., Smarandache, F., Jha, S., & Kumar, R. (2020). Introduction to interval-valued neutrosophic subring. Neutrosophic sets and systems, 36, 220-245. https://digitalrepository.unm.edu/nss_journal/vol36/iss1/17
[14] Gayen, S., Smarandache, F., Jha, S., Singh, M. K., Broumi, S., & Kumar, R. (2020). Introduction to plithogenic hypersoft subgroup. Neutrosophic sets and systems, 33, 208-233. https://digitalrepository.unm.edu/nss_journal/vol33/iss1/14
[15]Kumar, R., Edalatpanah, S. A., & Mohapatra, H. (2020). Note on “Optimal path selection approach for fuzzy reliable shortest path problem”. Journal of intelligent & fuzzy systems, 39(5), 1-4. DOI: 10.3233/JIFS-200923
[16] Kumar, R., Jha, S., & Singh, R. (2020). A different approach for solving the shortest path problem under mixed fuzzy environment. International journal of fuzzy system applications (IJFSA)9(2), 132-161.
[17] Kumar, R., Jha, S., & Singh, R. (2017). Shortest path problem in network with type-2 triangular fuzzy arc length. Journal of applied research on industrial engineering4(1), 1-7.
[18] Kumar, R., Edalatpanah, S. A., Jha, S., Gayen, S., & Singh, R. (2019). Shortest path problems using fuzzy weighted arc length. International journal of innovative technology and exploring engineering8(6), 724-731.
[19] Singh, A., Kumar, A., & Appadoo, S. S. (2019). A novel method for solving the fully neutrosophic linear programming problems: Suggested modifications. Journal of intelligent & fuzzy systems37(1), 885-895.
[20] Mohapatra, H., Panda, S., Rath, A., Edalatpanah, S., & Kumar, R. (2020). A tutorial on powershell pipeline and its loopholes. International journal of emerging trends in engineering research8(4), 975-982.
[21] Mohapatra, H., Rath, S., Panda, S., & Kumar, R. (2020). Handling of man-in-the-middle attack in wsn through intrusion detection system. International journal8(5), 1503-1510.
[22] Mohapatra, H., Debnath, S., & Rath, A. K. (2019). Energy management in wireless sensor network through EB-LEACH. International journal of research and analytical reviews (IJRAR), 56-61.
[23] Mohapatra, H., RATH, A. K., Landge, P. B., Bhise, D. H. I. R. A. J., Panda, S., & Gayen, S. A. (2020). A comparative analysis of clustering protocols of wireless sensor network. International journal of mechanical and production engineering research and development (IJMPERD) ISSN (P), 10(3), 2249-6890.
[24] Mohapatra, H., & Rath, A. K. (2020). Survey on fault tolerance-based clustering evolution in WSN. IET networks9(4), 145-155.
[25] Mohapatra, H., Debnath, S., Rath, A. K., Landge, P. B., Gayen, S., & Kumar, R. (2020). An efficient energy saving scheme through sorting technique for wireless sensor network. International journal8(8), 4278-4286.
[26] Mohapatra, H., & Rath, A. K. (2020). Fault Tolerance in WSN Through Uniform Load Distribution Function. International journal of sensors, wireless communications and control10(1), 1-10. https://doi.org/10.2174/2210327910999200525164954
[27] Mohapatra, H., & Rath, A. K. (2019). Fault tolerance through energy balanced cluster formation (EBCF) in WSN. In Smart innovations in communication and computational sciences (pp. 313-321). Singapore: Springer.
[28] Mohapatra, H., & Rath, A. K. (2019). Fault tolerance in WSN through PE-LEACH protocol. IET wireless sensor systems9(6), 358-365.
[29] Mohapatra, H (2018). C programming: practice. Independently published.
[30]  Mall, R. (2018). Fundamentals of software engineering. PHI Learning Pvt. Ltd.
[32] Panda, M., Pradhan, P., Mohapatra, H., & Barpanda, N. K. (2019). Fault tolerant routing in heterogeneous environment. International journal of scientific & technology research8(8), 1009-1013.
[33] Furtado, F., & Singh, A. (2020). Movie recommendation system using machine learning. International journal of research in industrial engineering9(1), 84-98.
[34] Singh, A., Herunde, H., & Furtado, F. (2020). Modified Haar-cascade model for face detection issues. International journal of research in industrial engineering9(2), 143-171.
[35] Herunde, H., Singh, A., Deshpande, H., & Shetty, P. (2020). Detection of pedestrian and different types of vehicles using image processing. International journal of research in industrial engineering9(2), 99-113.
[36] Mohapatra, H. (2020). Offline drone instrumentalized ambulance for emergency situations. International journal of robotics and automation (IJRA)9(4), 251-255.
[37] Mohapatra, H., & Rath, A. K. (2019). Detection and avoidance of water loss through municipality taps in India by using smart taps and ICT. IET wireless sensor systems9(6), 447-457.
[38] Panda, H., Mohapatra, H., & Rath, A. K. (2020). WSN-Based water channelization: an approach of smart water. Smart cities—opportunities and challenges (pp. 157-166). Singapore: Springer.
[39] Watanabe, A., & Nishida, M. (2005, June). Lane detection for a steering assistance system. IEEE proceedings. intelligent vehicles symposium, 2005 (pp. 159-164). IEEE.
[40] Romdhane, N. B., Hammami, M., & Ben-Abdallah, H. (2011, September). A lane detection and tracking method for driver assistance system. International conference on knowledge-based and intelligent information and engineering systems (pp. 407-417). Berlin, Heidelberg: Springer. 
[41] Vishwakarma, S. K., & Yadav, D. S. (2015, December). Analysis of lane detection techniques using opencv. In 2015 annual IEEE india conference (INDICON) (pp. 1-4). IEEE.
[42] Risack, R., Mohler, N., & Enkelmann, W. (2000, October). A video-based lane keeping assistant. Proceedings of the IEEE intelligent vehicles symposium 2000 (Cat. No. 00TH8511) (pp. 356-361). IEEE.
[43] Son, T. T., & Mita, S. (2009, June). Car detection using multi-feature selection for varying poses. In 2009 IEEE intelligent vehicles symposium (pp. 507-512). IEEE.
[44] Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., ... & Zieba, K. (2016). End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316
[45] Liu, J. F., Wu, J. H., & Su, Y. F. (2007, September). Development of an interactive lane keeping control system for vehicle. In 2007 IEEE vehicle power and propulsion conference (pp. 702-706). IEEE.
[46] Li, C., Wang, J., Wang, X., & Zhang, Y. (2015, November). A model based path planning algorithm for self-driving cars in dynamic environment. 2015 chinese automation congress (CAC) (pp. 1123-1128). IEEE.
[47]Choudhury, S., Chattopadhyay, S. P., & Hazra, T. K. (2017, August). Vehicle detection and counting using haar feature-based classifier. 2017 8th annual industrial automation and electromechanical engineering conference (IEMECON) (pp. 106-109). IEEE.
[48] Chen, Z., & Huang, X. (2017, June). End-to-end learning for lane keeping of self-driving cars. 2017 IEEE intelligent vehicles symposium (IV) (pp. 1856-1860). IEEE.
[49] Kim, J., & Park, C. (2017). End-to-end ego lane estimation based on sequential transfer learning for self-driving cars. Proceedings of the IEEE conference on computer vision and pattern recognition workshops (pp. 30-38).  https://openaccess.thecvf.com/content_cvpr_2017_workshops/w13/papers/Kim_End-To-End_Ego_Lane_CVPR_2017_paper.pdf
[50] Nishida, M., Kawakami, S., & Watanabe, A. (2005). Development of lane recognition algorithm for steering assistance system. SAE transactions, 114, 566-572.
[51] Zhi-Hong, Z. E. N. G. (2003). Lane detection and car tracking on the highway. Acta automatica sinica29(3), 450-456.
[54] Wu, Y., Shan Y., Xu Y., Wang Sh., & Zhuang Y. (2010). The implementation of lane detective based on OpenCV. 2010 second WRI global congress on intelligent systems (pp. 278-281). IEEE.