Document Type : Research Paper


1 Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2 School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran.


The Location Routing Problem (LRP), Automatic Guided Vehicle (AGV), and Uncertainty Planner Facility (UPF) in Facility Location Problems (FLP) have been critical. This research proposed the role of LRP in Intelligence AGV Location–Routing Problem (IALRP) and energy-consuming impact in CMS. The goal of problem minimization dispatching opening cost and the cost of AGV trucking. We set up multi-objective programming. To solve the model, we utilized and investigate the Imperialist Competitor Algorithm (ICA) with Variable Neighborhood Search (VNS). It is shown that the ICAVNS algorithm is high quality effects for the integrated LRP in AGVs and comparison, with the last researches, the sensitivity analysis, and numerical examples imply the validity and good convexity of the purposed model according to the cost minimization.


Main Subjects

  1. Abravaya, S., & Berend, D. (2009). Multi-dimensional dynamic facility location and fast computation at query points. Information processing letters109(8), 386-390.
  2. Ahmadi-Javid, A., & Hooshangi-Tabrizi, P. (2015). A mathematical formulation and anarchic society optimisation algorithms for integrated scheduling of processing and transportation operations in a flow-shop environment. International journal of production research53(19), 5988-6006.
  3. Akturk, M. S., & Yilmaz, H. (1996). Scheduling of automated guided vehicles in a decision making hierarchy. International journal of production research34(2), 577-591.
  4. Tirkolaee, E. B., Goli, A., Faridnia, A., Soltani, M., & Weber, G. W. (2020). Multi-objective optimization for the reliable pollution-routing problem with cross-dock selection using Pareto-based algorithms. Journal of cleaner production276, 122927.
  5. Behnamian, J., Ghomi, S. F., Jolai, F., & Amirtaheri, O. (2012). Minimizing makespan on a three-machine flowshop batch scheduling problem with transportation using genetic algorithm. Applied soft computing12(2), 768-777.
  6. Berman, O., Larson, R. C., & Chiu, S. S. (1985). Optimal server location on a network operating as an M/G/1 queue. Operations research33(4), 746-771.
  7. Birge, J. R., & Louveaux, F. (2011). Introduction to stochastic programming. Springer Science & Business Media.
  8. Bish, E. K., Leong, T. Y., Li, C. L., Ng, J. W., & Simchi‐Levi, D. (2001). Analysis of a new vehicle scheduling and location problem. Naval research logistics (NRL)48(5), 363-385.
  9. Caumond, A., Lacomme, P., Moukrim, A., & Tchernev, N. (2009). An MILP for scheduling problems in an FMS with one vehicle. European journal of operational research199(3), 706-722.
  10. Oboth, C., Batta, R., & Karwan, M. (1999). Dynamic conflict-free routing of automated guided vehicles. International journal of production research37(9), 2003-2030.
  11. Dai, J. B., Lee, N. K., & Cheung, W. S. (2009). Performance analysis of flexible material handling systems for the apparel industry. The international journal of advanced manufacturing technology44(11-12), 1219-1229.
  12. De Ryck, M., Versteyhe, M., & Debrouwere, F. (2020). Automated guided vehicle systems, state-of-the-art control algorithms and techniques. Journal of manufacturing systems54, 152-173.
  13. Desaulniers, G., Langevin, A., Riopel, D., & Villeneuve, B. (2003). Dispatching and conflict-free routing of automated guided vehicles: an exact approach. International journal of flexible manufacturing systems15(4), 309-331.
  14. Dhingra, V., Roy, D., & de Koster, R. B. (2017). A cooperative quay crane-based stochastic model to estimate vessel handling time. Flexible services and manufacturing journal29(1), 97-124.
  15. Edrissi, A., Askari, M., & Smaniotto Costa, C. (2019). Electric-vehicle car-sharing in one-way car-sharing systems considering depreciation costs of vehicles and chargers. International journal of transportation engineering7(2), 127-138. (In Persian).
  16. Egbelu, P. J. (1993). Positioning of automated guided vehicles in a loop layout to improve response time. European journal of operational research71(1), 32-44.
  17. El Khayat, G., Langevin, A., & Riopel, D. (2006). Integrated production and material handling scheduling using mathematical programming and constraint programming. European journal of operational research175(3), 1818-1832.
  18. Elmi, A., & Topaloglu, S. (2014). Scheduling multiple parts in hybrid flow shop robotic cells served by a single robot. International journal of computer integrated manufacturing27(12), 1144-1159.
  19. Fazlollahtabar, H., & Mahdavi-Amiri, N. (2013). Producer’s behavior analysis in an uncertain bicriteria AGV-based flexible jobshop manufacturing system with expert system. The international journal of advanced manufacturing technology65(9-12), 1605-1618.
  20. Fazlollahtabar, H., Rezaie, B., & Kalantari, H. (2010). Mathematical programming approach to optimize material flow in an AGV-based flexible jobshop manufacturing system with performance analysis. The international journal of advanced manufacturing technology51(9), 1149-1158.
  21. Fazlollahtabar, H., & Saidi-Mehrabad, M. (2015). Methodologies to optimize automated guided vehicle scheduling and routing problems: a review study. Journal of intelligent & robotic systems77(3), 525-545.
  22. Gamberi, M., Manzini, R., & Regattieri, A. (2009). An new approach for the automatic analysis and control of material handling systems: integrated layout flow analysis (ILFA). The international journal of advanced manufacturing technology41(1-2), 156.
  23. Ghobadi, A., Tavakkoli-Moghaddam, R., Fallah, M., & Kazemipoor, H. (2021). Multi-depot electric vehicle routing problem with fuzzy time windows and pickup/delivery constraints. Journal of applied research on industrial engineering8(1), 1-18. DOI: 22105/jarie.2021.231764.1165
  24. Goli, A., Tirkolaee, E. B., & Aydin, N. S. (2021). Fuzzy integrated cell formation and production scheduling considering automated guided vehicles and human factors. IEEE transactions on fuzzy systems, 29(12). DOI:1109/TFUZZ.2021.3053838
  25. Goli, A., Bakhshi, M., & Babaee Tirkolaee, E. (2017). A review on main challenges of disaster relief supply chain to reduce casualties in case of natural disasters. Journal of applied research on industrial engineering4(2), 77-88. DOI: 22105/jarie.2017.48360
  26. Guan, X., & Dai, X. (2009). Deadlock-free multi-attribute dispatching method for AGV systems. The international journal of advanced manufacturing technology45(5-6), 603.
  27. Gu, W., Li, Y., Zheng, K., & Yuan, M. (2020). A bio-inspired scheduling approach for machines and automated guided vehicles in flexible manufacturing system using hormone secretion principle. Advances in mechanical engineering12(2).
  28. Haleh, H., Tayebi Araghi, M. E., & Mohammad Arabzad, S. (2014). Multi-agent formula for automated guided vehicles systems. Journal of applied research on industrial engineering1(5), 280-292.
  29. Hasan, H. S. (2019). Automated guided vehicle, routing and algorithms. Science proceedings series, 1(2), 1-3.
  30. Hu, Z. H., Sheu, J. B., & Luo, J. X. (2016). Sequencing twin automated stacking cranes in a block at automated container terminal. Transportation research part c: emerging technologies69, 208-227.
  31. Ilić, O. R. (1994). Analysis of the number of automated guided vehicles required in flexible manufacturing systems. The international journal of advanced manufacturing technology9(6), 382-389.
  32. Maoudj, A., Bouzouia, B., Hentout, A., Kouider, A., & Toumi, R. (2019). Distributed multi-agent scheduling and control system for robotic flexible assembly cells. Journal of intelligent manufacturing30(4), 1629-1644.
  33. Jawahar, N., Aravindan, P., Ponnambalam, S. G., & Suresh, R. K. (1998). AGV schedule integrated with production in flexible manufacturing systems. The international journal of advanced manufacturing technology14(6), 428-440.
  34. Jerald, J., Asokan, P., Prabaharan, G., & Saravanan, R. (2005). Scheduling optimisation of flexible manufacturing systems using particle swarm optimisation algorithm. The international journal of advanced manufacturing technology25(9), 964-971.
  35. Jerald, J., Asokan, P., Saravanan, R., & Rani, A. D. C. (2006). Simultaneous scheduling of parts and automated guided vehicles in an FMS environment using adaptive genetic algorithm. The international journal of advanced manufacturing technology29(5), 584-589.
  36. Kim, J., Choe, R., & Ryu, K. R. (2013). Multi-objective optimization of dispatching strategies for situation-adaptive AGV operation in an automated container terminal. Proceedings of the 2013 research in adaptive and convergent systems(pp. 1-6).
  37. Krishnamurthy, N. N., Batta, R., & Karwan, M. H. (1993). Developing conflict-free routes for automated guided vehicles. Operations research41(6), 1077-1090.
  38. Lacomme, P., Larabi, M., & Tchernev, N. (2013). Job-shop based framework for simultaneous scheduling of machines and automated guided vehicles. International journal of production economics143(1), 24-34.
  39. Le-Anh, T., & De Koster, M. B. M. (2006). A review of design and control of automated guided vehicle systems. European journal of operational research171(1), 1-23.
  40. Lee, J. H., Lee, B. H., & Choi, M. H. (1998). A real-time traffic control scheme of multiple AGV systems for collision free minimum time motion: a routing table approach. IEEE transactions on systems, man, and cybernetics-part a: systems and humans28(3), 347-358. DOI:1109/3468.668966
  41. Levitin, G., & Abezgaouz, R. (2003). Optimal routing of multiple-load AGV subject to LIFO loading constraints. Computers & operations research30(3), 397-410.
  42. Lim, J. K., Lim, J. M., Yoshimoto, K., Kim, K. H., & Takahashi, T. (2002). A construction algorithm for designing guide paths of automated guided vehicle systems. International journal of production research40(15), 3981-3994.
  43. Lorenzo, B., Garcia-Rois, J., Li, X., Gonzalez-Castano, J., & Fang, Y. (2018). A robust dynamic edge network architecture for the internet of things. IEEE network32(1), 8-15. DOI:1109/MNET.2018.1700263
  44. Lu, S., Xu, C., Zhong, R. Y., & Wang, L. (2017). A RFID-enabled positioning system in automated guided vehicle for smart factories. Journal of manufacturing systems44, 179-190.
  45. Nishi, T., Hiranaka, Y., & Grossmann, I. E. (2011). A bilevel decomposition algorithm for simultaneous production scheduling and conflict-free routing for automated guided vehicles. Computers & operations research38(5), 876-888.
  46. Nouri, H. E., Driss, O. B., & Ghédira, K. (2016). Hybrid metaheuristics for scheduling of machines and transport robots in job shop environment. Applied intelligence45(3), 808-828.
  47. Meersmans, P. J. M, & Wagelmans, A. P. M. (2001). Effective algorithms for integrated scheduling of handling equipment at automated container terminals(No. ERS-2001-36-LIS). ERIM Report Series Research in Management. Erasmus Research Institute of Management. Retrieved from
  48. Mehrabian, A., Tavakkoli-Moghaddam, R., & Khalili-Damaghani, K. (2017). Multi-objective routing and scheduling in flexible manufacturing systems under uncertainty. Iranian journal of fuzzy systems14(2), 45-77. (In Persian). DOI: 22111/ijfs.2017.3133
  49. Mendoza, A., Ventura, J. A., & Huang, K. L. (2010). A flowshop scheduling problem with transportation times and capacity constraints. 11th IMHRC Proceedings (Milwaukee, Wisconsin. USA – 2010). 22.
  50. Mishra, N., Roy, D., & van Ommeren, J. K. (2017). A stochastic model for interterminal container transportation. Transportation science51(1), 67-87.
  51. Mohajeri, A., Fallah, M., & Hosseinzadeh Lotfi, F. (2014). Carbon based closed-loop supply chain design under uncertainty using an interval-valued fuzzy stochastic programming approach. International journal of research in industrial engineering3(3), 24-48.
  52. Qiu, L., & Hsu, W. J. (2001). A bi-directional path layout for conflict-free routing of AGVs. International journal of production research39(10), 2177-2195.
  53. Rajotia, S., Shanker, K., & Batra, J. L. (1998). A semi-dynamic time window constrained routeing strategy in an AGV system. International journal of production research36(1), 35-50.
  54. Rashidi, H., & Tsang, E. P. (2011). A complete and an incomplete algorithm for automated guided vehicle scheduling in container terminals. Computers & mathematics with applications61(3), 630-641.
  55. Reddy, B. S. P., & Rao, C. S. P. (2006). A hybrid multi-objective GA for simultaneous scheduling of machines and AGVs in FMS. The international journal of advanced manufacturing technology31(5-6), 602-613.
  56. Reveliotis, S. A. (2000). Conflict resolution in AGV systems. Iie transactions32(7), 647-659.
  57. Shao, S., Xia, Z., Chen, G., Zhang, J., Hu, Y., & Zhang, J. (2014, April). A new scheme of multiple automated guided vehicle system for collision and deadlock free. 2014 4th IEEE international conference on information science and technology(pp. 606-610). IEEE. DOI: 1109/ICIST.2014.6920551
  58. Singh, S. P., & Tiwari, M. K. (2002). Intelligent agent framework to determine the optimal conflict-free path for an automated guided vehicles system. International journal of production research40(16), 4195-4223.
  59. Sinriech, D., & Palni, L. (1998). Scheduling pickup and deliveries in a multiple-load discrete carrier environment. IIE transactions30(11), 1035-1047.
  60. Sinriech, D., & Kotlarski, J. (2002). A dynamic scheduling algorithm for a multiple-load multiple-carrier system. International journal of production research40(5), 1065-1080.
  61. Stopka, O. (2020). Modeling the delivery routes carried out by automated guided vehicles when using the specific mathematical optimization method. Open engineering10(1), 166-174. DOI: 1515/eng-2020-0027
  62. Taghaboni, F., & Tanchoco, J. M. A. (1988). A LISP-based controller for free-ranging automated guided vehicle systems. International journal of production research26(2), 173-188.
  63. Tang, L., & Liu, P. (2009). Two-machine flowshop scheduling problems involving a batching machine with transportation or deterioration consideration. Applied mathematical modelling33(2), 1187-1199.
  64. Tavakkoli-Moghaddam, R., Aryanezhad, M. B., Kazemipoor, H., & Salehipour, A. (2008). Partitioning machines in tandem AGV systems based on “balanced flow strategy” by simulated annealing. The international journal of advanced manufacturing technology38(3), 355-366.
  65. Umar, U. A., Ariffin, M. K. A., Ismail, N., & Tang, S. H. (2015). Hybrid multiobjective genetic algorithms for integrated dynamic scheduling and routing of jobs and automated-guided vehicle (AGV) in flexible manufacturing systems (FMS) environment. The international journal of advanced manufacturing technology81(9), 2123-2141.
  66. Veeravalli, B., Rajesh, G., & Viswanadham, N. (2002). Design and analysis of optimal material distribution policies in flexible manufacturing systems using a single AGV. International journal of production research40(12), 2937-2954.
  67. Vis, I. F. (2006). Survey of research in the design and control of automated guided vehicle systems. European journal of operational research170(3), 677-709.
  68. Vivaldini, K. C., Rocha, L. F., Becker, M., & Moreira, A. P. (2015). Comprehensive review of the dispatching, scheduling and routing of AGVs. CONTROLO’2014–proceedings of the 11th Portuguese conference on automatic control(pp. 505-514). Springer, Cham.
  69. Wang, M., & Zhou, Y. (2015, December). Scheduling for an automated guided vehicle in flexible machine systems. 2015 winter simulation conference (WSC)(pp. 2908-2916). IEEE. DOI: 1109/WSC.2015.7408394
  70. Bing, W. X. (1998). The application of analytic process of resource in an AGV scheduling. Computers & industrial engineering35(1-2), 169-172.
  71. Yahyaei, M., Jam, J. E., & Hosnavi, R. (2010). Controlling the navigation of automatic guided vehicle (AGV) using integrated fuzzy logic controller with programmable logic controller (IFLPLC)—stage 1. The international journal of advanced manufacturing technology47(5), 795-807.
  72. Yang, P., Wu, W., Moniri, M., & Chibelushi, C. C. (2012). Efficient object localization using sparsely distributed passive RFID tags. IEEE transactions on industrial electronics60(12), 5914-5924. DOI:1109/TIE.2012.2230596
  73. Yang, Y., Zhong, M., Dessouky, Y., & Postolache, O. (2018). An integrated scheduling method for AGV routing in automated container terminals. Computers and industrial engineering126, 482-493.
  74. Yoo, J. W., Sim, E. S., Cao, C., & Park, J. W. (2005). An algorithm for deadlock avoidance in an AGV System. The international journal of advanced manufacturing technology26(5), 659-668.
  75. ZA Remba, M. B., Obuchowicz, A., Banaszak, Z. A., & Jed Rzejek, K. J. (1997). A max-algebra approach to the robust distributed control of repetitive AGV systems. International journal of production research35(10), 2667-2688.
  76. Zahan, N., Jony, F. I., & Nahar, K. (2020). Cost minimization of artificial hip bone implantation surgery by adopting additive manufacturing technique and its feasibility assessment. International journal of research in industrial engineering9(4), 328-336. DOI: 22105/RIEJ.2020.257506.1148
  77. Farahani, R. Z., Laporte, G., Miandoabchi, E., & Bina, S. (2008). Designing efficient methods for the tandem AGV network design problem using tabu search and genetic algorithm. The international journal of advanced manufacturing technology36(9-10), 996-1009.
  78. Zhang, Q., Manier, H., & Manier, M. A. (2014). A modified shifting bottleneck heuristic and disjunctive graph for job shop scheduling problems with transportation constraints. International journal of production research52(4), 985-1002.