Document Type : Research Paper


Department of Industrial Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran.


This paper, presents a mathematical model of a four-level supply chain under hyperchaos circumstances. The analysis of this model shows that the hyper-chaotic supply chain has an unstable equilibrium point. Using Lyapunov's theory of stability, the problem of designing a hyperchaotic supply chain control is investigated. The design of the nonlinear controller is performed first to synchronize two identical hyper-chaotic systems with different initial conditions and then to eliminate the chaotic behavior in the supply chain and move to one of unstable equilibrium points, as well as different desired values ​​at different times. A different supply chain is predicted to demonstrate the performance of the controller. In the next part of numerical simulation, with the control of the distributor as the center of gravity of the model, the stability of the entire chaotic supply chain can be achieved.  The most important point in designing a control strategy is the ability to implement it in the real world. Numerical simulation results in all stages show that the applied nonlinear control policy can provide supply chain stability in a short period of time, also, the behavior of control signals has low amplitude and oscillations. In other words, it represents a low cost to control the hyperchaotic supply chain network.


Main Subjects

  1. Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of atmospheric sciences20(2), 130-141.<0130:DNF>2.0.CO;2
  2. Hamidzadeh, S. M., & Esmaelzadeh, R. (2014). Control and synchronization chaotic satellite using active control. International journal of computer applications94(10), 29-33.
  3. Sarcheshmeh, S. F., Esmaelzadeh, R., & Afshari, M. (2017). Chaotic satellite synchronization using neural and nonlinear controllers. Chaos, solitons & fractals97, 19-27.
  4. Farivar, F., & Shoorehdeli, M. A. (2012). Fault tolerant synchronization of chaotic heavy symmetric gyroscope systems versus external disturbances via Lyapunov rule-based fuzzy control. ISA transactions51(1), 50-64.
  5. Hamidzadeh, S. M., & Yaghoobi, M. (2015). Chaos control of permanent magnet synchronization motor using single feedback control. 2015 2 nd international conference on knowledge-based engineering and innovation (KBEI). DOI: 1109/KBEI.2015.7436066
  6. Tusset, A. M., Balthazar, J. M., Rocha, R. T., Ribeiro, M. A., & Lenz, W. B. (2020). On suppression of chaotic motion of a nonlinear MEMS oscillator. Nonlinear dynamics99(1), 537-557.
  7. Çiçek, S., Kocamaz, U. E., & Uyaroğlu, Y. (2019). Secure chaotic communication with jerk chaotic system using sliding mode control method and its real circuit implementation. Iranian journal of science and technology, transactions of electrical engineering43(3), 687-698.
  8. Ouannas, A., Karouma, A., Grassi, G., & Pham, V. T. (2021). A novel secure communications scheme based on chaotic modulation, recursive encryption and chaotic masking. Alexandria engineering journal60(1), 1873-1884.
  9. Andrievskii, B. R., & Fradkov, A. L. (2003). Control of chaos: methods and applications. I. Methods. Automation and remote control64(5), 673-713.
  10. Andrievskii, B. R., & Fradkov, A. L. (2004). Control of chaos: methods and applications. II. Applications. Automation and remote control65(4), 505-533.
  11. Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic systems. Physical review letters64(8), 821.
  12. Hamidzadeh, S. M., & Ahmadian, V. (2016). Synchronization of chaotic systems via nonlinear control design based on lyapunov. Majlesi journal of mechatronic systems, 5(2).
  13. Boubellouta, A., Zouari, F., & Boulkroune, A. (2019). Intelligent fuzzy controller for chaos synchronization of uncertain fractional-order chaotic systems with input nonlinearities. International journal of general systems48(3), 211-234.
  14. Khan, A., Budhraja, M., & Ibraheem, A. (2019). Synchronization among different switches of four non-identical chaotic systems via adaptive control. Arabian journal for science and engineering44(3), 2717-2728.
  15. Rashidnejad, Z., & Karimaghaee, P. (2020). Synchronization of a class of uncertain chaotic systems utilizing a new finite-time fractional adaptive sliding mode control. Chaos, solitons & fractals: X5, 100042.
  16. Atan, Ö., Kutlu, F., & Castillo, O. (2020). Intuitionistic fuzzy sliding controller for uncertain hyperchaotic synchronization. International journal of fuzzy systems22(5), 1430-1443.
  17. Rossler, O. (1979). An equation for hyperchaos. Physics letters A71(2-3), 155-157.
  18. Kapitaniak, T., & Chua, L. O. (1994). Hyperchaotic attractors of unidirectionally-coupled Chua’s circuits. International journal of bifurcation and chaos4(02), 477-482.
  19. Guang-Yi, W., Yan, Z., & Jing-Biao, L. (2007). A hyperchaotic Lorenz attractor and its circuit implementation. Acta physica sinica56(6), 3113-3120.
  20. Yan, Z., & Yu, P. (2008). Hyperchaos synchronization and control on a new hyperchaotic attractor. Chaos, solitons & fractals35(2), 333-345.
  21. Wang, B., Shi, P., Karimi, H. R., Song, Y., & Wang, J. (2013). Robust H∞ synchronization of a hyper-chaotic system with disturbance input. Nonlinear analysis: real world applications14(3), 1487-1495.
  22. Claypool, E., Norman, B. A., & Needy, K. L. (2014). Modeling risk in a design for supply chain problem. Computers & industrial engineering78, 44-54.
  23. Nasiri, G. R., Zolfaghari, R., & Davoudpour, H. (2014). An integrated supply chain production–distribution planning with stochastic demands. Computers & industrial engineering77, 35-45.
  24. Fawcett, S. E., & Waller, M. A. (2011). Making sense out of chaos: why theory is relevant to supply chain research. Journal of business logistics32(1), 1-5.
  25. Yingjin, L. U., Yong, T. A. N. G., & Xiaowo, T. (2004). Study on the complexity of the bullwhip effect. Journal of electronic science and technology2(3), 86-91.
  26. Lei, Z., Li, Y. J., & Xu, Y. Q. (2006, October). Chaos synchronization of bullwhip effect in a supply chain. 2006 international conference on management science and engineering(pp. 557-560). IEEE. DOI: 1109/ICMSE.2006.313955
  27. Xu, X., Lee, S. D., Kim, H. S., & You, S. S. (2021). Management and optimisation of chaotic supply chain system using adaptive sliding mode control algorithm. International journal of production research59(9), 2571-2587.
  28. Kocamaz, U. E., Taşkın, H., Uyaroğlu, Y., & Göksu, A. (2016). Control and synchronization of chaotic supply chains using intelligent approaches. Computers & industrial engineering102, 476-487.
  29. Göksu, A., Kocamaz, U. E., & Uyaroğlu, Y. (2015). Synchronization and control of chaos in supply chain management. Computers & industrial engineering86, 107-115.
  30. Yan, L., Liu, J., Xu, F., Teo, K. L., & Lai, M. (2021). Control and synchronization of hyperchaos in digital manufacturing supply chain. Applied mathematics and computation391, 125646.
  31. Qi, G., van Wyk, M. A., van Wyk, B. J., & Chen, G. (2008). On a new hyperchaotic system. Physics letters A372(2), 124-136.