On solving capacitated transportation problem

Document Type: Research Paper

Author

Department of Mathematics, Kurdistan University, Sanandaj, Iran.

Abstract

We present a modification of three existing methods for finding a basic feasible solution for capacitated transportation problem‎. ‎To obtain an optimal solution, ‎the simplex algorithm for bounded variables is applied‎. ‎Special properties of transportation problem help us to operate each step of simplex algorithm directly on the transportation tableau‎. ‎At last, numerical examples are represented to illustrate our method‎.

Keywords

Main Subjects


[1]   Bazaraa, M. S., Jarvis, J. J., & Sherali, H. D. (2011). Linear programming and network flows. John Wiley & Sons.

[2]      Bit, A. K., Biswal, M. P., & Alam, S. S. (1993). Fuzzy programming technique for multi objective capacitated transportation problem. Journal of fuzzy mathematics1(2), 367-376.

[3]      Dahiya, K., & Verma, V. (2007). Capacitated transportation problem with bounds on rim conditions. European journal of operational research178(3), 718-737.

[4]      Goyal, S. K. (1984). Improving VAM for unbalanced transportation problems. Journal of the operational research society, 35(12), 1113-1114.

[5]      Hakim, M. A. (2012). An alternative method to find initial basic feasible solution of a transportation problem. Annals of pure and applied mathematics1(2), 203-209.

[6]      Hassin, R., & Zemel, E. (1988). Probabilistic analysis of the capacitated transportation problem. Mathematics of operations research, 13(1), 80-89.

[7]      Kassay, F. (1981). Operator method for transportation problem with bounded variables. Prace av studie vysokejv skoly dopravy spojov vv ziline séria matematicko-fyzikalna, 4, 89-98.

[8]      Rachev, S. T., & Olkin, I. (1999). Mass transportation problems with capacity constraints. Journal of applied probability36(2), 433-445.

[9]      Rachev, S. T., & Olkin, I. (1999). Mass transportation problems with capacity constraints. Journal of applied probability36(2), 433-445

[10]  Spivey, W., & Thrall, R. (1970). Linear Optimization. Inc., New York, NY: Holt, Rinehart and Winston.

[11]  Sudhakar, V. J., Arunsankar, N., & Karpagam, T. (2012). A new approach for finding an optimal solution for transportation problems. European journal of scientific research68(2), 254-257.

[12]  Taha, H. A. (2003)‎. ‎Operations research‎: ‎An introduction Seventh edition‎. ‎Prentice Hall

[13]  Zheng, H. R., Xu, J. M., & Hu, Z. M. (1994). Transportation problems with upper limit constraints on the variables and with parameters. Journal of Wuhan university natural science edition5, 1-5.